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Fermi's theory of P-decay is extended to the "nth
forbidden" approximation. Precise formulas for the dis-
tribution in energy of the emitted P-rays are derived for
arbitrarily charged nuclei, according to the five possible
invariant forms of interaction, the so-called scalar, polar
vector, tensor, axial vector, and pseudo-scalar inter-
actions, respectively. The nuclear matrix elements of the
transitions, made up of the components of certain irre-
ducible tensors, are constructed. The selection rules appro-
priate to these matrix elements are given in Table II. The
magnitudes of the nuclear matrix elements are estimated
by a, simple averaging process depending only on the

directional properties of the tensors from which they are
constructed and the order of magnitude of the tensor
components. Theoretical half-lives of the "forbidden"
P-decays of RaE, P", K", and Rb" are calculated by
numerical integration of the energy dependent electron
emission probabilities. Upon comparing with the experi-
mental determinations of the half-lives, the most satis-
factory agreement seems to be obtained with the tensor
form of interaction. The evidence in favor of Gamow-Teller
selection rules is somewhat inconclusive for the case of the
K" decay because of the uncertainty of the experimental
determination of the maximum electron energy.

I. INTRODUCTION additional discrimination in the choice of inter-
action. Information concerning the nuclear spins
of the initial and final nuclei is pertinent to
these calculations. The "forbidden" transitions,

' 'N order to explain the energy distribution of
& ~ the p-particles from nuclei such as RaE and
P", Konopinski and Uhlenbeck' extended the
Fermi theory to the "forbidden" transitions.
Upon comparing the theoretical distribution
with the observed spectra, these authors were
able to eliminate three of the five forms of
interaction' which they considered. The invariant
forms characterized as the scalar, axial vector,
and pseudo-scalar interactions were shown to be
inadequate to give the observed energy distribu-
tions of RaE and P". By assuming the nuclear
spin changes, J;= 2—+Jy =0, for both RaE and
P" they found that the polar vector and tensor
interactions were able to account satisfactorily
for the observed distributions.

The above deductions will not be conclusive
until not only the energy distributions of the
p-particles emitted by radioactive nuclei are
shown to agree with experimental determina-
tions, but also the lifetimes characteristic of the
decays are explained. A calculation of the half-
lives may serve to verify the conclusions drawn
from the theoretical treatment of the energy
distributions, and furthermore may facilitate

K4'(J;=4)~ca4'(Jr ——0)+p

Rb"(I,= 3/2)-+Sr" (Jy =9/2)+P,
and

having known spin changes, '4 are treated here
in addition to RaE and P".

The theoretical half-lives of the four above-
mentioned decays are calculated in detail ac-
cording to the tensor and polar vector theories.
For K" the "allowed, " "first, " and "second
forbidden" formulas derived in II are inadequate,
in view of the fact that a spin change, DJ=4,
requires at least the "third forbidden" approxi-
mation, and may entail the "fourth forbidden"
formulas. The general formulas for "nth for-
bidden" transitions, calculated to the same
degree of precision as those of II, are presented
along with good approximations which are
applicable to both heavy and light elements.
The p-spectra of K" and Rb" are not of interest
because their exact measurements are dificult;
however, the more easily observed average
electron energies are calculated.

The RaE and P" lifetime problems are
attacked for the hrst time in this paper. Good

* An abridgment of the dissertation to be submitted in
partial ful61lment of the requirements for the Ph. D.
degree at Indiana University.' E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev. M,
308 (1941)—to be referred to hereinafter as paper II.

I H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 82
(1936).The five invariant interactions are also listed in II.

5

' J. R. Zacharias, Phys. Rev. 60, 168 (1941).
4 M. Heyden and H. Kopfermann, Zeits. f. Physik 108

3-4, 232 (1938).
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TABLE I. Data on half-lives.

Emitter

RaE
AJ=(2~} "Yes"
aJ= (2~0) "No"

P32

hJ= (2 0) "Yes"
b,J= (2~0) "No"

K40

0) "Yes"

AJ=(4 0) "No"

Rb'~
~J= (3/2~9/2) "No"
d J= (3/2~9/2) "Yes"

Experimental
half-life/sec.

{4.3)10'

(1.2) 10'

(4 5)1016

(2 —6)10's

3.3

4.37

2.4
3.6
2.4

3.6

1.26

Theoretical
half-life/sec.

t1z = {8)104
ting = {5—13)10'
tgy = {1.9—3.4) 10'

t1P = (5.5}10'
tsar = (0.54 —11)107
tmy = (0.27 —4.2)10'

ted ——(2.3)10"
tie = {1.0)10"
t4g = (0.23 —13)10'9
t4y = (0.11—4.3)10"
t4z = (1.1-32)10"
t4y = (0.55—11)10"

tgy = (3.0}10'~
t»= (0'.3—iS)10»
t3 = (0.14—3.3}10"

8'/mc&

2.4
(2.4 —2.2)
(2.4 —2.2)

1.6
2.2

(1.6—1.5)
(1.6—1.5)
(2.2 —2.0)
(2.2 —2.0)

1.13
(1.13—1.09)
(1.13—1.09)

nK exp

(3.4)104
(5—2.0}10'
{7—3.8)10'

(13)108
(13—0.6) 102
(14—0.9)102

{1.2)10'
(2.7)10»
(119—2.0)
{120—3.1}
{24—0.8)10'
(25 —1.2}104

(4—12)10'
(120-0.9)104
(120—1.8)10'

agreement with the observed half-life of' RaE'
is obtained. Concurrently, the theoretical energy
distribution predicted is in agreement with the
well-de6ned experimental determinations of the
shape of the spectra. '-' On the other hand,
the calculated half-life of P'~ differs considerably
from its observed value. The shape of the P"
energy distribution calculated in II also varies
somewhat from experimental determinations.

The half-life of K" has been discussed by
Bethe, ' and recently was calculated by Marshak. '
Both authors have shown that the "third
forbidden ' approximation is sufhcient to explain
its very long lifetime. Use of the K—U modifica-
tion of the original Fermi theory (polar vector
interaction) made it necessary for Bethe to
assume AJ=3 which is in contradiction to the
recent experimental data of Zacharias. ' Marshak
concludes that the K" transition can be "third
forbidden" if Gamow-Teller selection rules
(tensor or axial vector interaction) are valid.
The maximum P-ray energy, Wo=3.6mc', re-

ported by Henderson, '0 as well as 8"0=2.4 mc',
was used by Marshak. The former end-point
energy yields a much smaller half-life than the
latter. The results listed in Table I indicate that

'A. Pompei, J. de phys. et rad. 6, 471 (1935).' A. Flammersfeld, Zeits. f. Physik 112, '727 (1939).
~ E. M. Lyman, Phys. Rev. 51, 1 {1937).' G. J. Neary, Proc. Roy. Soc. Q'5, 71 {1940).' R. E. Marshak, Phys. Rev. 61, 431 (1942).
'o W. J. Henderson, Phys. Rev. 55, 238 (1939).

Marshak's conclusion is correct if the maximum
energy is 2.4 wc', but if it amounts to as much
as 3.6nsc', the half-life can be accounted for
equally well by the "fourth forbidden" tensor
or polar vector interactions. The uncertainty as
to the end-point energy weakens the argument in
favor of the Gamow-Teller rules based on K".

The lifetime of Rb" (half-life, t=(2 —6)10"
sec.)"" was discussed by Konopinski and
Bethe."They obtained a theoretical estimate of
the mean-life, v = 10" yr. , according to the
"third forbidden" polar vector interaction, with
AJ=3. The half-life of Rb" listed in Table I is
predicted within the experimental error by the
"third forbidden" tensor or polar vector inter-
action. This is in substantial agreement with the
calculations of Marshak.

G. THEORETICAL CALCULATIONS

The reciprocal half-life of a radioactive nucleus
according to Fermi's theory of P-decay is given by

1/t„» = (G'/2x' In 2)
~&0

X Caxrio(W, Z)P Wq'd W, (1)
1

= (G /2s ln 2)f x(Wo, Z) (2)
"O. Hahn, F. Strassmann, and E. Walling, Naturwiss.

25, 189 (1937)~

~ A. Hemmendinger and W. K. Smythe, Phys. Rev. 51,
1052 (1937}.

& E. J. Konopinski and H. A. Bethe, Phys. Rev. 53,
679 (1938).
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&.x= (2p'+0) '
gim

2

drH~, (3)

in which II y has the invariant forms:

H.r = [(V*QU)(4'4)

The subscript, e=o, i, 2, ~ n, designates an
"allowed, ""first, " "second, "or "nth forbidden"
transition; X=5, V, T, A, I' denotes the form of
interaction, scalar, polar vector, tensor, axial
vector, or pseudo-scalar, respectively. G is the
Fermi constant; to obtain the half-life t~ in

seconds the magnitude of (2s ln 2/G') is taken
to be about (6)10' sec. for the interactions T or A.
The value = (3)10' sec. is more appropriate for
the others. " The function, Iio(W, Z), precisely
defined by Eq. (15), represents the e8ect of the
nuclear charge in the "allowed" energy distribu-
tion, Fop Wq'dW W is the electron's total energy
in units'~ of mc'; p= (W' —1)& is the momentum
of the electron, and g=lVO —S" is the energy
taken by the neutrino. TVO is the maximum

energy available to the electron in the transition.
The correction to the "allowed" formula which

the "nth forbidden" transition requires is given

by the factor,

to be normalized to one particle per sphere of
unit radius. " p is the four-component wave
function of the neutrino. The operators o, e,
and p, in (4) are the usual Dirac four-by-four
matrices. The superscript II indicates that the
operations are on the nuclear wave function.

The evaluation of the correction factors
through "second forbidden" transitions was
described in II. BrieQy, the method is to expand
the electron and neutrino wave functions in

powers of their cartesian position coordinates x;.
The matrix elements will then contain, besides
the vector operators e and e, components x; of
the position vector r. The final expressions must
be invariant with respect to three-dimensional
spacial rotations. Thus they must be expressible
in terms of tensors made up of components of
the vectors e and 0. in combination with the
components x;. For second and higher rank
tensors formed in this way it becomes necessary
to separate them into their irreducible repre-
sentations. The irreducible tensors required
through the "second forbidden" transitions,
already constructed by Konopinski and Uhlen-

beck (II), are designated in this paper as
follows:

(V*~ QU—) (0'~4)] (4~)

H r=[(V*P e QU) (iP*Peg)

Scalars:

Qo(s)= I'd V*sU,

+(V*P e QU) '(i'd*Pe(li)]' (4T)

Only the polar vector and tensor interactions are
presented here; however, the formulas for the
correction factors, C„q, C„~, and C„p are derived
as well. J'drH„x is the matrix element of the
interaction between the nucleons of the parent
nucleus and the electron-neutrino field. U and
V are the wave functions of the initial and final

nucleus. The operator Q by definition transforms
a neutron into a proton. The square of the
matrix element is integrated over the momentum

and spin directions of the neutrino and summed
over the spin and angular momentum quantum
numbers, j, l, m, of the electron in the coulomb
field. The Dirac electron wave functions (P are

"E.J. Konopinslo, Advances in Nuclear Physics (Inter-
science Publishers, Inc.), in press.

'~ The units used throughout this paper are: mc'=unit
of energy, me=unit of momentum, h/mc'=unit of time,
and k/wc=unit of length, @&here m is the rest mass of an
electron.

Q;(a) = dr V*a,U, (6)

where a may be any of the vector operators, r,
(r, e, [oXr], or [e&(r], multiplied by any scalar
operator.

Second-rank tensors:

Q;;(a, r) = dr V [u(;x,i 3S(;;)(a r)—]U, (7)

where the a s are components of the vector

'" M. E. Rose, Phys. Rev. 51, 484 (1937).
'~ The superscript II is dropped; all operators in the

nuclear matrix elements are obviously heavy particle
operators. The operator Q is also omitted from all the
nuclear matrix elements.

where s may be any of the heavy particle scalar
or pseudo-scalar operators, "

1, P, (e r), (a r), P(e r), P(a r), y~, or Py~.

Vectors:
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Tsar.E II. Selection rules.

Interaction

Scalar

Polar V.

Matrix
hJ
Parity Change

Matrix
hJ
Parity Change

Q (pr, r)
(e—i)', e

"nth forbidden"

+odd yeS +even nO

Q, (r, r), Q (e, r), Q„1{IeXrj, r}
(e—i)', n, (~—i)', e, (n —i)
codd —yeS, eleven —nO

Comp1etely "forbidden"

~J—(0+"+seven) yes
6J= (0~codd}—no

6J= (0~0)—yes

Tensor

Axial V.

Pseudo-S.

Matrix
aJ
Parity Change

Matrix
hJ
Parity Change

Matrix
aJ
Parity Change

Q lPL«rj rl Q„(pe, r),
5 $

@odd yeS~ +even

Q (L+Xrg, r), Q (&, r)
~", (~+i)

~odd yeS~ even

Q(avr r)
(~-i)', ~
'~odd nO) +even yes

Q.+~(P r)
e' (0+1) None

5J= (0~0}-no

b J= (O~n, ,„)—no

~J= (0~~odd) —yes

operators given in (6). Q;; is the irreducible
tensor with zero spur. "The parentheses amund
the subscripts indicate that there is a term for
each permutation of the indices. For "third"
and "fourth forbidden" transitions, third-,
fourth-, and fifth-rank tensors are required.
The third-rank irreducible tensors are defined

by
f

Q;;g(a, r) = dr V~[a(,x;xi)

—1/5h(;, a),)r' 2/5b(,—;x )(a r) jU (8).
Similarly the fourth-rank tensors have the form

Q;;),((a, r) = I dr V*ta(;x;x),x()

3/Tb(;;x)x(—)(a r) 3/7b(;;a~()r'—

+3/35b(;;8), ()(a r)r'] U (9).
All rank tensors are completely symmetric with
respect to any permutation of their indices,
and all "spurs" are zem; i.e.,

3

Z Q„~("

"Fourth forbidden" tensor and axial vector
interactions would require the fifth-rank tensor,

'~The tensors (7) are identi6ed with those of paper II
as follows:

Q;;(o, r}-=8;;, Q;;(e, r) =-A;;, Q;;(r, r) =-2R;,
Q'(t.Xrj, r)~~'~, Q'(t~Xrj, r)= J'IaXrjf, x,).

The notation used here is convenient for expression of the
general eth-rank tensors, Q~(a, r}, introduced.

Q,y( (e, r). However, in the specific cases
treated it will not be required.

The selection rules for which the various
irreducible tensors are non-vanishing were given
in II through the "second forbidden" approxi-
mation. Table II extends the spin and parity
selection rules to the "eth forbidden" transitions.

The first column of Table II lists the five
forms of interaction. For each form of inter-
action the second column contains the irreducible
tensor matrix element appropriate to the "nth
forbidden" approximation. The subscript n
indicates that the tensor is of nth rank. There
are tensors of lower rank in the "nth forbidden"
transitions than those listed. The selection rules
corresponding to these are already included in
the "(n—2) forbidden" degree. Therefore, it is
seen that they constitute negligible corrections
to the "(n—2) forbidden" matrix elements.
Beneath the matrix element is listed the spin
changes for which the element is non-vanishing.
The primes indicate that

~
J;~+

~ Jr~ &~ J . As
in II, "yes" means that the transition must be
even+-+odd; "no" indicates that the parities of
initial and final nucleus must be the same. Par-
ticular combinations of spin and parity changes
are completely "forbidden" in any approxima-
tion by four of the interactions. These cases
are given in the last column. Table II is complete
except for the "first" and "second forbidden"
tensor and axial vector interactions. These
omissions are certain scalars which are given in
Konopinski and Uhlenbeck's Table I.'
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III. GENERAL FORMULAS FOR C„g

The correction factors through "fourth forbidden" were derived for all the forms of interaction

by the method outlined in the previous section. Upon inspection it was found that all the correction
factors could be @written in a generalized "nth forbidden" form.

C —
I Q (pr r)/n(

I

2 p (g q2(a—v) —2' +2C q2(a —v) —)+ +D q2(a —v)J )

—
I Q (r r)/n!

I

2 P (g q2(a —v) —2~ 2C q2(a —v) —(+ +D q2(a —r)J )
v—0

+ I Q.(», r)/n!
I

' P (&.,q'(" "' 'I„)+~[Q.(», r)/n! Q.'(r, r)/n! —C.C.]
v=0

Xg (—A q"" "' 'X,+C.„q'&"-")—'L,„)+I Q„)([ Xr], r)/(n —1)!I'-

n—1

Xg (A(„))„q'&" ' "' 'M„+2C( ))„q'&" ' "' 'X„+[D(„g)p—B(„))p/n]q2'" ' "'Lp)
0

C.r= IQ.(P[»Xr], r)/n! I' g (A..q"" "' 'll„2C„„q"-&" "—' 'E,

n

+LD- —&-/(n+1)]q"" "'L.)+ I Q-(p», r)/n'I' 2 (~ q"" "' 'L)
v=0

n
—[Q„(P[»Xr],r)/n! Q *(P», r)/n!+c c ]P. (.—A q"' "' 'E+C q"" "' 'L )

v=0

n

+ I Q.+((P», r)/(n+1) 'I' 2 (&-q"" "'L)
0

C„~——
I Q„([(vXr], r)/n! I

2 P (A qm&"—")—2~„+2C„„q2&"—")—'+
v~0

+LD- &-/(—n+1)]q"" "'L.)+-I Q.+ (», r)/(n+1) 'I ' 2 (&.,q2&"-"'L.).

C„p is the same as C s except that Q (py(;x, r) rep!aces Q„(pr, r).
I Q„/n! I' is the sum of the squares

of the absolute values of the components of the tensors, the summation sign over the e indices
being omitted. The quantities, A„„,8„„,C„„,and D„„,are the numerical coefficients:

(n v) 2" '"—(2v+—1)! 2"-'"(2v+1)!
A„v= 8„„=

(2n —2v)!(v!)' (2n —2v+1)!(v!)'

(n —v)2" '"(2v+1)! 2" '"(v+1)(2v)!
C„,= Dnv

(2n —2v+ 1)!(v!)' (2n —2v+ 1)!(v ') '

I.„, M„, and N„are combinations of the radial part of the electron rvave functions evaluated at
r= p, the nuclear radius.

2
L.= (2P'~0) '(g '+f-(+2)) v '"

2
W=(2P'~o) '(f'+g (.+2))v ""+"-
&.=(2P'~o) '(fa. f (.+2)a (.+2))—v '-" '- (13)
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Expanding the radial functions in ascending powers of p, one obtains the 6rst approximation formulas
for 1., M, and ¹

2"v! ) ~ v+1+5.I.„=(F„Fp)
((2v+1)! i 2v+2

( 2"+ivi ) ~ 2v+2 (nZ) 2 ( S, (2v+1)(aZ)'W l (aZ)
~

—I+~
((2v+2)! ) v+1+S. E 2p) (2$„+1 (2$„+f)(v+1+5.)i E p )

(14)
(v+1)(5„—v) S, ( 4$.+3 ) ( v(4$„+3) )(

(-Z) lp'+] 1+
(2$„+1)2 & $„(S„+1) ) ( (5„+1)(v+1+S„) ) (2$„+1)

where

and

( 2"v! ) ~ 1 (nZ) $„2(aZ)2

]
—)+ p/W-

&(2v+1)! & v+1 & 2p] 2$„+1 2$„+1

((2v+2)!) '
F,(W, Z) =( [ (2Pp) i " "exp (iry) [r($„+iy) ('/I"(1+2$„)

v!

5„=L(v+1)' —(aZ)']& y=nZW/p

(15)

For positron emission —Z replaces Z; n1/137 is the fine structure constant. Formula (14) was
used for RaE; however, for lighter elements, A &100, simpli6cations valid for oZ&&1 are sufhcient.
In these cases S„=v+ j. and F„=F0 for any v. t., M, and E then reduce to the simple expressions

(aZ)2 (aZ) (aZ)tI. =o p ~=u, p b
(

—)+b( —)p/W+p», =-.,~p" b,
(
—[+p2/W (16)

( 2p& E p J E 2p)

where a„, and b, are the numerical factors, a„=2"v!/(2v+1)!, b„=(2v+3)/(v+1). The correction
factors given above are complete except for C», C», and C2z. The omitted terms apply only to
0~0 transitions and are given in II. The characteristic features of the correction factors (11),
have been discussed by Konopinski and Uhlenbeck in their effect on the shape of the spectra.

The evaluation of the lifetimes requires some estimate of the size of the nuclear matrix elements,
(5) to (9), inclusive. An exact evaluation will not be possible until more is known concerning nuclear
states. The comparable problem was met in the case of the "allowed" transitions by assuming the
order of magnitude unity for the square of the matrix elements,

~
Qo(1) ~' and p, ~

Q;(piv)
~

', which is
consistent with normalized nuclear wave functions. In the "forbidden" case the situation is compli-
cated by the fact that the irreducible tensors Q„were constructed without regard to normalization.
In symmetrizing them the e. permutations of their indices introduce many terms. The spurious
effect of this repetition of terms may be removed by introducing the normalization factors, 1/n. ,

as is done in the formulas (11).
In order to obtain a more conservative estimate of the order of magnitude of the nuclear matrix

elements, a method of' averaging the tensor directions over a sphere may be adopted. To do this,
the tensor Q;;(LeXr], r), for example, is treated as if it were made up of ordinary independent
vectors, (r) and (e), having the magnitudes p and (0), respectively. This procedure is at least
consistent with the above-mentioned treatment of the allowed" matrix elements. Two of the
"first forbidden" tensor interaction matrix elements estimated in this way are Q; ~

Q;(pe) ~

' = (p)'(a)'
and p; ~ Q;(p[e Xr]) ~

' = za(p)'(0)'p'. The normalized second- and higher-rank tensors may be estimated
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by applying step by step the identities:

2 IQ';(a, r)/2'I'=2 dr V*~'xiU —
Y2 2 IQ'([aXrh) I' —hlQ. (a r) I',

2

2 IQ'i~(a r)/3!I'=2 ' d Voa,xix„U 2~~s p IQ*i([aXrj, r)/2ll' g 2 IQ'((a r)r)l'
ijI si

+ ~is P [Q*,((a r)r) Q.(ar')+c.c.]—
g& P I Q, (ar') I

'

Q IQ; ii(a r)/4!I'=p „dr V*0,;x;xj,xiU —g p IQ;;~([aXrj, r)/3! I'
'PI J ijI

p IQ;;((a r)r, r)/2! I'+p p [Q',;((a.r)r, r) Q;;(ar', r)+c.c.j/(2!)'
ag

P IQ,,(ar' r)/2!I' —P P IQ,([aXrgr')I' —&&IQ,((a r)r')I'.

Upon applying the above method one obtains
the following estimated magnitudes for the
square of the normalized matrix elements:

where
I Q (sr, r)/n! I'=X (s)'p'"

X = 2"(n!)'/(2n)!

Here, (s) =1 for the axial vector interaction and
(s) = (p) for the first term of (4T), (s) =(pyq) for
the second term, and (s) =(yq) for the second
term of (4V)." Finally, the matrix elements
involving the components of the vector products,
[»Xrj and [»Xrj=y~[»Xrj, have the magni-
tudes:

I Q.(sL X.j,.)/n! I

= (n+1)/3n N„(s) '(o) 'p'" (20)

Cross products of the matrix elements of the
type

i [Q„(», r)/n! Q*„(r,r)/n! —c.c.j
and

[Q-(p[»Xrj. r)/n' Q'-(p». r)/n'+c c j
appearing in C„y and C p, vanish upon applying

'I' The operator I, appearing in the second terms of (4},
may be written a=gee where y~= -iu1u~.

and (s) is the order of magnitude of the scalars

(P), 1, and (Pyq) for the scalar, polar vector,
and pseudo-scalar interactions, respectively.

IQ„(s», r)/n! I'

= (2n+1)/3n N„(s)'(o)'p'" —'. (19)

the method of evaluation described above. One
would expect such interference terms to be very
small on the basis that the phases of the indi-
vidual terms of the sum are random; i.e., the
presence of both positive and negative terms
would tend to cancel each other and result in

negligible values for their sum.
In estimating the sizes of the matrix elements

(18), (19), and (20), the order of magnitudes of
(p)', (o)', (y~)' and (py~)' must be introduced.
It was assumed that (P)'= (o;)'=1 for the usual
reason that the operators p and o; cause the
large components of the nuclear wave functions
to be multiplied together. Accordingly the
magnitude, (o)'=(oi)'+(o~)'+(os)'=3, emerges.
On the other hand, the operators yq and pcs mix
the large and small components of the wave
functions resulting in values of (yq)' and (pyq)'
smaller by a factor of =(v/c)', where v is the
order of magnitude of the velocity of nuclear
particles. One would expect v to be about 1/10
the velocity of light. Critchfleld20 obtained
(Pys)'=0. 1 by assuming special (s and P) nuclear
wave functions; however, his introduction of such
wave functions led to a much smaller magnitude
for (y5)' alone: namely, (y&)'= 10 'Wo'. A similar
small magnitude was obtained by Marshak who
made use of the quantum-kinematical relation,
fdrV*»U=iWofdrV*rU. This yields the
value, (»)'= (yq)'(o)'= Woomp'. This relation is
applicable only if the coulomb energy di8'erences

2' C. L. Critch6eld, Phys. Rev. 61, 249 (1942}.
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between the initial and 6nal nuclei are ignored.
For most of the decays treated the coulomb
energy difference is larger than the electron's
maximum energy. In this paper the magnitudes,
(pea)'= (ys)'= (s/c)', are assumed. (s/c)' is con-
sidered as a parameter having the range of values
(s/c)'=((Wop)' —0.1). The value of the nuclear
radius, p=0.004A&, which is roughly five percent
larger than that used by Marshak, is assumed
in the cases treated here.

In deriving the formulas (11), it was tacitly
assumed that transitions involving a spin change,
5J=

~
J;—Jr ~, could lead to 2AJ+1 degenerate

magnetic states of the electron plus neutrino.
This is in efkct what is assumed when the sum
over the quantum numbers m is performed as
indicated in Eq. (3). Marshak has shown that
if J;&Jy only one value of' the electron-neutrino
total magnetic quantum number, p, =k =6J is
permitted. k=hJ is the value of the electron-
neutrino total angular momentum that gives
the largest contribution to the transition proba-
bility. Larger values of k that are possible yield
probabilities smaller by a factor of = (Wop)' and
are ignored by both methods of treatment.
Consequently half-lives calculated from Eq. (1)
should be multiplied by 2h J+1 if J,)Jf.

The relation between the nuclear matrix
elements (18), (19), and (20), and those used by
Marshak (constructed from spherical harmonics)
was investigated. It was found that the half-life
formulas were identical if Marshak's normalized
matrix elements

I ~ I

'
were evaluated by the averaging process just dis-
cussed. Performing these averages we find the
values ~ill„['= [M„~'~'=1 for (ys)'=(Wop)',
(0)'=3. Those matrix elements containing the
components of LeXr7 are slightly smaller.
By averaging, the values, (M„~"('=(n+1)/
(2n+1), were obtained.

Aside from the difII'erence in form of the nuclear
matrix elements a more serious difference be-
tween Marshak's calculations and those pre-
sented here appears in the cases of unfavorable
parity change from the tensor or polar vector
interaction. He ignores the terms linear in

(OZ/p) and independent of (nZ/p) which appear
in the formula (16) for 3E„, and completely
ignores I. and N„, on the basis that (aZ)((1.
This approximation is good only as long as the

maximum kinetic energy of the electron is very
small in comparison to the coulomb energy
difference (aZ/p). The energy dependent factors
multiplying (nZ/p) in M. and X„contain the
energy to one degree higher than in the factor
multiplying (aZ/p)'. In the case of Rb'" (W0 —1
=0.26, (nZ/p) =15.2) the error introduced is
insignificant; however, for K'0 (Wo —1 = 1.4 —2.6,
(aZ/p) =10.1) dropping all except the terms in

(aZ/p)' increases the calculated "fourth for-
bidden" half-life by a factor of 2 on the basis of
Marshak's values of p and (a). The discrepancy
is aggravated when the larger values of p and
(a) used in this paper are applied. (See Table I.)

IV. COMPAMSON WITH EXPERIMENT

The theoretical half-lives of RaE, P", K4',
and Rb" listed in Table I were calculated by
numerical integration of Eq. (1) for the tensor
and polar vector interactions. The values (6)10'
sec. and (3)10' sec. were assumed for (2s ln 2/G')
for the tensor and polar vector interactions,
respectively. '4 The calculated half-lives listed
for the cases of unfavorable parity change
correspond to the range of values, (v/c)'
= L0.1 —(Wop)'7. The shape of the electron
energy distribution is very sensitive to changes
in (v/c) as can be seen from the calculated
average electron energies. The spin and parity
change for each transition is listed in the first
column. The (f~t, ~) values listed in the last
column give the order of magnitude of
(2H In 2/G') that would yield the experimental
half-life.

RaE

Previous to the work of Konopinski and
Uhlenbeck" it was generally supposed that the
half-life of RaE could be accounted for by the
"first forbidden" approximation. However, these
authors have shown that the distribution in
energy of the emitted p-rays could be predicted
only by assuming 6J= (2—+0), "no," which
requires the "second forbidden" approximation.

~ The results for RaE presented here are based on the
numerical calculations performed by Konopinski and
Uhlenbeck. I am greatly indebted to Dr. Konopinski for
access to the numerical tables of the RaE correction
factors. The nuclear radius, p=0.027, used in paper II
for RaE is also gsed here in estimating the magnitudes of
the nuclear matrix elements.
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It remained to be shown that the half-life could
also be obtained in this approximation.

For an element as heavy as RaE the formulas
(14) are required. Using the estimated values
of the matrix elements given by Eqs. (19) and
(20), one obtains in the "first" and "second
forbidden" approximations:

the observed half-life and energy distribution,
its inclusion is not essential. The fact that the
cross term contributes more than half of the
probability of electron emission, when the ratio,
—5.8, is assumed, perhaps indicates that its
inclusion is not to be preferred over the simpler
evaluations that lead to vanishing interference
terms.

fir(3 3, 83.) =(7.9)10 ', (21)

fmr(3. 3, 83) = [4.1+79(s/c)'j10-', (22)

f2'(3 3, 83.) = [8.2+79(s/c)']10 '. (23)

The half-life given by the "first forbidden"
calculation (21) is too small by a factor of only —',.
Thus the evidence of the calculated half-life
alone does not eliminate the possibility of
accounting for the RaE decay in the "first
forbidden" approximation. However, the "second
forbidden" formulas (22) and (23) yield calcu-
lated half-lives equally satisfactory. Moreover,
the fact that the shape of the energy distribution
can be reproduced accurately only by the
"second forbidden" approximation, indicates
that by either Gamow-Teller or Fermi selection
rules the transition involves no change of parity
with a spin change of 61'=(2~0). The value of
(v/c) that yields the best reproduction of the
electron energy distribution according to the
tensor interaction is (s/c) =0.16. Using this value
of (s/c) one obtains (fmrt. ,) = (2s'In 2/G')
= (2.6) 10' sec. as compared to the value,
=(6)10' sec. , appropriate for "allowed" tran-
sitions. "

A slightly better energy distribution can be
obtained by including the cross products of the
matrix elements as is done in paper II. There
the ratio, Q;;(pn, r)/Q;;(p[e Xr], r) = —5.8, was
used in order to obtain the best spectrum. On
the other hand, this procedure is equivalent to
a diiTerent evaluation of the nuclear matrix
element, Q;;(e, r), If one assumes the ordinary
vector (I) perpendicular to (x) and (e) and of
magnitude (0.) = (o)(s/c), one may obtain such a
non-vanishing interference term. The ratio used
in paper II corresponds to the magnitude,
(v/c) =0.16, which yields an (ft) value of
(6.4) 10' sec.

Although the inclusion of the interference
term is thus seen to give an excellent account of

The best reproduction of the observed energy
spectrum of P" was obtained in II by adjusting
the ratio of the nuclear matrix elements,
Q;;(Pe, r)/Q;;(P[eXr], r) = —2.2, and including
the cross term. Using the same method of
evaluation of these matrix elements as mentioned
in the previous paragraph, one obtains for
AJ=(2—4), "no" and Wo ——4.37" a theoretical
half-life too large by a factor of 100.The observed
half-life of P" is 14.07 ~0.01 days. ~'

An equally good reproduction of the energy
distribution can be obtained with the simpler
assumptions used in evaluating the matrix
elements. [See Eqs. (19) and (20).] For the
tensor and polar vector interactions one obtains:

fir(4 37, 15) =(.1.1)10 ', (24)

fmr(4 37, 15) = [.1.9+(1.1)10'(v/c)'j10 ' (25)

tv(4 37, 15)= [3.9+(1.1)10'(s/c)']10—'. (26)

II J. L. Larson, Phys. Rev. 56, 131 (1939).
'll D. Mulder, G. W. Hoeksema, and G. J. Sizoo, Physica

7, 849 (1940).

The best energy distribution is given by
CmrFopWg'dW when (v/c) =0.029 is assumed,
which is considerably less than the minimum
value 8'Op used in Table I. However, the half-life
predicted is =200 times too large. In order to
obtain the correct half-life, one must assume
(s/c) =0.67 in (25), which is unreasonably large.

The "first forbidden" half-life listed in Table
I is too small by a factor of only —',, while f&&

and f2r give half-lives at least two and four times
too large, respectively. The energy distribution
for these three alternative cases is practically
the same; it deviates somewhat from the
observed spectra. " In view of the fact that the
energy distribution favors only slightly the
"second forbidden" approximation the evidence
of the half-life indicates that P" is probably a
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"first forbidden" transition according to Gamow-
Teller selection rules with 4J= (2—4), the
transition being from the P~ state of odd parity
to the ground state of S"which has even parity.

The known spin change' of K'0 requires at
least the "third forbidden" approximation if
Gamow-Teller selection rules are to be preferred
to Fermi rules. In substantial agreement with
the calculations of Marshak, ' it was found that
the observed half-life, 2' t, ~ = (4.5 +0.9)10"sec. ,
could be given by the "third forbidden" tensor
interaction if the maximum energy has approxi-
mately the value 8'0=2.4, used here. On the
other hand, if the end-point energy" amounts
to as much as 3.6m'', the "third forbidden"
half-life calculated is too small by a factor
=1/50, and the "fourth forbidden" tensor or
polar vector interactions yieM results even
better than the "third forbidden" approximation
with S'0=2.4.

The average energy quoted by Bramley and
Brewer, " E=0.35 Mev, is in good agreement
with the "third forbidden" value calculated
with 8'0 ——2.4. For S'0 ——3.6 the average energy
according to the "fourth forbidden" tensor or
polar vector interactions is at least 0.5 Mev
which is considerably higher than previously
reported.

Until more precise values of the end-point
and average electron energies are determined,
the argument in favor of Gamow-Teller selection
rules presented by the K" decay will remain
some~hat doubtful.

~A. Bramley and A. K. Brewer, Phys. Rev. 53, 502
{1938).

Rb"

The low maximum energy" of the Rb"
electrons, 8'0 ——1.26, accounts for its very long
half-life. Experimental determinations of the
half-life vary somewhat; (2 —4)10" sec. is
reported by Hemmendinger and Smythe, "while

(6—12)10" sec. is the value found by Hahn,
Strassmann, and Walling. " The latter authors
indicate that the shorter half-life, (6)10's sec. ,

is probably the best.
The "third forbidden" approximations yield

half-lives of the correct order of magnitude,
while the "second forbidden" calculations result
in a value too small by a factor of 1/1000.
It should be noticed that the average kinetic
energy of the decay electrons corresponding to
the best calculated half-life is roughly -', their
maximum kinetic energy.

V. CONCLUSIONS

For the four cases treated, the tensor inter-
action seems consistently to give the best
results. The good agreement with experimental
determinations obtained for RaE can, of course,
be given equally well by the polar vector inter-
action. However, the polar vector interaction
fails to account for the half-life of P". It likewise
is inadequate for K" if the lower end-point energy
of K" is more nearly correct than the larger
value reported by Henderson.

The author wishes to thank Dr. E. J. Kono-
pinski under whose valuable guidance this work
was done, for suggesting the lifetime problems
treated, and for criticizing the work in

preparation.

~ %'. F, Libby and D, D, Lee, Phys. Rev. 55, 245 {1939).


