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The Interaction Between a Molecule and a Metal Surface

E J, R ~ PROSER) AND R ~ G. SACHS*

The George Washington University, W'ashington, D. C.

I', Received September 12, 1941')

The interaction between a molecule and a metal surface is discussed from the point of vier
of the perturbation theory. The interaction energy is found to be inversely proportional to
the distance, R, between metal and molecule if the electron degeneracy in the metal is not taken
into account and to R ~ log R if this degeneracy is taken into account. The application of the
perturbation theory as given here is limited to values of R of the order of magnitude of the
Bohr radius because of the neglect of the electron-electron interaction.

r. INTRODUCTION

'HE energy of interaction of an atom or
molecule with a metal surface has been

calculated by Lennard-Jones' with the help of a
semi-classical picture of the interaction process.
He treated the metal classically; that is, its efkct
on the molecule was assumed to be given by the
classical image potential acting on the electrons
and nuclei in the molecule. On the other hand,
the molecule was treated as a quantum-me-
chanical system with this image potential acting
as a perturbation. The resulting interaction
energy turned out to be proportional to R ',
where R is the distance between the molecule and
metal surface.

The limitations of this treatment have been
discussed by Bardeen' who estimated that when
the metal as well as the molecule is treated
quantum mechanically the resulting interaction
energy is still proportional to R ' but it is about
half as great as that given by Lennard-Jones.
The discrepancy arises from the fact that the
Lennard-Jones treatment neglects a term in the
kinetic energy of the system of molecule plus
metal.

The purpose of the present paper is to treat the
problem of the interaction of the molecule and
metal directly by means of the perturbation
theory. In order to calculate the interaction
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energy in this way it will be necessary to make
specific assumptions about the metal wave
functions. In Section 2 these wave functions will

be assumed to be products of plane electron
waves with the result that the interaction energy
is proportional to E. '. Since the exclusion princi-
ple has not been taken into account, this result
applies only when the density of conduction
electrons in momentum space is low; that is, it
applies to semiconductors and probably to metals
at very high temperatures.

In Section 3 the inHuence of the exclusion
principle is considered. The resulting interaction
energy is proportional to R ' logR. Thus, in both
cases (Sections 2 and 3) the perturbation theory
leads to a smaller interaction energy than the
Lennard-Jones and Bardeen treatments for small
R. For large R the perturbation method as given
here breaks down because of the neglect of the
interactions between electrons in the metal. It
will be shown in Section 4 that these interactions
become important at that value of E. for which
the perturbation and Lennard-Jones energies
become equal. Thus, taking into account the
result of Bardeen, it appears that the Lennard-
Jones treatment gives an upper limit to the
binding energy for all values of R.

It is interesting to note that the R—' depend-
ence of energy on distance is just what would be
expected for the interaction of 3. molecule with
the surface of an insulator. The van der Waals
interaction between each atom in the insulator
and the external molecule is proportional to the
inverse sixth power of the distance between them.
If this interaction is integrated over all atoms in

the insulator, the resulting total interaction is

proportional to R ~.
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2. INTERACTION VFITH A SEMICONDUCTOR

If the molecule is so far from the metal surface
that the wave functions of the molecule and
metal electrons do not overlap appreciably, the
interaction between the molecule and metal may
be treated as a perturbation. In first approxi-
mation, this interaction is due to the field of the
instantaneous dipole moment of the molecule
which acts on the electrons and positive ions in
the metal. Since the average value of the dipole
moment of the molecule is zero, the first-order
perturbation energy vanishes and the energy of
interaction of the molecule and metal will be
given by the second-order term

and Ppm

or
x x s jj W 2 Z 8

-PP = ~pjIIPu, &0. = -&0;JInI, , &pm = '«0, II0I.~

Therefore

Mp;3f jPIIpgIII„.PW= Q'
x, j, I; ~00 —~j'I;

P,, ;, & indicates a summation over x =x, y, s, over
all states j of the molecule, and over all states k
of the metal. The prime indicates that the term
j=0 is to be omitted. ' By definition

~OP =~0+~'0, ~; j; =~;+I"-' ~,+pm~mpS'
where Ep and 2; refer to the energies of the
ground and jth states of the molecule and 8'0, 8'I,.

wh«c &0-=~-0 are the ma«» elements g»en by to the initial and kth states of the megal.
In Eq. (1) cross terms of the type

pp go*pe dr——
~o;~;pIIooIIoo

Pp and P„are the wave functions of the system
of molecule plus metal in the initial state and in
the mth excited state, respectively. I' is the
potential energy of the interaction of the elec-
trons and positive ions in the metal with the
instantaneous dipole field of the molecule. Ep and
E„are the energies of the states fp and P„.

The potential energy I' is the sum of three
terms:

where

p —pz+po+pz

P =M II* I"=3EI~II~ I' =M II

4'o = @oXoi 4'~ = AzXo

3f, 3Ejj, and M' are the components of the dipole
moment of the molecule and H, H&, and II' are
quantities depending only on the position of the
center of gravity of the molecule and the posi-
tions of the electrons and positive ions in the
metal. The explicit expressions for H, H&, and II'
will be given below.

Since in zeroth approximation the metal and
molecule are independent systems, the wave
functions Pp and P can be written as the product
of a molecular wave function, @, and a metal
wave function, g, thus

do not occur as can be shown by consideration of
the symmetry properties of the dipole moment
with respect to reHection in planes of symmetry.

The expression Epp —E;~ which occurs in the
denominator of Eq. (1) is equal to (Zp P.;)—
+(E'p —8'k) where F.'p P'o refers to —an electron
transition in the metal. The positive ions in the
metal can also make transitions to new vibra-
tional states but their contribution to the
interaction energy can be shown to be small.
Electronic transitions corresponding to large
energy changes, 8'0 —8'~, will contribute little to
the interaction energy as compared to those
involving small ones because the dipole field
varies slowly in the metal so that in the Fourier
expansion of this field in the metal the short
wave-length terms corresponding to large mo-
mentum changes for the electrons have small
amplitudes. Thus, for all important terms in

Eq. (1), E'o 8'I, may be negl—ected as compared
to B0

—E; in the energy denominator. The
interaction energy can then be written

Mp;3f; 0 x x
(Qo ~o~~oo).

x, j&0 @0—+j.

' The terms for which j=0, k =0 do not occur because the
diagonal elements of the dipole moment vanish.
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This expression can be simplified by observing
that

, ~O7.~7O
2sz 7

0
—

7

Mo;M;o
A = 2fit

0

O7.M;O
n..= —2 P';

jVo jV .

are the diagonal elements of the polarizability
tensor of the molecule. Therefore

g x~= ——', Q. ar..(Qo IIooH~o)

Averaged over all orientations of the molecule,
this becomes

W= —,'n Q—IIagIIl.a

with
~ex Av= &yy Av= ~as Av

The quantities II are sums of terms corre-
sponding to the interaction of the dipole field of
the molecule with each electron and positive ion
in the metal. Thus II can be expressed in the
form

H*= P, H*(e) +Q „H*(n)

II*(e)=ox,/r, ', H*(n) = ox„/r„', (3)—

where r, = (x„y„s,), r„=(x„, y„, s„) are the dis-
tances between the molecule and the eth electron
and nth positive ion, respectively. ~ is the
electronic charge. Similar equations hold for the
terms in y and s. The calculation for just the
x term will be carried out until further notice.
The x axis is perpendicular to the surface of the
metal.

%e now have

Qo HooIho= Z, ~ (P.Hoo(e)+ Q. Holt(n))

X (g, H~a(e)++„Hoo(n)).

Since the positive ions do not undergo transitions,
only those positive ion terms with k =0 are
important. Therefore

Po HadA o = Po(Z. Hoo(e)+ Z Hoo(n) boo)

X (Q. Hoa(e)+ Z Hoo(n) hoo) (4)

Qo Hol;Hoo = Q (Z. I~ox(e)) (Z. III'o(e)) (5)

It is now necessary to make some specific
assumption about the wave functions of the
electrons in the metal. For the present it will be
assumed that these functions are products of
plane ~aves. Thus if I is the plane wave
exp( —ok r ) corresponding to the nth electron in
the nth state, the wave function for the initial
state will be taken to be

Xo ga na (6a)

The only excited states, p&, that will be of interest
are those for which only one electron, say the
Pth, is excited to the state P'. The wave functions
for these states are assumed to be

xe =&ee II &
ev gP

Npe' ——e exp( ike re)—
The quantitative discussion of the effect of the

Fermi degeneracy will be taken up in the next
section. However if the density of electrons in
momentum space is much less than two electrons
per k'/ U ( U is the volume of the metal), the effect
of the Fermi degeneracy is negligible. Therefore
the calculations in this section can be applied to
semi-conductors and probably to metals at very
high temperatures, since in these cases the den-
sity of conduction electrons in momentum space
is small.

The interaction between electrons is neglected
in both this section and next. It will be shown in
Section 4 that the relative error introduced by
this neglect increases with increasing distance
between metal and molecule.

'I'he terms Q„ IIoo(n) just cancel the sums of the
electron diagonal matrix elements if we assume a
smeared out charge distribution for the positive
ions. If the positive ions are properly treated as
discrete particles, these terms do not exactly
cancel since there is a non-vanishing field outside
of the metal. However this field vanishes ex-
ponentially over a distance of the order of a
lattice spacing in the metal. Therefore, as long as
the molecule is at a distance from the metal
surface that is great compared to the lattice
spacing, the difference between the terms can
be neglected and Eq. (4) becomes
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Making use of the wave functions (6), one finds

Hop (p) = J~upp*H (p)upp'drp

Hop (»x) = 0, A /P,
because of the orthogonality of the Npt" and up&'.

Also because of this orthogonality, all matrix

elements Hoo(e) vanish for which more than one
electron makes a transition since the operator
H*(e) involves the coordinates of only one
electron. With these results, Fq. (5) may be
expressed in the form

It can be seen that

Q» I&o»II»n= Zp 2 &&op (P)Hp o(P)
P» yEO

P Hnp (P)Hp n(P) = (H"(0))oo

P Hop (P)Hp n(P) = (II"(P))oo—(Hon(P))'-'.
Pl g{)

(l 0)

It is not difficult to show by means of Eqs. (3) a»id (7) tllat (Hoo(P))'-' is proportional to L '

where I, is a measure oF the linear dimensions of the metal. Thus, if the metal is sufficiently large,
this term can be neglected and Eq. (8) becomes

Q» Hn»IAo= Qp (H*'(P))oo.

or since upP=L: exp( jPprp), —
n

(H" (@)no =L ')' (H*(t3))'dr p =.'L '' -I -dxdydz-
r6

acc«ding to Eq. (3). Summing this over all electrons in the metal is equivalent to multiplying by
pI. ', where p is the number of electrons per unit volume in the metal, so

J J J (x'+y'+z')'

The integration is to be carried out over the volume of the metal which will be taken to be an infinite

half-space.
If g is the perpendicular distance between the molecule and metal, an elementary integration

~ iclds

(x'+y'+s')' 2R

The corresponding terms involving II& and II' are

f f
" p'-dxdpds pe~+

g pt 7f'

» Ho»-H»o =———,
4R

respectively.
Inserting these results in Eq. (2), one obtains

cl Apt

2 R



I iX T E R A C T I 0 iX 8 E T% E E X A M 0 L E C U L E A. N D 8 U R F A C E

It is to be noted that in the above derivation no explicit use has been made of the assumption
that the electron wave functions are plane waves.

3. THE EFFECT OF ELECTRON DEGENERACY

In order to take into account the Fermi degeneracy of the electrons in the metal, it is necessary to
antisymmetrize the wave functions (6). Then the electrons cannot make transitions to those states
that are already occupied so the sum on the right-hand side of Eq. (8) is not carried out over a
complete set of one-electron states and the completeness theorem, Eq. (9), can no longer be applied.
It will therefore be necessary to calculate the sum

where J3' runs through all values corresponding to only unoccupied states.
Since, insofar as the calculation of matrix elements is concerned, the only important part of the

function H*(P) is that part for which the wave functions of the metal electrons do not vanish, we
introduce the function f,(x, y, s) which is equal to H'(P) within the metal and zero outside of the
metal. Thus, according to Eq. (3),

f, = dx/r', f„=ey/r', f, = es/r'

for x &8 if the x axis is perpendicular to the surface of the n~etal and its origin is taken to be at the
molecule.

The functions f„f„, and f, can be expressed as Fourier integrals;

00 aoo oo

f=) ) ~
, a.[ ) exp[&[ x)]d .d,d .,

where the amplitudes a (~) are determined by
oo p oo ao

a.(~) =
~ f.exp[ i(~—r))dxdyds.

2X oo —00 —00

With the wave functions (6), the matrix element is

goo p xl 4~

Hop (P) =L '
~ f, expIi([k& kq ) r))—dxdyds.

—x)~

Hos (p) = (2w) 'a, (~)L "

g=k —k .

(12)

The explicit expressions for the Fourier amplitudes are

" ('" "xexpL —i(~ r))a.(~) =
il

— -dxdyds.
(2w) ' „0 .& dd

(x-'+y'+s')'

In order to carry out the integration over x, consider the complex integral

with k =x+iud and +'=y'+s-. The path of integration is indicated in Fig. 1. Letting the radius bd of
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the arc cd approach inhnity, we obtain

"x exp( i—r,x) " (R+iw) exp (r,w)
dx=i exp( ir—,R) dw.

(x'+a')& ~, (R'+2iRw w'—+a')&

Integration of the right-hand side of this equation by parts yields

"xexp( —ir, x) i exp( —ir,R) R i a"- 2R'-'—
dx= +0 ~ ~

J (x'+a')& 7. (R'+a')& r (R'+a')1

This expansion is valid only if the changes, v„ in momentum of the electron are greater than R
If only the 6rst term of the expansion is used,

i exp( —ir.R) e ('" ('"R exp[ i(r—„y+r.s)j
(2m)' r J J „(R-"+y'+s')& (14)

It can be shown' that the integral over y and z behaves like exp( —[r„+r,]R), so the important
amplitudes occur for those changes in momentum that are less than R. Therefore the only important
changes, ~, in momentum are those vectors lying in a cylinder which is parallel to the x axis and has a
radius equal to R ' (cf. Fig. 2).

The expression that is to be evaluated is, according to Fq. (12)

(2~)'
~*(P)= Z IIoa'(&)~s o(P) =

~
Ia*(~) l'dr*drAr*

P/ +0
(15)

The limits of integration are to be chosen in such a way that z =k —k corresponds to a transition
from a 611ed to an unfilled state. According to Fig. 2, this means that, for positive 7, the lower limit
on 7„ is equal to k —kp„where the vector k has a magnitude given by the momentum of the
electron in the highest occupied state in the metal and a direction such that its end point lies in the
cylinder of allowed transitions. For negative r„the upper limit is given by —(k„,+ky, ).

The integration is to be carri. d out over all values of r„and 7, since the lower limit on r makes it
certain that the transition will carry the electron out of the Fermi lake. Therefore Eq. (15) is

QO QO paA)

~.(~) =2"~ '
~~ la, l'dr, + la, l'dr. dr„dr. .

& ( k»t& —kg&)

The integration over 7.
y

7..can be replaced by one over y, s by means of Parseval's theorem which

can be expressed in the form

d~yd&z =
J „J„(2.)' „3 „r 2(R~+y"-+s'-)~ 4(2w)sr '-R2

when use is made of Eq. (14). Thus

Similarly

and Anally

J7 QO 2us —(k, +kg, ) d7.~ E ~ms
~*(P)= , ; —„+

|'km' —kpz) &s" 2L, 'R' (k' —k' )ts
2

4I 'R' (k' —k' )
mz Ps

k,, S, p=
L, 'R' (k' —k' )mz tx

' C~. E. T. Mfhittaker and G. N. Watson, 3 Course of modern .analysis (Cambridge University Press, 1927), p. 384.
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According to Eq. (8), this expression is to be summed over all electrons, i.e. , over p. The number of
electrons with momenta between k and k+dk is 2(2ir) 'I. '—dkgk„dk, hence the sum over electrons is

2&2 l "
t k

Q S.(P) = ' dk.dk„dk, .
p, . (2ir)'R'J ~ ~ k' —k'

Since the expansion (13) is valid only for changes, r, in momentum that are greater than 1/R, the

upper limit in the integration over k, will be taken to be k,—1/R. The contribution of those electrons
with momenta between k„, and k —1/R will be estimated below. Integration over k gives

262

g 5,(P) = log(2Rk„, —1)dk„dk, .
p, (2s)'R'4 J

(18)

2 2 2 2
according to the definition of k, k„,=k —(k„+k,). If this is inserted into (18), the double

integral can be carried out directly by introducing polar coordinates in the k„—k, plane. The limits
of integration are to be chosen in such a way that 1/R~k„, ~k„.The result is

2~' xk '
Q 5.(P) = log2k„R,
p, , (2ir)' R'

when 8 is chosen in such a way that k R&&i.

(19)

The contribution of electrons with momenta
between k, and k„,—1/R is still to be added to
(19).This contribution is certainly less than that
of an equal number of free electrons. The latter
can be obtained from the results of Section 2, for
according to this section, if all the electrons were
free the right-hand side of Eq. (19) should be
replaced by carpe'/R. Since the ratio of the number
of electrons with momenta between k and
k —1/R to the total number is 3/k R, the term
that is to be added to (19) is less than 3irpe'/R'k .
By substituting p = k '/3ir', the ratio of the
added term to the term already given is less than
1/4ir log2k R. This quantity is much less than
one for k R&&1, so the additional term can be
neglected and Eq. (19) is correct as it stands.

The interaction energy can now be obtained
from Eq. (2) by making use of Eqs. (8) and (19)
and the definition of $,(P). The result is

o.e'xk 'log 2k R

(2m)' R' (20)

The factor mk in this expression is just the area
of that cross section of the surface of maximum

energy in momentum space which passes through
the origin and is perpendicular to the x axis.

The assumption that the constant energy
surfaces in momentum spaces are spheres is, of

course, an idealized one. For a real metal,
account should be taken of the true dependence
of energy on momentum. However, since Eq. (20)
does not depend explicitly on the mass of the
electron, the more correct formula can be ob-
tained from Eq. (20) simply by replacing the
cross-sectional area mk ' by the corresponding
area for the actual surface of maximum energy.
If it happens that the surface of maximum energy
touches the surface of a Brillouin zone, the area
of contact must be subtracted from the cross-
sectional area.

4. THE ELECTRON-ELECTRON INTERACTION

In the two foregoing sections, use has been
made of metal wave functions that are products
of one-electron functions. This implies that the
Coulomb interaction between electrons in the
metal has been taken into account only insofar
as the average effect of all electrons on a given
electron in concerned.

When the molecule is near the metal, the wave
function of the metal electrons is perturbed.
This change in wave function implies a change in

charge density near the surface of the metal,
which in turn involves a change in the Coulomb
interaction between electrons. An estimate of the
change in Coulomb energy can be obtained by
averaging the electron-electron interaction over
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FK'. 1. Path of integration.

the perturbed wave function which is

~Io)
4 =40xo+Z. 2 2 ~~op 4»x~ (21)

p )'&0 Bo—I)

The notation used here is the same as that given
in Section 2.

An estimate of this average can be given for the
case of the semi-conductor (Section 2) but is

somewhat more dificult to obtain when the
Fermi degeneracy is taken into account. In the
latter case, the electron-electron interaction is
some~hat smaller than in the former because the
antisymmetrization of the wave function implies
a greater average distance between electrons.
Therefore an estimate given for the Coulomb
term in the non-degenerate case is an upper limit

for that term in the degenerate case, and the
limits of validity to be given below for the former
result (Eq. 11) are, if anything, too stringent
when applied to the latter result (Eq. 20).

The average over the wave function (21) can
be carried out by introducing the Fourier analysis
of the interaction potential in the same way as in

Section 3. When the sum in Eq. (21) is carried out
over aII one-electmn states, the average value of
the sum of the electron-electron, electron-positive
ion, and positive ion-positive ion interactions is
found to be

The integration over both sets of variables is to
be carried out over the volume of the metal so it
is apparent that the integral diverges as the
volume approaches infinity.

In order to eliminate this difficulty, the
electron-electron interaction should bc taken into
account in the perturbation calculation. Since the
e6ect of this interaction is to shield the electrons
within the metal from the field of the dipole, it
can be taken into account in a rough way by
introducing a cut-off factor in the interaction
potential between molecule and metal. For
example, the potential H'(P) can be replaced by
H'(p) exp( —p rp), where p is to be chosen large
enough to guarantee that the average electron-
electron interaction is small compared to the
interaction between metal and molecule. It will

be shown below that for sufficiently small values
of R, this can be done in such a way that the
energy Wis still given by Eq. (11) to a very good
approximation. The validity of the method is
questionable for larger values of R since, then,
the details of the method used in cutting o6 the
potential become important.

Using the cut-o6 potential given above, the
energy of interaction between metal and molecule
becomes

For (p r~) (1, the exponential can be expanded

F&G. 2. Momentum vectors.
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with the result

The first term is just the value of 5' given by
Eq. (11).It is not difficult to show that the term
involving the integral becomes appreciable if

p = 1/R. (23)

I'hus the cut-off potential gives the same energy
as the original treatment only if p & j.,/R.

Equation (22) is to be replaced by

p'- 350;3I;pK=—P
2;~0 (Zp —2;)'

A rough evaluation of the integral yields

x"'pe MONO x pan
p'R4,:~o (80 Z;)' p'R—45E

where hI'' is some average difference in energy
between levels in the molecule. The condition
that E be negligible compared to S'is

If Eq. (23) is taken into account, it follows that
Eq. (11) breaks down for values of R of the order
of magnitude of, or greater than (AB/2spe')'*
This distance is of the order of magnitude of the
Bohr radius if DE refers to electronic transitions.
The conclusion is, then, that there is, at best, a
narrow region for which the Coulomb term can be
neglected under the condition that the overlap
between the molecular and metal wave functions
is su%ciently small to justify a perturbation
treatment. For semiconductors this region is

much larger than for metals because of the
smaller value of p for semiconductors.

Finally, the present method should be com-
pared to that of Margenau and Pollard~ which is
also based on the second-order perturbation
theory. They computed the interaction of the
dipole field of a small element of metal with the
molecule. The interaction of the molecule with a
half-inhnite metal body was then obtained by
considering the metal to be made up of many
such small elements and adding the contributions
of each of them. The details of the metal wave
functions were taken into account, at least in

part, by introducing the experimentally measur-
able polarizability of the element of metal.

In order that the Geld of a metal element be
correctly represented by a dipole field, the linear
dimensions of the metal elements must be small

compared to the distance, R, between the metal
and molecule. Otherwise the higher multipole
fields of the metal elements become important.
On the other hand, the division of the metal into
elements cannot be arbitrarily fine since it must
be certain that each element behaves like a
macroscopic piece of metal (i.e. , has an experi-
mentally measurable polarizability). This implies
that the linear dimensions of the element must be
very large compared to the lattice distance.

When these two conditions are taken together,
it is apparent that R must be very large com-
pared to the lattice distance. Thus the treatment
of Margenau and Pollard applies for relatively
great values of 8, while, as we have seen before,
the results given here are valid only in the region
of small R, The interaction in the treatment
given here will be particularly important for the
calculation of heats of adsorption when much
more becomes known of the repulsion potential
between the molecule and metal.

The authors are indebted to Professor Teller
for suggesting this problem and for many helpful
discussions concerning it.

'H. Margenau and W. G. Pollard, Phys. Rev. 60, 128
(j.941).


