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A physical interpretation is given of the mathematical theorem that a Riemannian space can
be defined by means of the system of local tangent flat spaces. This leads naturally to an
elucidation of the status of Rosen's flat space in the general relativity theory. Comparison flat
spaces can be chosen arbitrarily, and if taken as giving the metric of space time lead to dif-
ferent arbitrary values of ether drift. In particular, the flat-space tangent to the Riemannian
space along the history of the observer {at the origin) is locally equivalent with the Riemannian
space, and no ether drift would be involved in using it in place of the Riemannian space as a
method of extrapolating measurements to great distances. It is further shown that the formal
simpli6cations achieved by introducing the comparison metric do not depend on its flatness.
A de Sitter type of isotropic empty space is introduced by means of which the distribution and
laws of motion of matter can be expressed in terms of the differences between actual space con-
taining matter and the empty comparison space. Comparison spaces in general are essentially
ideal, and can be introduced to bring out the non-ideal characteristics of actual space.

INTRODUCTION

' 'T was shown by Rosen' that by arbitrarily
& ~ introducing an Euclidean quadratic form in
the coordinates side by side with the Riemannian
metric of the Einstein theory, a formal simplihca-
tion of important equations of general relativity
coukI be secured.

Rosen further pointed out the possibility of
abandoning the geometrical interpretation of the
Riemannian metric in favor of the Euclidean
form as the natural space-time metric of an
observer in a gravitational field. ' The 6eld
potential would be described in terms of the
Riemannian fundamental tensor. The rays of
light would be given by null geodesics in the
Riemannian held, which would thus behave as a
medium with a refractive index depending on
the gravitational potential. An ether drag' caused
by motion through the field is then to be ex-
pected, which circumstance was claimed to favor
the Hat-space point of view.

Since Rosen's work, Anderson4 has published
his measurements of the velocity of light, in
which the greatest possible drag variation in six
months was less than the mean daily variation.
As his measurements are apparently the most
precise to date, it would appear that the flat-

space point of view has lost observational sup-
port in this respect.

It should perhaps be pointed out in passing
that the argument would not be affected by the
possible existence of secular changes in the
velocity of light such as those discussed by
Birge, ' since small variations of gravitational
potential in the local stellar cluster would sufFice

to account for these on either theory.
Certain fundamental theoretical difFiculties in-

volved in the fIat-space point of view have been
discussed elsewhere. ' In the present paper we
discuss the status of Rosen's Hat space within
the scheme of general relativity, and point out
how the formal advantages of Rosen's method
are independent of the Aatness of the comparison
space.

RIEMANNIAN SPACE AS A SYSTEM OF
LOCAL SPACES

It is knownv that a complete "curved" space
can be built up from a system af local spaces by
means of linear connections; also that the
Riemannian space can be defined by the system
of local tangent "Bat" spaces. ' From the point
of view of physics, these mathematical theorems
can be described as follows.

~ R. T. Birge, Nature 134, 771 {1934}.
6 W. Band, Phys. Rev. 61, 668 (1942).

D. J. Struik, Theory of Iinear Connections (Springer,
1934).

O. Veblen, Projective Relativitatstheorie (Springer, 1933}.

' N. Rosen, Phys. Rev. 5"E, 147-150 (1940).
2 N. Rosen, Phys. Rev. 5'l, 159-154 (1940).' N. Rosen, Phys. Rev. SV, 154-155 (1940).' W. C. Anderson, J. Opt. Soc. Am. 31, 187-197 (1941).
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Any attempts by an observer to make measure-

ments outside of his own immediate locality are
to be considered extrapolations; direct measure-
ments are to be confined to his own neighborhood.
The principle of connectivity, however, states
that it is possible for any observer 5 to compare
with his own, the unit reference vectors used

nearly simultaneously by any other observer 5'
at a position not too far removed from 5 at the
time of comparison.

If one now imagines a system of free observers,
one to every small four-dimensional region, one
can at once set up the fundamental equations of
differential geometry:

dl = Favdg 1 p (2)

where dy' are the components of the position of
5' against 5:

(3)SS'=dy-i-.

Since the members of this system are all «ee
observers, the system obtained from (2) is

everywhere flat, and the linear connections must

satisfy the condition

8„„.= r„.r.„—r„„r..+ r„.— r„„=o. (4)
Bx t9x

It is obvious that the free observers cannot in

fact all be permanent members of the system,
for in general two free observers will be near
neighbors only momentarily. This is the physical
language for the mathematical statement that
the system of coordinates set up will be non-
afFine. In practice we do not go on re-creating
new free observers for each small four-dimen-
sional element of space-time, but we set up, in

principle, a system of observers which are sup-
ported in such a way as to be permanent members
of the system whose origin is set permanently on
the first-chosen free observer.

It is not necessary to specify exactly the system
of observers beyond the single requirement that

' W. Band, Am. J. Phys. 8, 162-164 (1940).

A freely falling observer finds the gravita-
tional field locally absent, and his reference
system locally flat. Let him employ unit refer-
ence vectors i, where9

i is=8. =0, aWP; =1, n=P=0;
= —1, a=P/0. (1)

SS'=dx e . (6)

By the manner of its definition, the system is

afFine, so that

av va

but not in general flat because of the "supports"
and local presence of gravitational fields.

It will now be conceivable for any one of the
supported observers to compare his unit reference
vectors with those of the appropriate member of
the system of free observers. The relative acceler-
ation between them will be equivalent to a
linear transformation, and we shall expect the
relation:

where the dyadic components @ „can be found
in every small four-dimensional region. It will be
assumed possible to choose the system of free
observers in such a way that p „vary con-
tinuously from region to region everywhere, and
therefore are well-behaved functions of position
in the affine x space of the supported observers.

Comparing (3) with (6), noting that the
intervals SS' can be chosen identical in the two
relations, we see that

dx"e"=dy" 1'

and from (8)
dy» =~gx". (10)

This constitutes a linear transformation between
the non-affine flat y space and the afFine curved
x space.

The metrics of the two spaces are given by
their unit reference vectors. Thus the quadratic
intervals are, respectively,

ds'= 8»»dy»dy", where ds=dy"i",
and

(11)
(12)

(13)

ds'=g»Ax»dx", where ds=dx"e",

gp, v —e e = ~a8$ y@ v.

their relative motions shall be such as to maintain
mutual neighborliness. ' Such a system, while
impracticable, is conceivable, and hence accept-
able as the basis of extrapolations from the
origin. The principle of connectivity applied to
such a system permits the relations

de = I .I dx"e», (~)

where e& are the unit vectors for any supported
observer, and dx are the components of the
position of 5 against 5':
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It should be remarked that the above transfor-
mation relations between Rat and curved metrics
are possible only because the Aai metric is non-
afFine; the Eqs. (10), for example, are not
integrable. It is of interest also to note that the
relations (13) signify that whereas the metric of
the curved space is determined by the trans-
formation (8), the converse is not true; there
are many possible systems of free observers
which would lead to the same curved metric
with a given single free observer as permanent
Origin.

di =A.gx i, (14)

COMPAMSON FLAT SPACES

If Eqs. (10) are used in the linear connection
(2) we obtalll

use of (8) on the right of (19) we obtain
cs a ss + d' cx

A„.—= {„,j —A„,= y„,.y.. (20)

The analogous reasoning starting directly from
(8) mstead of (18) leads to the alternative ex-
pression

~P~ —4~&~@' (21)

where p „are the intrinsic A derivatives of p .
The invariant interval associated with (14) is

evidently
(22)de =dx~i~,

which will be called the comparison interval with
respect to the true interval ds given by (12).To
permit transformations to different Hat systems a
more general notation than (11) is desirable for
the comparison metric, which will, therefore, be
written in the form

15)
Here

da~ =y„gx"dx".

Now the relations (14) constitute an alternative
linear connection in x space for comparison with

(5); since x space is already afFine the coefficients
of (14) must satisfy

'y = 1" 1"

and (13) is replaced by

(23)

(24)

Moreover, since the reference system i is every-
where Hat

A„,A „—A„,A,+ A„,— A„,=O. (16)
x t9x

The differences between the linear connection
coefticients in the two spaces can be expressed

EX Q Jg

in terms of the components @„. Thus, let @
be the components of the reciprocal conjugate
dyadic, so that (8) solves in the form:

~ a isg p,i=@ e. (18)

Then it is easily shown that

di =(4-:,+{-.Ie. )& dx, (19)

where p, » is the set of intrinsic { I-derivatives

of P . By comparison of (19) with (14) and by

These last two equations are noi inconsistent
with (4) nor with the non-affine condition in

y space, namely

(17)

Transformations of coordinates will leave in-
variant both dr and ds, while @ „will transform
as tensor components.

Given a particular Riemannian metric, the
choice of a Hat comparison metric is still un-
determined. For example, we may choose y„,
equal to g„. at the origin, so that the Hat space
is tangent to the Riemannian space at the origin.
This would require, at the origin

where ii Ii is the ordinary ii symbol { not the same
components as those introduced in (1) and used
in (13)].With this tangent comparison space we
derive from (20) and (21)

a +a e

There will be no distinction between the two
spaces in the neighborhood of the observer at
the origin, and they will merely represent two
difkrent possible methods of extrapolating meas-
urements at great distances.

If on the other hand the, Riemannian space
tends towards flatness at great distances, it is
equally possible to set up a Hat comparison
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space which is tangent to the Riemannian space
at infinity. This would give the Rat space sug-

gested by Rosen, ' and there will be a definite
distinction between the two spaces in the neigh-
borhood of the observer at the origin. There is
no necessity to make any particular choice, so far
as formal convenience is concerned. In fact
Rosen's choice would become impossible were the
Riemannian space not tending towards Aatness
at infinity, and we should have to be satisfied
with tangency at any arbitrarily chosen point.

Since the Riemannian space and the com-
parison space are based on the same coordinate
system, transformations of coordinates take place
in both systems simultaneously and their common
point of tangency is invariant. The set p „trans-
forms as a tensor, and hence, through (21) the
differences between the two linear connection
coeScients also transform as a tensor. The formal
simplifications obtained by the use of the Rosen
Hat space are consequences of any of the choices
of Rat comparison spaces here discussed, and do
not depend upon the point of tangency between
the two spaces.

EQUATIONS OF MOTION

Since the gravitational field is absent in the
local Rat space, the observer's own track will

be a straight line in terms of the local space:

O=d s=d(dy i)=i (dy +1'„„dy dy). (28)

In terms of the comparison space, the equation
of a straight line would be rather

O=d e=d(dx i ) =i (d x +A.„.dx dx). (29)

The actual equations of motion in terms of the
x coordinates are obtained by going over from
(28) to the Riemannian space:

O=d" s=d(dx~e~) =-e (d'x + {„.Idx~dx"), (30)

which, by (20), can be written as

choice of comparison space is not prescribed, the
force is actually arbitrary. If the comparison
space is chosen tangent to the Riemannian space
along the history of the observer at the origin,
then the connection differences, and hence the
apparent force, will permanently vanish in the
immediate neighborhood of the origin. If the com-
parison space is tangent to the Riemannian space
at infinity, the apparent force will approximate
the force of Newtonian theory. But none of
these choices is compulsory, and no preference
should be given to any special value of the force
in a claim to "reality. "

NON-EXISTENCE OF AN ETHER DRAG

Consider two momentarily coincident plane-
tary observers with uniform relative velocity.
Since their local Hat spaces are tangent with
their respective curved systems in their own

(common) neighborhood, the transformation be-
tween their curved spaces will be the Lorentz
transformation between their local Hat spaces.
The coefhcients of the quadratic forms are func-
tions only of the gravitational potentials and
these are the same for the two observers. The
Lorentz transformation thus leaves unchanged
the coefhcients of the quadratic form. ' If we
take

ds'= c'(1+2@/c')dt-' (1—2p/c')d—r' (32)

the transformation will be approximately

dx= k'(dx'+ddt'), dl = k'(dt'+sdx'/c"), (33)

where

k' = (1—v'/c"-)-&, and c' =c(1+2t/ t)c. (34)

In terms of x', t', we have, of course,

ds'= c'-(1+2//c')dt" (1—2p/c—')dr" (35)

The velocity of light on the two systems is the
same, and no "ether drag" can be expected.

If we use the Rosen comparison space we may
write

d x +A„gx dx = —h„„dx dx . (31) der'- = c'dP —dr',

Comparison between (29) and (31) shows that,
if the observer makes use of the comparison Rat
space, the true equations of motion will appear
as if a gravitational 6eld were present disturbing
the motion. The force depends only upon the
connection differences; but since the actual

where c is the velocity of light in regions remote
from matter, or at infinity in the Riemannian
space. If we arbitrarily assume that the correct
transformation between the two systems leaves

'o The writer wishes to thank Dr. Rosen for a discussion
of this point.
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the coeScients of (36) unchanged, then we shall
have to use the ordinary Lorentz transformations
like (33) and (34) with the unprimed symbols.
The application of this to (32) leads to

ISOTROPIC COMPARISON SPACES

Let us introduce a comparison metric

do =y dx"dx" (40)

ds' = c'dtv2(1+ 2@'/c') +Syk'vdx'dr'
—dx" (1 —2y'/c'), (37)

y' =y(1+s'/c') k'.

The velocity of light, given by ds=0 in (37) is
easily shown to be, when terms in (s/c)' are
neglected,

c(1+2y/c') (1+4&v/c') . (39)

This gives the ether drag coefticient —4&v/c' as
in Rosen's work. The result is the same as if we
regarded the gravitational field relative to the
metric of (36) as a medium of refractive index
(1+24/~').

If instead of Rosen's particular comparison
space we were to choose some other flat space,
and arbitrarily assume again that the coeScients
of the quadratic form shall remain unchanged by
transformations between the two observers, we
should of course derive different expressions for
the gravitational potential and the ether drag
coefficient. Since a change in the velocity of light
is a question of fact rather than of mere con-
venience, we cannot claim that the diA'erent

assumptions are equivalent. From the general
relativity point of view which we are here
developing, the error is in assuming that the
correct transformations wi11 leave unchanged the
coe%cients in the Hat quadratic forms. There is
only one correct transformation, namely (33)
and (34), whatever comparison space we choose;
and it is the coefficients of the Hat quadratic
forms which must change, not those of (32).

Stated rather differently, the fundamental
point at issue as between the present point of
view and the Bat point of view suggested by
Rosen, is this; whether we accept as absolute
constant the actual velocity of light at the point
of interest, or whether only its value at some
arbitrarily assigned point —say at inhnity —is to
remain constant during transformations at the
point of interest; whether the actual transforma-
tion between two observers at a given point is
determined by conditions at the point or by
conditions at in6nity, or some other arbitrarily
chosen point.

in the same coordinates as the Riemannian
space, where now however the tensor y„, does
not satisfy the conditions for fatness. Also write

h.„„ for the linear connection or ChristoRel
symbols in the y's; but do not require them to
satisfy (16). Retain the notation

~„„={„,}—x„. (41)

for the di8'erences between the Christo8el sym-
bol, s. Then it is easy to prove that when II„„is
any tensor

(42)

where again; o means intrinsic g differentiation,
and, o means intrinsic y differentiation. In par-
ticular

~"=kg "(g.-..+g-, .—g..-) (43)

and in general, as in Rosen's work, y di8erenti-
ation can be"substituted for ordinary di6eren-

tiation, and 5„„for {„„I in any first-order dif-

ferential tensor equation originally expressed in
terms of the Riemannian space. The Aatness of
the comparison metric is not a condition for this
result. Proceeding to second-order differential
equations, we find that the difference between the
two expressions is given by the above substitu-
tion. Thus if R„„and P„„are the contracted
Riemann-ChristoHel tensors in the original and
comparison spaces, respectively, their di6'erence
is given simply by

a a a P a
Rlvv +pv =4ap, v +pv, a++py+av +ap+pv (44)

This is a direct corollary of a theorem given by
Levi-Civita. "

Referring now to Rosen's first paper, ' we may
write in place of his Eq. (3) the corresponding
relation in a de Sitter type of world'~

G„.=R„„gg„„(R 2X).— —(45)

If for the comparison metric we adopt the de
Sitter metric for an empty world, the correspond-
ing expression in this space is zero. Hence, 6„,is
"T. Levi-Civita, Absolute Digefentnzl Calculus (Blackie,

1927), Chapter 8, P.
~A. S. Eddiagton, MafhengetimL Theory of ReLatieity

(Cambridge, 1924), Chapter 4, $54 (54-71).
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also the diHerence between the corresponding
quantities, and the substitutions used by Rosen
in his ea3 Eq. (11) can be carried over into the
present argument. The introduction of the de
Sitter comparison space instead of a flat space
makes no essential diRerence to the argument.

We can also prove that, instead of (43), we
could write

and in consequence obtain in place of (44) the
alternative form

a a a P a P
Rav Pav Aaa; v Aav; a ApaAav+6 pAaav (47)

Adding (44) and (47) we obtain
CX a CC

&av &yv = 2(&aa; v+&aa, y &av,' a &ava) ~
(, 48)

This can be expressed approximately in terms of
the differences between the two metric tensors.
Thus if we write

(49)

we can express (43) and (46) in the forms
a

2g (~aa v+~va a ~av a)

(kaa'v+lSva'a kav' a) (50)

Using the first of these in the g derivatives and
the second in the y derivatives in (48), we are
led to an expression which, on neglect of products
of h terms, becomes approximately

t' 8'h p 8'h„. 8'k„p 8'h„

&BxaBx" Bx Bxp Bx"Bx Bx"Bxpj

At this point we connect with the reasoning
given by Eddington, reference (11) II46. Our Eq.
(51) is essentially the analogue of Eddington's
(46-3) which refers to a space which is flat when

empty. Our h„„are thus equivalent with his g„„
and the differences R„„—I'„, take the place of the
contracted R—C tensor in Eddington's equation.
Following his argument, we therefore hnd that
the difkrences are given by the density of a
continuous distribution of matter.

In general we may summarize this reasoning
by asserting that we may choose any kind of
space whatever for comparison with the actual
space. In particular, we have chosen to compare
actual space regarded as containing a static dis-
tribution of matter with an ideally empty iso-
tropic space of the de Sitter variety; we have
found that the distribution and laws of motion
of matter can be expressed in terms of the
differences between the two spaces. In a similar
manner, we might choose to compare an actual
space containing an admittedly non-static dis-
tribution of matter with an ideal space containing
the same mean density of matter in a static
distribution. Different comparisons may be con-
venient for diAerent purposes, and the tensor
analysis is capable of handling any of them.
Merely because in this way we achieve some kind
of formal simplihcation of the analysis is not a
valid reason for regarding any one comparison
space as in any sense "actual"; they are essen-
tially ideal, and are introduced merely to bring
out the non-ideal characteristics of the actual
space.


