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The theory of continuous x-radiation from thin targets—relativity and retardation of
potential neglected—is completed by the incoherent integration of the single process transition
probabilities over the unit sphere. This is carried out by means of series expansion. Comparison
with the absolute intensity determination of Smick-Kirkpatrick gives a result too large by a
factor of greater than 2.5. The theory compares satisfactorily with the absolute measurement
of Clark-Kelly and the relative measurements of Harworth-Kirkpatrick.

I. INTRODUCTION

HE theory of the continuous x-ray spectrum

—relativity and retardation of potential
neglected—was worked out by Sommerfeld! in
1931. It is Sommerfeld’s work upon which the
present paper is directly based. One computes
the probability that an electron moving toward
an atom with velocity v; be deflected through a
given angle 6 with asymptotic velocity v2, having
experienced an energy loss Av. The dipole matrix
elements of the single process have been rigor-
ously computed by Sommerfeld, but the inco-
herent integration over all polar angles (6, ¢)
of scattering of the incident electron has not in
general been calculated in closed form.

Sauter? has given a non-relativistic treatment
which makes use of the Born approximation,
Ze/hv,, 21, for incident and emergent electron.
Unfortunately, this condition is not met in a
large number of experiments. When it is satisfied,
on the other hand, the electron velocities are
comparable with the velocity of light, so that
the problem then requires a detailed relativistic
treatment.

Elwert? has worked out an ingenious method
for integration over all 0, ¢ of Sommerfeld’s

1 A. Sommerfeld, Ann. d. Physik 11, 257 (1931).

2 F. Sauter, Ann. d. Physik 18, 486 (1933).

3 G. Elwert, Ann. d. Physik 34, 178 (1939). The present
work was undertaken before the author had complete
knowledge of the significance or justification of Elwert’s
results. %he latter’s work is indeed elegant and provides a
more rapidly convergent expansion in most cases; numer-
ical work therefrom, however, requires computation of the
I-function and its logarithmic derivative for imaginary
argument. (There are tables of I'(z) for imaginary z for
]z?g 1.) Also, Elwert computes merely M,2(=M.?), and
uses the Sommerfeld-Maue result (Section II.D) for IN?
to determine M,;2=M2—2I,2 He thereby loses the ad-
\{antall%eDof having the numerical check set forth in Sec-
tion I1.D.

result, breaking off his series expansion under
the assumption (Ze?/hv,) — (Ze?/hv:) < 1.

The present author employs a straightforward
method whose accuracy is curtailed only by the
physical limitations of the original Sommerfeld
theory—in the main, the assumption of a pure
Coulomb field as seen by the electron during the
emission process. This is only strictly justified
for an electron whose de Broglie wave-length is
small compared with the radius of the K shell
of the scattering atom. For Z=28 and V=135
kilovolts, for example, these lengths are of the
same order of magnitude, so that at best the
assumption of a pure Coulomb field is only
approximate—the higher the voltage and the
smaller Z, the better the approximation. The
extreme difficulty associated with a more rigorous
treatment of the field, plus the success in as-
suming a pure Coulomb field in numerous
other problems (e.g., characteristic x-radiation,
form of the Compton line from atomic electrons,
etc.), justifies its assumption here. In addition,
there is the question of what to assume for the
value of Z, even once a Coulomb field is as-
sumed. The procedure herein is to assign to Z
the full atomic number of the scatterer. At
worst, this may be an error of two parts in Z,
since in general the electron wave-length is
small compared with the L-shell radius of the
scatterer. In the case of 15 kilovolt electrons
incident upon nickel (Z=28) and A=1.431A,
computations employing Z=28 and Z=26, the
extreme values of effective nuclear charge, have
yielded absolute intensity results differing by
15 percent. It turns out, however, that the
discrepancy between experiment and theory in
this single case is too great to be accounted for
by merely an error in the choice of Z.
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II. ANALYTICAL TREATMENT

Sommerfeld finds for the elementary dipole moments (unnormalized) for a single electron incident
in the x direction upon a bare nucleus of charge +Ze:

M.=—A{[14+n1—(14n;) cos8 ]JF—2sin? $6(1 — ) F'}, (1)
M, cos ¢

I=A sinﬂ{ ) }{(1+nz)F—(1—£)F'}. (2)
M, sin ¢

Here F=F(1+4mn;, 14+n,, 1, £), the hypergeometric function of indicated parameters, where

o I'(a+»)T(b+v)T(c)

F(a, b, ¢, &)= g, for [§]<1; (3)
( Eo I'(a)T'(B)T(c+v)»! &l
dnin, 0 Z aZ hkia=mvy2; Br2=v12/c
f=————sin’=; ny,= = ; {
(ny1—ng)?2 2 1tk 2@ 1B1,2 a=h?/me*; a=e*/hc

16wkik, exp~i1rn1/k1+k2)n1+nz
(rtho) (ks —Ea)* \ by —Es '

The unnormalized eigenfunctions used in the calculation of the moments are

l//1 = exp(iklx)Lnl(ik;(r—x)), tpz = eXp('ikzx/)L~n2( —’ikz(f‘-’—x’)),
where

D) n\u’
Lw=% (-1r(")",
»=0 v/ v!
and x’ is the coordinate measured along the asymptotic direction of the emerging electron.
In the event that £= —[4nins/(n1—n,)2]< —1, it is not permissible to employ the above (3)
series development of F, which is valid only within the unit circle. We therefore use the analytic
continuation :5

F(a,b,¢, §)=(1—§F[a,c—b,c, &/(§-1)]. 4)

Expansion of the second factor on the right in powers of w=£/(£—1) according to (3) gives a series
convergent for — « < £ <%i—in particular for all non-positive values of £.

27 T
A. Calculation of IN,2= f do j | M, |* sin 6d9
0 /0

From the relation ¢{= £ sin® 16, (1) becomes

M= —(4/&) {o(n1—n2) F+2E[(1+n) F— (1 - ) F' ]}
=(2mA4/£) {BF— F1},

4 A. Sommerfeld and A. W. Maue, Ann. d. Physik 23, 589 (1935). In this paper, the authors introduce wave functions
which differ slightly from those used in the 1931 work. The results (1) and (2) above, somewhat different from the expres-
sions derived in 1931, are merely stated in the later paper. The physical results are of course unchanged, the reason for
the altered procedure being one of better visualization.

§ This is readily verified by substitution in the differential equation (Whittaker and Watson, Modern Analysis, fourth
edition, p. 283) for F(a, b, ¢, £), which the right-hand member of (4) is seen to satisfy. One then notes that the two mem-
bers behave identically in the neighborhood of §¢=0. Equation (4) is actually a mere expression of the identity (p. 207,
reference 5): 0

1

0 o 1 ©

(1=%P{ 0 a 0 §;=P{ 0 0 a £/(-1) ¢,
1—¢ b c—a—b 1—c¢c b—a c—b

so long as the indentical behavior about §=0 (or any other point) is established.
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where Fy=F(n,, 14+n., 1, £), B=(n1+ns)/(n1—n,), as one obtains directly through use of the
easily verified relations:

F(a,b,c, £)=(ab/c)Fla+1,b+1, c+1, &), (5)
cF(a,b,c, £)—a(1—§F(a+1,b4+1,c+1, £)=(c—a)F(a, b+1, c+1, §), (6)
(b¢/c)F(a, b+1,c+1, §)=F(a, b, ¢, ) —Fla—1, b, ¢, §),
plus the fact that &= —4nns/(n1—ns)?;

2n14]?
| M. |2= {B2| F|*+ | F,|*—2BRFF,*}, since B is real.
0
According to (4),
F=(1=§8"1mG; Gi=F(14n,, —n 1, w) £
w=—,
Fi=(1—§"G;; Gi=F(n,, —n,, 1, w) £—1

Since #, is pure imaginary and (1—§)'=(1—w) is real,
2

{32(1~W)2[G1'2+ IG2|2'—ZB(1 —w)?RG;Gz*}.

M. [ 2n

0

Also, since sin? 30=£/¢,,

2d¢ 2  dw
2 cos3f sin}0df=sinfdf=—= ——
%o £ (1—w)?
47|2n,4|2 *o G:|? vo (7,Go* o
M= —— {B"‘f | G| "d'w+f dw—ZBSRf dw} T W= .
&l %o 0 —w)? to—1

Since 0 <wy <1, it is permissible to expand G; and G: in powers of w. As a result, upon term by
term integration:

4

9%:2= —

%o

2”1A 2
£o

® SﬂUoH'l
{.32 E —£o+2 t,[(l——.fo)'wo —fI,-_lj 2B Z I,E)?u,]» ’ (7)

r=0 f+ r=1 r=0

= z glvg*l, r—vy t= Z g2vg*2. r—vy Ur= Z glng*ﬂ, r—vy

v=0 v=0 v=0

(-]
where we have written G,=Y_ g,,w*, and where, according to (3):

v=0
_I‘(v+1+n1)l‘(v-—n2) _I‘(u+n1)I‘(v—ng) )
T T4 T (—nrr! T T (=l
r A\ (Wo—1)F—(—1)k*
Ir=l 1'— 0) — . 8
og(1 =) gi(k) k ®

2r L
B. Calculation of It,2= ,2=f dgaf | M, |2 sin 6d6
[} vJ0

By application of (5), (6), and (4) to (2) above, we obtain
M,=—An(1+n,) cosp sin@(1 —w) " F(1+n,, —n,, 2, w),
* Note added in proof: P. C. Rosenbloom has pointed out that I,= J; wolt_‘i

v

T
r=log (1—f0)— =

p=
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whence
[ M,|2=(4/%?) | Ani(14+n2) |2 cos?p[ few(w—1) —w?]|Gs|?,
where
Gs= F(1+ﬂ1, — N, 2,w).
8r wor Egp w?
R 1 i Pt |Gl
&® o l—w (1—w)?
8 w
=;§ | Am(141) 2 S £, ((fo—r—2) Lot (1 Eo)we™2}, ©)
0 r=0

as one finds on expansion of Gs and term by term integration. Here,

P i * d I‘(v+1+n1)I‘(v——n2)
r= v, , r—yy  All y = y
e B T (m) D (—ma) (s 1)!

while I, is the quantity defined in (8) above.

C. Normalization

The question of normalization is treated in detail by Sommerfeld.! We may accomplish his result
by means of a slightly different viewpoint, however. Namely, we employ the usual artifice of limiting
the system to a finite volume @, sufficiently large that only the first term in the asymptotic expansions
of the wave functions is needed in computing the integrals over © of the absolute squares. The
continuous range of energy levels is approximated by a discrete set whose separation goes to zero
as © increases without limit. This is accomplished in the usual manner of requiring periodicity
with © as the fundamental interval of volume. As usual, © drops out, and the result is that which
we should obtain as Q increases to infinity. In short, .2, M,2, M .2 must be multiplied by the fol-
lowing factors in order to bring the result to the units, “‘ergs per unit solid angle per unit frequency
range per bombarding electron per atom-per-square-centimeter of target area’ :

(i) Normalization of the final state eigenfunction:

1 21r12n2
Q1—exp(— 21r1'n2).

(ii) Reduction of bombarding current to one electron per second per square centimeter incident
upon one atom per square centimeter:

21!'1.711 m
1 —exp(—2miny) hk1

(iii) Number of states in volume € in unit range of k,:

Q
kol

(27)3
(iiii) Conversion from “per unit k. interval”’ to ‘‘per unit frequency range’:

2am/bks.
(iiiii) Factors arising in formula for dipole radiation:

e2 h4
(k12— Ba2)*.

2wc® (2m)*
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.....

M A= ! () ()25" ( ﬁ
(1 —exp(—2win,)) (exp(2win,) —1) 8wc? _me2

That is, the “‘components’ of radiation associated with the three moments ., M,, M. are:

I (z, v, ) 1 )2 e2 * 502 mz2z, ve
’ (1—exp(— 2mn2))(exp(21rm1)—1)\ 81rc3\ k2 |42 ,

where, for the direction of observation making an angle ® with the (x-) direction of bombardment,
the absolute intensity is given by :6

I,® =1, sin?@+ 1, cos?@4 1,

ergs per unit solid angle per unit frequency range per bombarding electron per atom-per-square-
centimeter of target area.
In particular, for 90° (z direction) observation,

)2 &o* (&mﬁ+§m D)

1,009 = ! )
(1—exp(— 21rm2))(exp(27rm1)—-1)\ 8rc? k2 ]A[2

D. Numerical Check

Since, in the numerical calculation, the series expansions (7) and (9) are broken off after a finite
number of terms, it is desirable to have a check which permits an estimation of the error thus in-
volved. Such a check is available through the work of Sommerfeld and Maue,* who have been able,

by ingenious application of the differential equation for the hypergeometric function, to express
Pe=M.2+IM,2+M.2 in closed form. According to their work,

8 d
Me=—| 4| [F,
) déo
where §=F(—mn1, —ns, 1, &).
For £ < —1, we use the analytic continuation of the hypergeometric function 7
T'(n1—mny) T'(ne—mny)
F(—=n1, —=ns, 1, &) =——————(— £0)"Gat————(— £0)"Gs, (10)
n;I‘(nl)I‘(—nz) n2r(”2)1‘( nl)
Gs=F(—m, —n1, 14+n2—my, &), Gs=F(—na, —n,, 14-n1—n, £77).

where

Whence, on expanding in powers of &' and performing the differentiation, we obtain:
P g 1N p P g

81r 2 » A 2 »
M= ——[4 !21 —| L rgbo || X rhEe?
o ny| =1 ng| =1
A?
—29‘%, (- EO)HI_MEZ rjréo " — (n1—n2) Z 7rfo—"1]}}
Nning

8 Here the y direction is taken perpendicular to both the direction of incident electron and direction of observation.
7 Whittaker and Watson, reference 5, p. 289. Since the text suffers a typographical error, we restate the result:

LD Fla, b, ¢, 5= TR (—0)=FGo, 1-cta, 1-bta, s+ TOTESD
where |arg (—32)| <w.

(—2)*F(b, 1—c+b, 1 —a+b,z7),
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where
T(ny—n,) r
A=—r—-——7-—; ¢r= Z g4yg*4,r_y )
T'(n)T(—n2)

v=0
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r r

l" = }: g5vg*5. r—v jr= Z g4vg*6, r—vy

v=0 v=0

and the g,, are the expansion coefficients of the G,:

I‘(v—nl)l’(v——nl)l‘(l-{—nz—nl)
B I'(—n)T(—n)T(v+14+ns—n1)v! ’

g4v

_ I‘(u—ng)I‘(v——ng)I‘(l—}—nl—ng)
e (S a)T (= )T (r+ 1+ 11— eyt

For &< —1, this expansion converges quite rapidly and thereby provides a splendid check for
the numerical work by comparison with the sum of the individually computed quantities .2,

"2, M2

III. NUMERICAL EVALUATION

In all cases it was found sufficient to neglect
all but the first nine or ten terms in each of the
infinite series in order to obtain the accuracy
stated below. The procedure lends itself well to
compactness, so that with the aid of computing
machine the time needed for each complete
calculation is reasonably short. It is possible to
obtain more rapid convergence if one uses for
part of the interval in ¢ the expansion in w (4),
and for the remainder the expansion (10) in &7
employed in the Sommerfeld-Maue check calcu-
lation of M2 In this case, however, the evil of
employing two different representations is by
far greater than that of the somewhat slower
convergence. Originally, in the Z =28, A\=1.431A,
V=15 kilovolts computation of 2, this pro-
cedure was followed; the result merely served
later as a check in the calculation of I, as set
forth in Section IIB.

For all computations, the hypergeometric
coefficients were computed with the aid of the
following recursion formulae:

v:—nna+v(n,—ns)

g2,v+1= (V+1)2 oy 5 (g,o=1)
( v 1
gu= 1+-)g2v; gs=—""Lu-
' ny V+1

Since only two or three terms per series were
required in the calculation of IN? as check, the
coefficients g4, and gs, were calculated directly.

The following detailed remarks concern the
computations for Z=13, A=0.474A, V=317
kilovolts. The various parameters were found to
be:in;=0.269, in,=0.647, {,= —4.87, wo,=0.830.

Although (1 —w,)?«1, it was found inadvisable
to neglect (1 —w)* for £>1 in the computation
of I,(8); wholesale cancellations in the alter-
nating series for I, render these terms significant.
A table of the values of I, so obtained follows:
r= 0 1 2 3 4 5 6 7 8 9

1, =1.769 0.939 0.595 0.404 0.285 0.206 0.152 0.113 0.085 0.064

The results for the unnormalized moments

are: M2=0.691]4 |2, M,2=M.?=0.059| 4 |2, and

P24+IM,24+IM.2=0.809| 4 |2. The latter is within
about two percent of the Sommerfeld-Maue
check result of M2=0.826]/4|%. An assumed
total arithmetic error of at most four percent is,
therefore, by no means an unreasonable claim
of accuracy.

IV. COMPARISON WITH EXPERIMENT

In order that the foregoing theory be applied
to the conditions of any given experiment, the
x-radiation upon which measurement is made
must originate from a thin target. The require-
ment is necessary for the reason that we have
assumed both initial direction and energy of the
electron to be known. For a target to be ac-
ceptable as ‘“‘thin,” therefore, the occurrence of
all processes altering the direction or energy of
the electron before it radiates must be negligibly
frequent. A number of experiments have been
performed recently with targets sufficiently thin
for comparison with the theory to be valid.

Smick and Kirkpatrick,® bombarding a nickel
target (thickness ~500A) with 15 kilovolt
electrons, observed a narrow frequency range of
the continuous spectrum centered about 1.431A
at an angle negligibly less than 90° (~88°).

8E. Smick and P. Kirkpatrick, Phys. Rev. 60, 162
(1941).
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These investigators obtained the absolute in-
tensity measurement of 2.2X10~% erg per unit
solid angle per unit frequency range per bom-
barding electron per atom-per-square-centimeter
of target area. Using the full atomic number, 28,
of nickel, we have, by the method given above,
arrived at a much too high value of 6.09X10-%
in the same units. In the extreme case of assumed
complete screening by the nickel K electrons
(Z=26), the result is somewhat better, 5.27
X10~% erg, etc., yet still too large by a factor
of greater than two. Although it does not seem
likely that deviation from the Coulomb field
should cause so large a discrepancy, it has been
suggested the experiment be repeated with
somewhat harder electrons and/or target of
lower atomic number, whereupon this difficulty
may drop out. At present, such a repetition is
in prospect at Stanford.

The only other investigation of absolute
intensity from a thin target known to the author
fulfills this requirement, and here the agreement
between theory and experiment is quite satis-
factory. Employing 31.7-kilovolt electrons and
an aluminum target, Clark and Kelly® have
observed a narrow band of the continuous
spectrum centered about 0.474A at an angle (0)
of 60°. Their result, in the proper units, is
6.17X10~% erg, etc.,, with a stated error of

9 J. Clark and H. Kelly, Phys. Rev. 59, 220 (1941). Here
the result is reported as being a factor of 20 larger than pre-
dicted by the Sauter (note 2) theory. The greatness of the
discrepancy was due merely to an oversight in that the
experimental result was not reduced to the proper units
for comparison. This fact has been discovered and cor-
rected by Clark and Kelly themselves in a personal
communication.
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about £33 percent. Our computations give
4.23X107% erg, etc., which does fall within
the experimental error of the Clark-Kelly result.
It may be significant that the agreement occurs
in a region where the theory should rigorously
hold, and the disagreement in a region in which
the uncertainties due to deviation from the
Coulomb field render its strict application
somewhat hazardous.

The final comparison with experiment, and by
far exhibiting the best agreement to date, is
with the relative intensity measurements of
Harworth and Kirkpatrick.’® The results are
given in Fig. 1. Since the measurements are
merely relative, normalization is necessary; this
is done by fitting the results at 20 kilovolts.
This not only gives the best fit, but also finds
justification in that below 20 kilovolts screening
has its greatest effect; above, the relativistic
effects are greater. As in the case of the Smick-
Kirkpatrick measurement, the computation has
been made assuming an observation angle of
90°, whereas the actual mean angle was 93.5°.
The error thus involved is of course negligible.
The good agreement may be in part attributed
to the thinness of the target (nickel) used. It
was about 200A thick.

V. ACKNOWLEDGMENT

The author wishes to express sincere apprecia-
tion of the assistance and stimulation given by
the members of the Physics Department at
Stanford University. In particular, he owes
hearty thanks to Professor Paul Kirkpatrick,
but for whose keen interest this work would
never have been undertaken ; to Messrs. Howard
R. Kelly, Keith Harworth, and David B.
Nicodemus for various aid, and especially to
Professor Felix Bloch, for suggesting this problem
and for valuable discussions.

Finally, his thanks go to the National Youth
Administration and to their patient, untiring
Miss Dorothy Pearson, whose careful computa-
tion forms the largest part of the numerical
results obtained.

10 K. Harworth and P. Kirkpatrick, Phys. Rev. 60, 163
(1941). Among others, the results represented in the figure
are to be published in a forthcoming paper by Harworth
and Kirkpatrick.



