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It is pointed out that the reduction of the two viscosity coefficients to one according to the
Stokes’ relation 2p+3\=0 is not justified except in the special case of a monatomic gas.
The generalization of this relation by the re-introduction of the second independent viscosity
coefficient k=4u-+\ makes it possible to develop the phenomenological theory of the absorp-
tion and dispersion of sound, in agreement with experiment in complete analogy to the cor-
responding optical phenomena. The connection of the well-known relaxation theory with
classical hydrodynamics can be established and in the case of polyatomic gases « is expressed
by the characteristic constants of this theory. The case of liquids is discussed. In polyatomic
gases and liquids one has generally «>>u. Other hydrodynamical consequences of the introduc-

tion of « are discussed.

I. INTRODUCTION

T is a well-known fact that the supersonic
absorption in polyatomic gases and in liquids

exceeds by far the absorption predicted by the
classical theory based on viscosity. For the very
extended literature we refer to the detailed
bibliography contained in the recent review of
Richards.! The effect of heat conductivity on
absorption is in general still smaller; we shall
not discuss it in the following.

The “anomalous” absorption in gases is
accompanied by a dispersion of sound velocity.
Both absorption and dispersion were interpreted
with success by the relaxation theory first
proposed by Herzfeld and Rice? and developed
by many others.!

This theory is based on the hypothesis that
the molecular vibration requires a much larger
number of collisions for reaching the state of
thermal equilibrium than the translation and
rotation. In other words, the relaxation time =
for the vibrational degrees of freedom is much
greater than the relaxation time for the Maxwell
distribution for the translational degrees of
freedom. The latter is under ordinary conditions
of the order of 10~? sec. This hypothesis leads
in a straight-forward way to a complex and
frequency dependent specific heat making it
possible to account for the absorption and
dispersion of sound.

The persistence of the excited vibrational

lW T. Richards, Rev. Mod. Phys. 11, 36 (1939).
(1929) F. Herzfeld and F. O. Rice, Phys Rev. 31, 691

states over a period covering many thousand
collisions has been proved through direct
spectroscopic evidence by R. J. Dwyer.? On the
other hand, 7 could be calculated theoretically
from molecular data by Landau and Teller.

We therefore may consider it an unquestioned
fact that there is a time lag in the establishment
of equilibrium for the internal degrees of freedom
and consequently a dissipation of energy. The
purpose of the present paper is to show that the
classical hydrodynamical equations can be easily
generalized so as to include this phenomenon.
One has merely to re-introduce the second
viscosity coefficient which appeared automati-
cally in the hydrodynamical equations but which
was eliminated by the well-known relation of
Stokes.

For perfect polyatomic gases the relaxation
theory may be considered as a kinetic calculation
of this viscosity coefficient. Our phenomeno-
logical scheme remains of course valid for liquids,
too, while the relaxation theory encounters in
this case the characteristic difficulties of the
kinetic theory.

II. THE STOKES’ RELATION

The so-called second approximation of the
hydrodynamical equations is based on the
hypothesis of Newton according to which the
stress tensor py; is a linear function of

Ui = l(au.-/ax,,+6uk/ax.~) ,

Dwyer, J. Chem. Phys. 7, 40 (1939).
‘L. ndau and E. Teller, Physlk Zeits. Sowjetunion
10, 34 (1936).
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the time derivative of the deformation tensor
(u; is the ith component of the flow velocity).
The most general relation of this kind is®

Pir=10dik— 2uthix—Néir 2_a Uaas 1)

where 8;; is the Kronecker symbol, p, the
pressure in the first approximation (the hydro-
static pressure), and g, \ are the viscosity coeffi-
cients. The first one is the ordinary shearing
viscosity, the second is sometimes called com-
pression coefficient. Defining in the usual
manner the scalar pressure p as the mean value
of the diagonal elements of the stress tensor,
we obtain

=% 2abaa=po— Gu+N) Lathaa (2)

Introducing the notation
futr=« 3)

and making use of the continuity equation, we
have

p="po+«(1/p)dp/dt. (2a)

That is, the constant xk—which we shall prefer
to use instead of A—has a simple meaning: It
gives the second-order correction to the hydro-
static pressure, arising as a consequence of a
compression or dilatation.®

A difficulty arises, however, in the determina-
tion of «, because the pressure of the first
approximation p, is properly defined for the
hydrostatic case only. We may extend the
definition to our non-static case by the following
convention :

We define po(p) as the pressure which would
result from an adiabatic compression starting
from the equilibrium state po(po). Obviously po
is a function of one independent variable, of the
density. Therefore, there exists a function
P= S1/pdps, such that dP/dx;=1/pdpo/dx;.

The second approximation of the hydro-
dynamical equations may then be written in
our notation:

du,-/dt= —6/(-)x,(P+ U)+uV2u,-

+(u/34+K)0/0%; Yo Otta/0xs (4)

‘5I7£4g., H. Lamb, Hydrodynamics (1932), sixth edition,
p. 3

6 We would prefer to call this term a “first-order cor-
rection,” but this would be in contradiction with the
usual expression of ‘‘hydrodynamical equations of the
first approximation,” for the equations without any
viscosity term.
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where U is the potential of the external mass
forces. We see that our decomposition (2a) of
the pressure into two terms is reasonable, because
the first term gives rise to forces of conservative
and the second term to forces of dissipative
character.

It has to be noted that (2a) and (4) are not
the most general formulae, because non-adiabatic
processes as heat conduction and radiative
transfer of heat also give rise to additional terms
to the hydrostatic pressure. Consequently, heat
conduction gives dissipative effects as sound
absorption. The non-adiabatic radiative heat
transfer is particularly important in meteorology,
where we have to add to the hydrostatic pressure
po(p) a term which is a function of two variables
p, T. This case has been thoroughly discussed by
V. Bjerknes.” In the present paper we are
concerned only with the viscous effects.

In general it is usual to specialize (2a) and
(4) by the relation

3k=2u+3A=0. (5)

This relation has been the object of much
controversy. Most of the hydrodynamical text-
books introduce it by referring simply to
Stokes.® It is sometimes maintained that (5) is
only an arbitrary convention for the definition
of the scalar pressure.® In other textbooks the
inadequacy of this relation has been pointed
out,!® but so far as we know, its generalization
has never been thoroughly discussed.

For monatomic gases, (5) can be rigorously
derived from the kinetic theory. But, as we saw
in the introduction, for polyatomic gases there
is a time lag for the establishment of equilibrium
of the internal degrees of freedom, and similar
conditions may be expected in general for any
system where the energy is distributed over
different kinds of degrees of freedom, i.e., for
any system except a monatomic gas. In the case
of the existence of such a relaxation time 7, the
pressure of the fluid will depend not only on the
instantaneous value of the density, but also on

7 Reference 5, p. 247.

8 E.g., “It has been argued with great force by Professor
Stokes . . ." Lord Rayleigh, The Theory of Sound, second
edition, Vol. 2, p. 315.

9 E.g. Enc. Math., third edition, Vol. 4, p. 69.

W E.g., M. Brillouin, Legons sur la Viscosité (Paris,
1907). Report of the Committee on Hydrodynamics.
Bull. Nat. Research Comm. No. 84 (1932).
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the ‘“history’”” of the system. The Newton
hypothesis (1) or (2a), claiming proportionality
of the pressure with the first time derivative of
the density, means that only the dependence on
the near past is considered. This is justified if
the times involved in the phenomenon are small
compared to the relaxation time, or if one has
w71 where w is the sound frequency.

If the last condition is not satisfied, we may
proceed as in the similar case in optics and
consider the ‘“constant’ « as a complex function
of frequency.

Finally, we must discuss the view according
to which the relation (5) is merely a convention.
Indeed, it is possible to introduce (5) as a
definition of po(p), instead of defining it by our
above-mentioned convention. According to (2a)
one has then p=p,: first- and second-order
pressures are identical, i.e., one cannot introduce
the concept of the ‘“‘pressure in first approxima-
tion”” and has to allow the pressure to depend
on other variables than the density alone.
Though this procedure is not less justified than
that proposed by us, the introduction of the
constant « and the clean separation of conserva-
tive and dissipative forces seem to be useful for
many hydrodynamical problems.

Before going over to the discussion of the
consequences of the introduction of «, we will
quote two passages of the papers of Stokes.
These will make it evident that Stokes himself
did not consider the relation (5) as a definition,
but foresaw the possibility of the present general-
ization in case experiment would demand it.

“. .. Of course we may at once put «=0 if
we assume that in the case of a uniform motion
of dilatation the pressure at any instant depends
only on the actual density and temperature at
that instant and not on the rate at which the
former changes with the time. In most cases to
which it would be interesting to apply the
theory of the friction of fluids, the density of the
fluid is either constant or may without sensible
error be regarded as constant, or else changes
slowly with the time. In the first two cases the
results would be the same and in the third
nearly the same whether x were equal to zero
or not. Consequently, if theory and experiments
should in such cases agree, the experiments
must not be regarded as confirming that part of
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the theory which relates to supposing « to be
equal to zero.""!

“. . . I have always felt that the correctness
of the value }u for the coefficient of the last
term of (4) does not rest on as firm a basis as
the correctness of the equation of motion of an
incompressible fluid, for which the last term
does not come in at all. If the supposition made
above be not admitted, we must replace the
coefficient $u by a different coefficient which
has to be written 3u-+« and « must be positive as
otherwise the more alternate expansion and
compression, alike in all directions, of a fluid,
instead of demanding the exertion of work upon
it, would cause it to give out work. . . .""2

III. ABSORPTION AND DISPERSION OF SOUND

The additional term in the equation of motion
will give rise to a new term in the dissipation

function
0ua\ 2
Kfff(z— dxdydz.
¢ 0xq

In particular it will give rise to an additional
absorption of sound which we are going to
consider.

We shall restrict ourselves to small amplitudes
and derive from (4) and the equation of con-
tinuity in the usual approximation the wave
equation of sound

p—VV?p—(4u/3+)1/pVip=0, (7
where Vy=(3p/dp)? is the sound velocity in the
absence of viscosity. In the plane wave solution

8)

k is complex, with the real and imaginary
parts giving the sound velocity V and the
absorption coefficient per unit length for the
amplitude a. In other words we have

(6)

p=pot pieiletk

real part (k) =w/V,imaginary part (k) = —a. (9)

Neglecting the quadratic term in the viscosity
we have

k=w/Vo[1—(4u/3+k)iw/2p V2],
V="V, a=@u/3+c)w?/2p,Vos

11 G. G. Stokes, Math. Phys. Papers 1, p. 88.
2 G, G. Stokes, Math. and Phys. Papers 3, p. 136.
We have slightly changed the notation.

(10)
(11)

ie.,
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The « viscosity gives an absorption coefficient
proportional to «? and no dispersion, just as the
u viscosity does.

In the case of a perfect polyatomic gas the
fraction of the absorption proportional to k must
be identical with the value given by the relaxa-
tion theory in the limit of low frequencies. The
result of this theory can be expressed in the
following form :!

w2/k“‘=p/po[1+(7-1)(1—n+ i )~ ] (12)
141wt

where v=¢,/c, is the ratio of the (static) specific
heats at constant pressure and volume and
n=ci/¢, is the fraction of the specific heat at
constant volume corresponding to the internal
degrees of freedom for which the equilibrium is
cstablished with the relaxation time 7. (More
generally one would have to consider different
n and 7 values for every normal vibration.)
We obtain from (12) on neglecting the square
of the second term,
w 1 twr(y—1)
k=~—[1—~--———~———-—]. (13)
Vo 2 (141wr(1—9))y

In the limit of small frequencies wr<1 we have
k=w/Vil—Forg(y—1)/7]. (14)

The comparison (14) with the last term of (10)
yields

k=poVo?rn(y—1) /7. (15)

We obtain a very simple form for « if we
remember that Vi?=31ry7? where 7 is the mean
thermal velocity and if we define the mean free
path /' relative to the excitation of the vibration
in question by the relation /=77 we have thus

k=§mpol(y—1)l'n. (16)
More generally one has
k=gmpod(y—1) Zil'im, (16a)

where the sum is taken over the different internal
degrees of freedom, e.g., the different normal
vibrations.

Equations (16) or (16a) can be easily compared
to the ordinary viscosity, given by the well-
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known elementary formula

(17)

where [ is the mean free path in the ordinary
sense.

These results cease to be valid for =771 In
this frequency region the pressure will depend
not only on the density and the rate of com-
pression, as claimed by the relation of Newton,
but on the whole history of the system. (A
“non-Newtonian’ behavior occurs also with
respect to the shearing viscosity u.) One can
proceed, however, as in the analogous case in
optics and introduce formally a coefficient «(w)
depending on frequency. Comparing now (10)
with (13) rather than with (14), we get

= %podl,

k(w)=poVo(y—1)/7[1+ier(1—m) ] (18)
Separating real and imaginary parts:
K=K —1Ks
we have according to (9) (10)
a=Kkw?/2p0Ve®, V=TVo(14xw/2pVs2). (19)
Using (18) we get
(y—Dnwr
(20)

T Vall+ (-]
(vy=1Dn(1 —p)ws?
]. (21)
2y[14 (1 —9)%w?r?]

Equations (20) and (21), though somewhat
different in notation, are of course identical with
the corresponding formulae of the relaxation
theory and are in general agreement with
experiment. It should be possible to determine
from the measurements the numerical values of
the constants 7, 7 and so of k. Unfortunately,
there is a considerable deviation between the
measurements of different laboratories, and
keeping in mind the criticisms of W. T.. Richards,!
we would not attempt to fix the numerical values
of these constants. We remark merely for
orientation that on the basis of the experimental
results obtained and compiled by Kneser® one
has for CO; and N:O «/u~2X10%. For air «
and u seem to be of the same order of magnitude.

and

V= Vo[l-’r—

1B H. O. Kneser, Ann. d. Physik 16, 337 (1933).
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The ‘“‘anomalous’ absorption of supersonics
in liquids has been first observed by Biquard,*
and has been corroborated since by many
workers.! According to more recent results, V
and a/w? are for most liquids constant over wide
ranges of frequencies,!% 1% i.e., we find very often
a ‘“Newtonian’’ behavior and can operate with
a constant, real «.

Kneser!” proposed to interpret the absorption
in liquids exactly as in the case of gases by the
relaxation time connected with the internal
molecular vibration. Herzfeld has shown re-
cently!® that, at least for water, the vibrational
energy is insufficient to account for the effect.
Herzfeld mentions the possibility that the
relaxation time connected with the configura-
tional energy might be of importance, as it was
previously suggested by Debye. He proposes
tentatively an equation which is equivalent to
our Eq. (3).

The question may be put somewhat more
generally. Roughly speaking, the energy of a
liquid can be considered as consisting of mo-
lecular and intermolecular vibrations, of Debye
quanta and of configurational energy (quasi-
crystalline structure). This does not mean, of
course, that we assume any strict additivity
between these types of energies. In any case
these types of energies will be distinct from the
translational energy of the sound wave, and one
will have to attribute different relaxation times
to them. Therefore, practically the whole
thermal energy of the liquid will contribute to
the absorption (n~1), whereas under ordinary
conditions for gases (7<1). On the other hand,
because of the strong interaction in the liquid
the relaxation time will be smaller than in the
case of the gases. Although we cannot assume
the formula (16a) to hold quantitatively for
liquids, the experimental evidence of values of «
varying widely from one liquid to the other is
not too surprising.

As concerns the determination of the numerical

1 P, Biquard, Comptes rendus 193, 226 (1931); Ann.
d. Physik 6, 195 (1936); Biquard indicated that the
anomalous absorption might be due to the breakdown of
Stokes’ relation for high frequencies.

16 G, W. Willard, J. Acous. Soc. Am. 12, 438 (1941).

8 F, E. Fox and G. D. Rock, J. Acous. Soc. Am. 12,
505 (1941).

17 H. O. Kneser, Ann. d. Physik 32, 277 (1938).

18 K. F. Hezfeld, J. Acous. Soc. Am. 13, 33 (1941).
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value of « for the different liquids from experi-
ment, we are faced with still greater difficulties
than in the case of gases. Should we assume
that the observed loss in the propagation of
supersonics is owing entirely to the true absorp-
tion given by our formula (11) then we could
determine « out of the relation

L=p+ix (22)

where L is the experimental ““loss factor’’ defined
and tabulated for the different liquids by
Willard.!® We would thus get values up to 2000
for x/u. It has to be kept in mind, however,
that losses are not always caused by true
absorption (energy converted into heat) but
also to the scattering of the supersonic wave by
density fluctuations.’® As we do not see the
possibility of an independent measurement of «,
the absorption measurements ought to be
carefully analyzed as to the possibility of an
evaluation of «.

In the cases where a/w? and V vary with the
frequency, « has to be chosen again as a function
of w. It is, however, not surprising that the
formula (16a) derived for gases cannot quanti-
tatively account for the experiments.

It is obvious that the knowledge of « could
prove useful in the investigation of liquid
structure. The molecular interpretation of the
experimental results would, however, be difficult
in view of the different mechanisms contributing
to «. The situation is not very much different,
though still more complicated, than in the case
of the ordinary u viscosity. The monatomic
liquids would, therefore, be of special interest.
The only monatomic liquid studied is mercury
with an absorption which does not exceed
considerably the classical value?® (x/u~1.5). It
is not quite certain, however, that mercury is a
typical case.

IV. HYDRODYNAMICAL CONSEQUENCES OF THE
INTRODUCTION OF x

We have seen that the experiments on super-
sonic absorption lead for many liquids and gases
to the result that the newly introduced viscosity
coefficient exceeds by far the ordinary viscosity

19 R, Lucas, J. de Phys. 8, 41 (1937). For a discussion
of other sources of error cf. reference 15.
20 R. Béar, Helv. Phys. Acta 10, 332 (1937).
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«>u. The question arises, naturally, what are
the other hydrodynamical consequences of the
introduction of x and why the usual method of
ignoring it did not lead to more difficulties.

It can be seen from (6) and (8) and the
continuity relation that the energy dissipation
due to the « viscosity for a periodic process of
the frequency w is of the order of

xkw*(p1/po)*. (22)

Hydrodynamics usually deals with problems
where compressibility can be neglected, i.e.,
p1/po<<1. In fact, this was the chief reason why
Stokes thought the value of x was of secondary
importance.! This circumstance can be, however,
compensated if w>>1. This s the case of acoustical
waves and still more of supersonics which have
been amply discussed.

On the other hand, there are problems for
which the compressibility cannot be neglected,
when the flow velocities reach and exceed the
sound velocity. These problems are treated by
the so-called gas dynamics. In this case pi/po is
of the order of unity and (22) can no more be
neglected even if w~1.

Not only the viscous, but also the turbulent
dissipation has to be revised in the case of gas
dynamics. The origin of turbulence has been
studied chiefly for incompressible liquids. In
this case a change in circulation may arise only
as a consequence of the shearing viscosity near
solid walls (Grenzschichttheorie of Prandtl).
Computing the time derivative of circulation
around a contour moving with the liquid on the
basis of Eq. (4) one gets an additional term
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proportional to «, which we shall consider now:
1

(d/dt)fu-dr= xf —grad divu-dr. (23)
p

This can be written in a more convenient form
by using Stokes’ theorem and the continuity
equation :

d 1 dlnp
——fu-dr=xff grad —Xgrad dF, (24)
dt p dt

where dF is the surface element of a surface F
spanned by the contour.

Let us consider two series of surfaces with
1/p=constant and (d/d¢) In p=constant, respec-
tively. We choose the distances of the neigh-
boring surfaces to be 1/k;=|grad1/p| and
1/hs=|grad d/dt In p|. These surfaces form tubes
which cut elementary surfaces f out of the
surface F. It follows readily that

%fu-dr=xffii;,

i.e., the rate of change of the circulation around
a contour is equal to the number of tubes cutting
the surface F.

Equation (25) is in formal analogy to a
formula of Bjerkness concerning the rate of
change of circulation in a fluid where the
pressure is not entirely determined by the
density, which is important in meteorology.’

It is a pleasure for us to thank Professor
K. F. Herzfeld for his critical remarks and Dr.
Biquard for discussing the experiments on
supersonic absorption.
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