MATTER WAVES AND ELECTRICITY

The experimental results with clean tungsten
differ considerably from Coomes’ data. His yields
were lower than any previously obtained. It is
possible that his results could have been affected
by the measurement of secondaries produced
within the gun itself which would have the effect
of apparently lowering the yield.

The results obtained for sodium on tungsten
also disagree with Coomes’ results which showed
a lowering of the yield when the work function
was reduced by the application of thorium on
tungsten. However, they are in substantial agree-
ment with work by Treloar,! deBoer and Bruin-
ing,? and others.* ¢ The careful distillation of the
sodium, the outgassing procedure employed, and
the reproducibility of the results appear to pre-
clude the influence of oxygen on these results.

16 K. Sixtus, Ann. d. Physik 3, 1017 (1929).
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Since the thickness of the sodium film was always
less than a monomolecular layer, it is unlikely
that absorption of electrons within the layer was
appreciable. Thus we see that the secondary
emission yield is not independent of the work
function of the emitting surface but increases as
the work function is decreased. This is in accord
with Wooldridge's theory.!?

I sincerely appreciate the many helpful sug-
gestions given, and the continued interest shown,
by Professor W. B. Nottingham, under whose
direction this research was carried out. I am
grateful to Dr. W. Painter of the RCA Manu-
facturing Company for his suggestions regarding
electron gun design, to the electronics group at
M.I.T. with whom many enlightening discussions
were held, and to Mr. Lawrence W. Ryan who
ably performed the difficult glass-working opera-
tions demanded in this research.
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Classical four-dimensional relativity gives a most natural and harmonious interpretation of
the three basic phenomena of nature: gravity, electricity, and the wave structure of matter,
provided that the basic assumptions of the Einsteinian theory are modified in two respects:
(1) the fundamental invariant of the action principle is chosen as a quadratic instead of a
linear function of the curvature components; (2) the static equilibrium of the world is replaced
by a dynamic equilibrium. Electricity comes out as a second-order resonance effect of the
matter waves. The matter waves are gravitational waves but superposed not on an empty
Euclidean space but on a space of high average curvature. '

1. INTRODUCTION

HE belief in the fundamental unity of all

nature is so deeply rooted that attempts to
describe all natural phenomena from one unified
basis occurred again and again throughout the
history of physics. The great unification of
geometry and physics by Einstein gave new
impetus to such speculations. Various courses
were open to generalize the original frame of
relativity. The abandonment of the Riemannian
line element in favor of a more general metrical
structure by Weyl! and Eddington,? the intro-

1 H. Weyl, Math. Zeits. 2, 384 (1918).
2 A. S. Eddington, Proc. Roy. Soc. 99, 104 (1921).

duction of ‘‘distance parallelism” by Einstein,3
the change from a metrical to a projective plat-
form by Veblen and Hoffmann,* the enlargement
by a fifth dimension by Kaluza,® and the further
development of that theory by Einstein and
Bergmann® are some of the major landmarks in
these efforts. The author’s own attempt,” inaugu-
rated about ten years ago, follows a somewhat
different line. The frame of Riemannian geome-

3 A. Einstein, Berl. Ber., pp. 217 and 224 (1928).
4 0. Veblen and B. Hoffmann, Phys. Rev. 36, 810 (1930).
5 Th. Kaluza, Berl. Ber., p. 966 (1921); A. Einstein,
Berl. Ber., p. 23 (1927).
(15A.) Einstein and P. Bergmann, Ann. of Math. 39, 683
938).
7 C. Lanczos, Phys. Rev. 39, 716 (1932).
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try is not sacrificed nor is the four-dimensional
structure abandoned. The generalization consists
in the choice of a new action principle which leads
to field equations more general than the Ein-
steinian gravitational equations. The new field
equations are of fourth order in the g;.. However,
applying the methods of Hamiltonian dynamics
to the variation of the action principle, one can
vary metrical tensor and matter tensor as inde-
pendent variables and consider the resulting
system of field equations as a coupled system of
differential equations of second order for the
twenty variables g and Ry.8 These equations are
analogous to the basic equations of elasticity and
correspond to an elastic theory of the ether.

The author could show in his previous publica-
tion? that the generalized action principle is in
perfect harmony with the equations of electricity.
The integration of the field equations for
infinitesimal fields gives rise to a free vectorial
function ¢; which has all the properties of the
vector potential. This vectorial function can be
introduced as an undetermined Lagrangean multi-
plier, caused by the conservation laws of the
matter tensor. The field equation for ¢; follows
from the conservation laws and comes out as the
nabla equation, in complete analogy to the field
equation of the ordinary electromagnetic vector
potential. The conservation law of the electric
charge, expressed by the vanishing of the diver-
gence of ¢;, can also be established. Finally, the
dynamical interaction of charged particles can be
deduced by an application of the action principle
to the problem of motion. The resulting force is
the electromotive force of Lorentz.

Hence, in spite of the fact that the deductions
are based on the symmetric gradient

F' .= (3¢:/dxr) + (9 /9x:) (1.1)

rather than on the customary anti-symmetric
gradient
Fu= (ad),-/axk) - (adm/ax.-), (1.2)
the results are in agreement with the observable
physical facts. The change of sign from plus to
minus occurs in the ponderomotive force and that
suffices to define the field strength according to
(1.2) and deduce the Maxwellian equations.
While the theory is thus able to yield the basic
theoretical aspects of electricity, it contains one

8 C. Lanczos, Zeits. f. Physik 96, 76 (1935).
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fundamental difficulty which hampered all further
progress up to recent times. As it was indicated in
the closing chapter of the quoted paper,® the
theory cannot explain the existence of free
electric charges as long as static conditions pre-
vail. Indeed, let us consider an electric field with
the electrostatic potential ¢4. According to the
theory the gradient of ¢4 represents the three
components 7 ';sof the matter tensor and has to be
interpreted as an energy flux. Such an energy flux
must have a source. It requires the creation or
destruction of matter which is in contradiction to
the empirically well-established stability of the
mass of electrically charged particles.

Recent researches concerning the dynamical
problem of a particle!® started the author on an
entirely new track, furnishing him eventually
with that new viewpoint which has to be added
to the quadratic action principle before any
further progress can be made. It is the dynamical
viewpoint which replaces the essentially static
considerations of the previous researches. The
new departure reveals that the problem of
electricity cannot be separated from the problem
of matter waves since electricity is an accom-
panying second-order effect of the matter waves.
The consistent pursuance of the dynamical view-
point leads to such interesting results that a short
non-technical draft of the new theory, without
extended mathematical computations, seems to
be justified.

2. THE QUADRATIC ACTION PRINCIPLE

If the Lagrangean function of the universal
action principle shall be quadratic in the curva-
ture components, there seems to be an abundance
of five fundamental invariants. However, two of
these invariants are inactive as far as variation
goes while the remaining three invariants are
reducible to but two on account of an algebraic
identity which exists between them. These rela-
tions between the basic invariants were estab-
lished by the author,!! not knowing that they
were deduced before by Weitzenboeck,!? Bach,
and Juettner.

¢ Cf. reference 7, p. 735.

10 C, Lanczos, Phys. Rev. 59, 813 (1941).

11 C, Lanczos, Ann. of Math. 39, 842 (1938).

12 R, Weitzenboeck, Wien. Ber. 129, 683 (1920).

13 R, Bach, Math. Zeits. 9, 110 (1921).

4 F. Juettner, Math. Ann. 87, 270 (1922); cf. reference
17, footnote 1.
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The two remaining invariants can be combined
by an a priori undetermined numerical factor ¢
and thus the Lagrangean function of the funda-
mental action integral becomes:

L=RasR*+cR. (2.1)

The previous investigation left c an undetermined
number since there seemed to be no logical reason
why one particular value of ¢ should be preferred.
This distressing uncertainty can now be removed
and the action principle of the world uniquely
determined. There is actually one special value of
¢ which is distinguished by particularly desirable
properties.

We introduce a new tensor Si defined as
follows

Su=Ra—1kRgu (2.2)

with the undetermined numerical factor . The
Lagrangean function (2.1) can now be united into
the single expression

L =35,35%, (2.3)

provided that the following condition holds:
k(2—«)+4c=0. (2.4)

To any given c¢= —} a corresponding real « can be
found.

Since the action integral is quadratic in the Si,
the solution

Sa=0 (2.5)

is obviously a possible solution of the field equa-
tions. This solution is the most stable of all
possible solutions since it minimizes the action
integral to zero. It is reasonable to assume that
this particularly stable solution of the field equa-
tions will correspond to the average metrical
structure of the world on which the fields of the
material particles are superposed as small per-
turbations. This metrical field is obviously of
decisive importance for all phenomena of physics.
Ordinarily we identify it with the Euclidean
metrics but this would not serve our present pur-
poses. It is desirable to have a specific name for
the metrical background of the world as it exists
if the central fields of the individual particles are
stripped away; the name ‘“metrical plateau”
seems to be appropriate and will be adopted for
the present paper. The metrical plateau contains
the bulk of the geometry of nature; the fields of
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the individual particles are merely small pertur-
bations of the basic plateau.

The condition (2.5) yields the following field
equations:

Rik——%KRg¢k=0. (26)
Contraction gives
(1—=x)R=0. (2.7)
Now if « is different from 1, we get at once
R=0 (2.8)
and (2.6) yields
Riy=0. (2.9)

Since the field equations R;=0, if singularities
are excluded, do not go beyond the Euclidean
metrics, the metrical plateau of the world would
come out as the customary Euclidean space of
special relativity. But then the theory would not
contain anything that could possibly lead to a
reasonable explanation of the atomistic structure
of matter, in want of a universal constant of
atomistic dimensions. Consider, however, the
exceptional value

k=1.

(2.10)

The vanishing of R is now avoided. With this
value of « the constant ¢ becomes

c=—

(2.11)

P

The definition of S is now :

Sa=Ru—1Rgu. (2.12)

This S was once suggested by Einstein!® as a
possible substitute for the matter tensor Ty. It
is an under-determined quantity, leaving the
scalar curvature R arbitrary. The purpose of this
under-determination was to provide gravitational
forces which could counteract the electrostatic
forces of an electron and thus keep the electron
from exploding. However, this under-determi-
nation leads to unacceptable results.

The present theory does not lead to any under-
determination, not even for the value (2.11) of
the constant ¢. The field equations yield for the
scalar R the exact equation

(143¢)AR=0,

where A is the invariant four-dimensional
Laplacean operator. The critical value of ¢ which

15 A. Einstein, Berl. Ber., p. 349 (1919).

(2.13)
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leads to the loss of one equation is thus —% and
not —%. The choice (2.11) preserves the field
Eq. (2.13), and we can put

R=const. =4\ (2.14)

as the only reasonable solution of that equation.
The field Egs. (2.6) now become:

Ra=Nga, (2.15)

which are Einstein’s cosmological equations. The
constant A is an arbitrary constant of integration.
The M term is of an entirely decisive importance
because, as the following chapter will show, \is a
microscopic and not a macroscopic constant,
establishing a universal gauge of atomic dimen-
sions in the world.

In order to remove the degeneracy of the
Eq. (2.12), we can put

(2.16)

k=1—c¢

and consider ¢ as an exceedingly small number.
We now have

Sit=Ra—Ngix+ ergix (217)

and the basic metrical plateau is no longer
characterized by the equations S;: =0, but by the
“‘cosmological equations”’

S,-k=e7\g.'k, (2.18)

where e\ is of cosmological smallness.

3. FOURIER ANALYSIS OF THE RIPPLED
METRICAL PLATEAU

We assume that the basic metrical plateau on
which the fields of the individual particles are
erected is not the smooth Euclidean space of four
dimensions with which special relativity operates
but a space rippled by a diffuse cosmic radiation
which fills out the entire four-dimensional space-
time manifold. Although we know that our space
is probably of a closed spherical structure, we
replace that sphere for the purpose of the mathe-
matical analysis by a huge box of cubic shape.
We assume that the gi; of this world are nearly
Euclidean so that we may put

gie= 0+ €vir, (3.1)

where e is an infinitesimal expansion parameter.
The quantities v are of an oscillatory nature on
account of the radiation which fills the space. We
apply a Fourier analysis to the v, expanding
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them into an infinite Fourier series with a basic

wave-length which is extremely large. The terms

of the Fourier analysis have constant amplitudes.

The Fourier analysis is of the following form:
+00

ya= 2, Agzlro
B reih
—00

Xexp [i(le-l-ny-i-vaz-{-uct)]. (32)

We now examine the expression of the Ein-
steinian curvature tensor R;;. We notice that the
terms of this tensor can be split into two parts.
The part R'i is formed of partial derivatives,
while the part R cannot be transformed into
partial derivatives. Assuming that our reference
system is normalized by the customary condition :

aggi*/gox.=0, (3.3)

we obtain the following expression for R’ ;, neg-
lecting quantities of higher than second order
which are irrelevant for our present purpose:

R 1(670:3 0vag 1 9y a‘Y)
k S \—————— ——

4\ 0x; 9dxr 2 9x; dxk
1/0vi 0vig 10vi Oy
__( dvw_2 _). (3.4)
2\ 0%, 0Xa 2 0%, 0X,

These terms give rise to a phenomenon that
Schroedinger called ‘‘resonance catastrophe.”
The terms of R’;; are obtained by differentiation
and thus can give nothing but strictly periodic
contributions; a constant term could arise only
if the function to be differentiated were a linear
function of ¢ or the other coordinates which
contradicts the boundary conditions in infinity.
The terms of R, however, lead to constant
terms, in addition to the periodic terms. Each
frequency of the Fourier spectrum (3.2) is in
resonance with itself and produces a constant
term. Although these constants are individually
small, yet in view of the extended nature of the
Fourier spectrum and the very high frequency of
the peak of the radiation (the realm of cosmic-ray
frequency) these constants sum up to excessively
high values, in spite of the smallness of e.

These constants in the Fourier sum of R;; can-
not be compensated. They remain as unsaturated
terms and the ‘‘resonance catastrophe” would
occur if the metrical plateau had to satisfy the
field equations R;=0. We have to abandon these
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field equations in favor of a more general possi-
bility which avoids the difficulty of resonance
terms.

Since each component of the tensor R yields
a constant as the average value of that compo-
nent, a constant tensor p; is generated, charac-
terizing the average curvature of the basic
metrical plateau. The principal axes of this tensor
designate a distinguished reference system of the
space-time manifold. If, however, the cosmic
radiation is evenly distributed over all directions
of the four-dimensional world, then the tensor
ellipsoid of that constant tensor degenerates into
a sphere and the principal axes become unde-
termined. In that case the tensor p; must get the

form:
(3.5)

This, however, is exactly the condition that the
constant tensor ps has to fulfill if the field
equations R;=0 are modified to the ‘“cos-
mological equations”

R,‘k = )\gik- (36)

We thus return to our Eq. (2.15) obtained before
by integrating the field equations.

In view of the dynamical equilibrium of the
world the cosmological Egs. (3.6) obtain an
entirely new significance. Originally these equa-
tions were introduced by Einstein in order to
describe the cosmological behavior of the world
at large. The A term is an excessively small cor-
rection term since XA is inversely proportional to
the square of the average curvature radius of the
world. The cosmological term can have no in-
fluence on the microscopic structure of matter.
Its function is merely to regulate the metrical
behavior of the world in astronomical dimensions.
In the present theory the N term is excessively
large. The constant A is inversely proportional to
the square of a length of nuclear dimensions. We
get the apparently paradoxical result that a
statistically Euclidean rippled world whose metric
is nearly constant, may nevertheless gemerate an
exceedingly strong average curvature. The change
from statical to dynamical relativity spans the
tremendous gap between atomistic and cosmic
dimensions. In the static consideration a high
average curvature would either mean that the
world shrinks to nuclear dimensions, or that the
curvature radius of the world explodes with a

pik=Ndx.
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terrific speed. The tremendous pressure created
by the cosmological term must lead to an ex-
plosion of the world. In the dynamical con-
sideration that tremendous pressure is evenly
distributed over a great many vibrations, each
one carrying a very small amount of the burden.
The situation is comparable to the problem of the
electron which should explode under the influence
of the tremendous electrostatic repulsive forces.
Here, too, if the force is considered as a dynamic
and not a static phenomenon, the difficulty is at
once removed, as the next paragraph will show.

It is obvious that the rippled structure of the
metrical plateau must lead to observable phys-
ical phenomena. Dynamically these fields will not
show up easily. They produce extremely high
vibrations with extremely small amplitudes which
cannot be observed directly, except if occasional
phase relations produce a case of temporary
resonance. And thus, the wavy, eternally oscil-
lating metrical plateau must create statistical
effects. It is responsible for the general “uncer-
tainty’’ and practical unpredictability of motion
phenomena. Heisenberg’s uncertainty principle
may become realistically interpretable in terms
of the perpetual statistically distributed ripples
of the metrical plateau which incessantly travel
in every direction. Moreover, these vibrations are
responsible for the metrical structure of the
material particles. These particles are not the
static solutionsof an eigenvalue problem, growing
out from a smooth background as small hills on a
generally flat surface. The material particles are
themselves formed of vibrations which are in
dynamical equilibrium with the cosmic waves of
the basic metrical plateau. The strange and ap-
parently classically unexplainable wave me-
chanical phenomena are interaction effects be-
tween the metrical waves which emanate from
the individual particles. The following mechanical
analogy may illustrate the situation. If a car
travels on a gravelled road, it cannot keep to a
straight line exactly. It reaches its destination
only because the dimensions of the car are large
compared with the size of the gravel. If the size
of the car shrinks to dimensions which are com-
parable to the dimensions of the gravel, the car
will reach its destination with large statistical
fluctuations. If, in addition to that, the wheels of
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a car were notched into a wavy profile and the
rhythm of this wave were in resonance with the
ripples on the road on which the car travels, the
statistics which control the motion of this car
would be necessarily of the nature of interference
effects of products of wave functions, as it is the
case in wave mechanical considerations. This
crude picture is far from giving any explanation.
Its purpose is not more than to show that the
wave mechanical effects are not so puzzling any
more if the metrical structure of the basic plateau
on which the particles move has a dynamic
instead of static character.

4. ELECTRICITY AS A RESONANCE EFFECT OF
MATTER WAVES

We consider our action integral

A= f SusSeédr, 4.1)

where d7 is the four-dimensional volume element.
The principle of least action requires that the
variation of this integral shall vanish for arbi-
trary variations of the g;. We are not interested
at present in the exact derivation of the field
equations. We want to investigate the infinitely
weak fields only. For that purpose we temporarily
separate the variation of the g;; and the variation
of the Si. We know that the variation of the Sy
is reducible to the variation of the gu, by
differentiation. But it is equally true that the
variation of the g; is reducible to the variation of
the Si, by integration. Hence it is permissible to
consider the variation of the Sy as the inde-
pendent and the variation of the g4 as the de-
pendent variables. But the terms which contain
the 8g. are of second order and are thus negli-
gible for our present problem.

The variation of the S; is not a free variation
because the tensor S, defined by (2.17), is sub-
ject to the conservation law of momentum and
energy. This law takes the form:

dgiSie

= — giT 'S, 4.2)

0%y

If we consider this equation as an auxiliary con-
dition of the variation, the application of the
Lagrangean multiplier method gives a vectorial
function ¢; as Lagrangean multiplier and we

CORNELIUS LANCZOS

obtain for infinitesimal .S the field equation:
Si=(3¢:/0xi) + (0r/0x;) — 2T 4%¢e.  (4.3)

This field equation is not restricted to infini-
tesimal metrical fields g;.. Its only restriction is
that the matter tensor Sy, shall be infinitesimal. It
cannot be used in the central nuclear region of a
particle but it gives the field of a particle in the
peripherical regions where the tensor Sy is
sufficiently small.

To show that the vectorial function ¢; has
actually the properties of the ordinary vector
potential, we at first notice that the definition
(2.12) of the tensor Sy requires the vanishing of
the scalar S which gives:

agle=
=0. (4.4)

0Xa

This equation expresses the conservation law of
the electric charge.

The conditioning differential equation for ¢;
follows if the solution (4.3) is put back into the
divergence Eq. (4.2). We obtain with sufficient
accuracy:

d%*¢;

0x42

= — TS (4.5)

This is the classical determining equation of the
vector potential if the right side is interpreted as
the four-dimensional ‘“‘current vector.”

We notice that ¢; comes out as an infinitesimal
quantity of second order because both factors of
the right side are infinitesimal.

It is shown in analysis that a potential function
cannot be determined uniquely if the conditioning
differential equation is not known everywhere.
The differential Eq. (4.5) does not hold in the
central region of the particle and thus the Eq.
(4.5), although it gives the right mathematical
law for ¢;, does not suffice to determine it.
Fortunately, this uncertainty afflicts only the
possible dipoles and multipoles of ¢;. The
‘““charge”’-part of the potential, which decreases
with 1/7 and which is the dominating and phys-
ically decisive term, can be uniquely determined, in
spite of the uncertainty of the central region.

In order to understand the true significance of
the vector potential and its main mathematical
properties, let us examine the nature of the
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conservation law (4.2) more closely. We encounter
here once more a ‘“resonance catastrophe’ of a
definite type. This time the difficulty does not
arise from the fact that the left side of the equa-
tion is a sum of derivatives while the right side is
not. As it was shown by Einstein,!® the right side
of the equation can be transformed into a sum of
derivatives. However, let us apply the Gaussian
integral transformation to both sides of the
divergence equation. The surface integral ob-
tained on the left side vanishes if Si is zero
everywhere on the boundary. The right side,
however, does not vanish, even if Sy is zero
everywhere outside the particle. This shows that
the field equation

Siu=0 (4.6)

for infinitesimal fields cannot be established
without imposing a definite vectorial condition
on the central part of the field. The physical
interpretation of this situation is that although
the matter tensor vanishes outside the particle,
the momentum and energy flux through a closed
surface surrounding the particle need not vanish.
But then that flux has to be maintained and that
is only possible if matter destroys itself or is
created incessantly. We have here a similar
resonance phenomenon as in the case of the
plateau vibrations. Just as there a safety valve
was provided by the cosmological term Agi, so in
the new situation a similar safety valve is pro-
vided by the Lagrangean multiplier ¢;. This
shows that the vector potential ¢; plays the same
role for the matter waves that the cosmological
constant A plays for the plateau waves. In both
cases a resonance catastrophe has to be avoided.
Since the resonance is a second-order effect, we
understand why electricity appears as a second-
order surplus effect of the matter waves. The flux
of the electrostatic field balances the gravitational
Sflux of the matter waves. If this ‘‘pre-established
harmony’’ between matter waves and electricity
seems rather astonishing, one can explain it as
a logical consequence of the nature of the vector
potential as a Lagrangean multiplier. It is the
avowed purpose of this multiplier to make the
auxiliary condition of the matter tensor—and that
is the conservation law of momentum and energy

16 A, Einstein, Ann. d. Physik 49, 769 (1916); cf. Eq.

(50), p. 806; for the contravariant components, cf. reference
10, p. 817.
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—possible and thus it is only natural that it is the
function of the electric charge to provide an
energy flux which compensates the permanent
irradiation of the matter waves.

Of particular interest is the electrostatic charge
e which enters in the ‘‘scalar potential”’ ¢s. We
obtain:

—4re=

99y 1 rdgas
—vedeg = f Siavide =— f Sebdy,
0% 2J 9x, 4.7

where dvis the three dimensional volume element.
This volume integral can be transformed into a
surface integral according to the fundamental
theorem of Einstein!® that the gravitational mo-
mentum and energy flux can be rigorously trans-
formed into a surface integral. This shows that
the electric charge can be computed by making
use of a closed surface surrounding the particle at
any arbitrary distance so that the behavior of the
unknown central field does not influence the
electric charge.

The expression (4.7) shows directly that it is
the oscillation of the metrical tensor g4 which
generates the electric charge. We notice, too, that
a change of the sign of the time axis changes the
charge from plus to minus, without changing its
absolute value. Such a change in the direction of
x4=1ct means for the matter waves that outgoing
waves are changed into incoming waves. The
duplicity of positively and negatively charged
particles finds thus its explanation by the fact
that there is an equal chance for outgoing as for
incoming waves. Notice that this possibility is in
no contradiction to the phenomena of the re-
tarded potential which are always based on
outgoing and not on incoming waves. The matter
waves are eternal oscillations which have no
beginning and no end and thus ‘“‘outgoing’’ and
“incoming’’ refers merely to a phase relation and
not to something which comes in collision with
our regular experiences as to the sequence of time
events.

One of the main riddles of electricity is the
peculiar unsymmetry of the masses of electron
and proton. Can the present theory give a
satisfactory solution of this puzzle? The calcu-
lations are not advanced yet to the point where
this question can be answered. However, we have
good reason to believe that the results will come
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out satisfactorily. In the first place, the charge is
a second-order effect, and so is the mass.’? It
seems possible that the charge shall have a linear
influence on the mass. But apart from this, the
present theory differs in one characteristic point
from all previous attempts to apply relativity to
the physical universe. We have called the tensor
Six the “‘matter tensor”” and we have interpreted
the field equations

Sia=0 (4.8)

as ‘“matter waves.” These matter waves are
gravitational waves but not of the ordinary type.
If we consider the definition of the tensor Sy and
take in account that the field of a material
particle is superposed on the cosmological Egs.
(2.15), we notice that the Sj; tensor of a material
particle has to be defined as the variation of the
quantity (2.17), taken for an infinitesimal change
dgir of the metrical tensor gy:

Sit=0R iy — Noga. (4.9)

This is not the ordinary curvature tensor with
which we operate when the Einsteinian field
equations are applied to infinitesimal fields. The
curvature tensor (4.9) is superposed on a field of
high average curvature and not on a field of zero
curvature. The difference amounts to the same as
the difference between Dirac’s equation of the
electron “‘with the mass term’’ and ‘“‘without the
mass term.”’ If the mass term is omitted, the field
quantities satisfy the ordinary wave equation and
the waves propagate with light velocity. If the
mass term is present, the wave equation is
enlarged by a fifth term and the phase velocity
of the matter waves is no longer the light velocity.
Similarly, the ordinary gravitational waves of the
Einsteinian theory, superposed on a Euclidean
space, propagate with light velocity. The new
matter waves, however, characterized by the
vanishing of the tensor (4.9), propagate with an
entirely different phase velocity. The introduc-
tion of a highly curved metrical plateau as the
basic geometrical platform of the physical world
removes the degeneracy of the Euclidean space
and opens entirely new perspectives. The con-
nection of the Eqgs. (4.8) and (4.9) with the Dirac
and possibly Schroedinger equations will be the
subject of an independent investigation.

17 C. Lanczos, Phys. Rev. 59, 708 (1941).
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5. CONCLUSIONS

The general viewpoints of a new theory have
been developed which attempts to explain the
basic physical phenomena of the world in a most
harmonious and organic fashion. Although the
fundamental action principle is chosen on strictly
logical grounds, without augmenting it by phe-
nomenological elements, yet the basic phenomena
of electricity, matter waves, and gravity are
derivable from it as necessary mathematical con-
sequences. In addition to the quadratic action
principle, an essentially new element enters the
theory: the dynamical aspect. The metrical back-
ground of the world is not smooth but rippled by
an extended spectrum of permanent vibrations.
These vibrations, although observable only by
their statistical effects and giving the source of
the general uncertainty principle which prevails
in nature, create a strong average curvature upon
which the fields of the individual particles are
erected. The matter waves associated with the
particles are metrical waves which differ from the
ordinary gravitational waves by the fact that
they are metrical deformations of a strongly
curved world and not of a flat world. This ex-
plains the abnormal phase velocity of these waves
which differs widely from light velocity. Elec-
tricity is an accompanying resonance effect of
the matter waves, necessary to maintain the
undamped matter waves without energy losses.
Although electricity is a second-order effect, yet
for our world of observations it is by far more
decisive than all other effects because it is static
(in a proper reference system) while the waves
of the basic metrical platform and also the matter
waves of particles represent eternal oscillations
of very high frequencies.

The theory presented here is far from being
complete. It is not more than the first step
toward a new land. But the author who has
grappled with these ideas for ten years, groping
in the dark and unable to solve the puzzle of the
electric charge, until suddenly the dynamical
aspect arrived, illuminating the entire scenery
and melting away all difficulties—cannot doubt
that here are the outlines of a theory which will
be destined to bring the three basic phenomena of
nature: gravity, electricity, and the wave theory
of matter, into one inseparable unity.



