Evaluation of Functions Related to Tait's Mean Free Path*

PAUL ROSENBERG[†] Department of Physics, Columbia University, New York, New York (Received January 24, 1942)

A new and extended table of values is given for the functions,

$$\Psi(x) = x \exp((-x^2) + (2x^2 + 1) \int_0^x \exp((-y^2) dy), \text{ and } x^5/\Psi(x),$$

which occur frequently in kinetic theory. The integrals

$$\Theta_n = \int_0^\infty \frac{4x^n \exp((-x^2))}{\Psi(x)} dx$$

n=3, 4, 5, are evaluated by numerical quadrature. The new values disagree with the values found by Tait, but agree with the values found by Boltzmann. The value of Θ_4 , which determines Tait's mean free path for a single system, is 0.6774560. A table is given for the function

$$\Phi(\alpha) = \alpha^2 \int_0^\infty \frac{x^5 \exp(-\alpha x^2)}{\Psi(x)} dx,$$

which is useful in scattering experiments. $\Phi(\alpha)$ is evaluated by numerical quadrature for 27 selected values of α .

T^{HE function,}

$$\Psi(x) = x \exp(-x^2) + (2x^2+1) \int_0^x \exp(-y^2) dy,$$

occurs frequently in kinetic theory, particularly in expressions for mean free paths, and in discussions of viscosity, diffusion, and thermal conduction.

Tait^{1,2} published a table of $\Psi(x)$ which was limited to values of x from 0.1 to 3.0 in intervals of 0.1. A table which is more extended than that of Tait has now been computed and is given in

Table I.³ The range of the argument x is extended from 3.0 to 20.4, and the interval is reduced to 0.5 for values of x below 1.5.

Table I gives also the values of $x^5/\Psi(x)$ which are necessary for computing functions such as Θ_n and $\Phi(\alpha)$, defined further below.

Three important expressions involving $\Psi(x)$ are the integrals

$$\Theta_n = \int_0^\infty \frac{4x^n \exp\left(-x^2\right)}{\Psi(x)} dx$$

where n = 3, 4, 5. Θ_4 determines Tait's mean free path for a molecule in its own gas. These three integrals were evaluated numerically by Tait^{1,4} and by Boltzmann,⁵ but their results disagree after the third figure as shown in Table II.

In view of this discrepancy between the findings of Tait and of Boltzmann, it was desirable to perform new and independent numerical quadratures of Θ_n . The results are given in the last line of Table II. In each case the new values of Θ_n disagree with the values of Tait, but agree rather well with the values of Boltzmann.

^{*} Publication assisted by the Ernest Kempton Adams Fund for Physical Research of Columbia University.

[†] Now at the Radiation Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts. ¹ P. G. Tait, Trans. Roy. Soc. Edinburgh **33**, 65 (1886); Tait, *Scientific Papers* (Cambridge University Press, 1900),

Vol. 2, paper 77, p. 124. ² The values of $\Psi(x)$ in the references under footnote 1

are correct; but in all other published tables of $\Psi(x)$ two typographical errors appear repeatedly for x = 1.1 and for x = 2.7. The tables in which these errors appear are the x = 2.1. The tables in which these errors appear are the following. J. H. Jeans, *The Dynamical Theory of Gases* (Cambridge University Press, 1904), first edition, p. 347; (1916), second edition, p. 430; (1921), third edition, p. 436; (1925), fourth edition, p. 438: J. H. Jeans, *An Introduction to the Kinetic Theory of Gases* (Cambridge University Press, 1940), p. 305: L. B. Loeb, *The Kinetic Theory of Gases* (McGraw Hill Bock Compared 1007) for the difference for the second (McGraw-Hill Book Company, 1927), first edition, p. 531; (1934), second edition, p. 653. Tait's original table gave $\Psi(x)$ to 6 places past the decimal point; the tables in Jeans and in Loeb reproduced Tait's table to 5 places past the decimal point.

³ Table I includes Tait's original values of $\Psi(x)$ except for x = 0.1, 0.2, 0.3, 0.4, in which cases $\Psi(x)$ is recomputed

<sup>in order to extend Tait's values to seven figures.
* P. G. Tait, Trans. Roy. Soc. Edinburgh 33, 251 (1887);
Tait, Scientific Papers (Cambridge University Press, 1900),
Vol. 2, paper 78, p. 153.
* L. Boltzmann, Akad. d. Wissenschaften Wien Sitz. 96,</sup>

^{891 (1887).}

	Andrew and the second second second							
x	$\Psi(x)$	$x^5/\Psi(x)$	x	$\Psi(x)$	$x^5/\Psi(x)$	x	$\Psi(x)$	$x^5/\Psi(x)$
0.05	0.1000833	0.000003122399	4.1	30.68118	37.76133	9.7	167.6564	512 1988
.1	.2006660	.00004983405	4.2	32.15231	40.64754	9.8	171.1127	528 2605
.15	,3022450	.0002512449	4.3	33.65890	43.67595	9.9	174.6044	544 6541
.2	.4053121	.0007895150	4.4	35.20093	46.84996	10.0	178,1316	561 3827
.25	.5103522	.001913507	4.5	36,77842	50 17294	10.2	185 2923	505 8501
.3	.6178401	.003933057	4.6	38 39135	53 64828	10.4	102 5048	621 7164
.35	7282393	007212173	47	40 03973	57 27036	10.4	200 0301	668 0922
4	8410003	01216153	4.8	41 72356	61 06056	10.0	200.0391	707 6020
45	9595544	01923060	40	43 44 284	65 02228	11 0	207.0232	747 8469
5	1 081 321	02880084	5.0	45 10757	60 14099	11.0	213.3331	747.8402
55	1 207701	04167203	5 1	46 08775	72 40877	11.2	223.2220	189.4991
	1 330068	05807024	5 2	48 81 3 38	77 88021	11.4	231.2343	832.0084
.65	1 475789	07862174	53	50 67445	82 52500	11.0	239.3010	877.3813
.00	1 618104	1038627	5 4	52 57008	87 24102	12.0	247.0027	923.0048
75	1 766608	1343270	55	54 50205	02 24075	12.0	250.1190	971.5401
.75	1 021 318	1705406	5.5	56 47038	92.34073	12.2	204.0983	1021.052
.0	2 082600	2130526	5.0	59 17275	102 0004	12.4	273.4107	10/2.211
.00	2.002009	2622557	5.0	60 51157	102.9004	12.0	202.2010	1125.048
.9	2.230723	3180663	5.0	62 59524	114 2210	12.8	291.2851	1179.591
1.0	2.423902	2922940	5.9	64 60456	114.2319	13.0	300.4309	1235.868
1.0	2.000331	4560070	6.1	04.09430	120.1950	13.2	309.7180	1293.905
1 1	2.190209	5275949	6.2	60.03923	120.3024	13.4	319.1480	1353.729
1 15	3 201185	6282164	6.2	71 22/02	132.7350	13.0	328./193	1415.368
1 2	3 / 1 / / 70	7787554	6.5	72 49502	139.3188	13.8	338.4323	1478.848
1 25	3 635847	8303527	6.5	75.40393	152 1204	14.0	348.2872	1544.197
1.3	3 865384	96055927	6.6	78 00431	160 2616	14.2	330.2030	1011.443
1.35	4 103208	1 002812	67	80 45168	167 9191	14.4	270 2025	1080.009
1.4	4 349386	1 236552	6.8	87 84440	175 5016	14.0	290 1245	1/51./20
1.45	4 604011	1.392207	6.0	85 27275	183 / 151	15.0	200 6992	1824.820
1.5	4 8671.32	1 560210	7.0	87 73646	101 5623	15.0	399.0003	1077.047
1.6	5.419114	1.934958	71	90 23562	100 0464	15.2	410.3940	2056 224
1.7	6.005696	2.364184	7.2	92.77023	208 5710	15.4	432 2306	2030.234
1.8	6.627149	2.851253	7.3	95 34029	217 4302	15.8	443 3616	2137.307
1.9	7.283658	3.399527	7.4	97.94580	226 5546	16.0	454 6344	2220.091
2.0	7.975359	4.012359	7.5	100.5868	235,9203	16.2	466 0400	2304 107
2.1	8.702340	4.693107	7.6	103.2632	245.5400	16.4	477 6054	2483 000
2.2	9.464667	5.445128	7.7	105.9750	255.4172	16.6	489 3036	2576.006
2.3	10.26236	6.271796	7.8	108,7223	265.5549	16.8	501 1436	2670.090
2.4	11.09547	7.1 7646 1	7.9	111.5051	275.9565	17.0	513 1254	2767 076
2.5	11.96402	8.162497	8.0	114.3233	286.6257	17.2	525,2490	2866 005
2.6	12.86798	9.233288	8.1	117.1769	297.5658	17.4	537.5143	2967 264
2.7	13,80739	10.39220	8.2	120.0660	308,7800	17.6	549.9215	3070 878
2.8	14.78225	11.64259	8.3	122.9906	320.2717	17.8	562.4705	3176 876
2.9	15.79255	12.98786	8.4	125.9506	332.0444	18.0	575.1613	3285 284
3.0	16.83830	14.43138	8.5	128.9460	344.1016	18.2	587.9938	3396 129
3.1	17.91951	15.97653	8.6	131.9769	356.4465	18.4	600.9682	3509 439
3.2	19.03615	17.62669	8.7	135.0433	369.0823	18.6	614.0843	3625.240
3.3	20.18825	19.38523	8.8	138.1450	382.0130	18.8	627.3423	3743.559
3.4	21.37579	21.25555	8.9	141.2823	395.2412	19.0	640.7420	3864.424
3.5	22.59879	23.24101	9.0	144.4550	408.7709	19.2	654.2836	3987.862
3.6	23.85723	25.34502	9.1	147.6631	422.6053	19.4	667.9669	4113.900
3.7	25.15112	27.57092	9.2	150.9067	436.7477	19.6	681.7921	4242.565
3.8	26.48046	29.92213	9.3	154.1858	451.2013	19.8	695.7590	4373.882
3.9	27.84525	32.40201	9.4	157.5002	465.9702	20.0	709.8677	4507.882
4.0	29.24549	35.01395	9.5	160.8502	481.0568	20.2	724.0828	4644.817
			9.6	164.2356	496.4653	20.4	738.5106	4784.033

TABLE I. Values of $\Psi(x)$ and $x^5/\Psi(x)$.

Recent experiments⁶⁻⁸ on the scattering of molecular beams have involved a modification of

 $\Theta_{\mathfrak{s}}$, namely, the function

$$\Phi(\alpha) = \alpha^2 \int_0^\infty \frac{x^5 \exp(-\alpha x^2)}{\Psi(x)} dx.$$

⁶ W. H. Mais, Phys. Rev. 45, 773 (1934). ⁷ S. Rosin and I. I. Rabi, Phys. Rev. 48, 373 (1935). Rosin and Rabi give values of $\Psi(x)$ to three significant figures which disagree with the results of the present calculations in the second and third significant figures. Rosin and Rabi's value of Θ_{δ} is 0.844 which disagrees with the results of Tait, of Boltzmann, and of Rosenberg, in the

second significant figure (cf. Table II). (In the notation used by Rosin and Rabi $\Theta_b = 4I(\alpha)$ for $\alpha = 1.$) ⁸ P. Rosenberg, Phys. Rev. 55, 1267 (1939); 57, 561 (1940).

 $\Phi(\alpha)$ is used to determine the average mean free path of a molecular beam particle traversing a scattering gas. α is the square of the ratio of the most probable speed of the particles of the scattering gas to the most probable speed of the particles of gas in the source of the beam.

 $\Phi(\alpha)$ is now evaluated by numerical quadrature for 27 selected values of α . The results are given in Table III.

The following convergence test is used to determine the upper limits in the numerical quadratures of $\Phi(\alpha)$. If the quadrature is carried out from x=0 to a value x=L, the remainder R is given by

$$R = \alpha^2 \int_L^{\infty} \frac{x^5 \exp((-\alpha x^2))}{\Psi(x)} dx$$
$$< \alpha^2 \int_L^{\infty} \frac{x^3 \exp((-\alpha x^2))}{2P} dx = S,$$
where
$$P = \int_0^L \exp((-y^2) dy.$$

S can be evaluated analytically, yielding

$$S = \left[(\alpha L^2 + 1)/4P \right] \exp(-\alpha L^2).$$

In each quadrature of $\Phi(\alpha)$, L is chosen large enough so that S is negligibly small compared to the eighth significant figure in the value of $\Phi(\alpha)$.

TABLE	II.	Values	of	Θ_n
-------	-----	--------	----	------------

	Θ3	Θ4	θ5		
Tait	0.650404	0.677072	0.838098		
Boltzmann This paper	0.650511	0.6774560	0.838264 0.8382656		

TABLE III. Values of $\Phi(\alpha)$.

$\Phi(\pmb{lpha})$	α	$\Phi(lpha)$
$0.2820948 (= 1/2\pi^{\frac{1}{2}})$) 8.	0.1071319
.2756271	9.	.1019461
.2698879	10.	.09744985
.2364264	11.	.09350219
.2301268	12.	.08999987
.2190537	15.	.08146816
.2095664	17.	.07696826
.2012941	20.	.07143003
.1762257	21.	.06983411
.1553010	22.	.06834015
.1405107	25.	.06437612
.1293167	30.	.05907038
.1204532	35.	.05489229
.1132050	40.	.05149165
	$\Phi(\alpha)$ 0.2820948 (=1/2 π^4 .2756271 .2698879 .2364264 .2301268 .2190537 .2095664 .2012941 .1762257 .1553010 .1405107 .1293167 .1204532 .1132050	Φ(α) α 0.2820948 (=1/2π ³) 8. .2756271 9. .2698879 10. .2364264 11. .2301268 12. .2190537 15. .2095664 17. .2012941 20. .1762257 21. .1553010 22. .1405107 25. .1294367 30. .1204532 35. .1132050 40.

A similar convergence test is used in the quadratures of Θ_n .

The quadratures of Θ_n and $\Phi(\alpha)$ are performed by Simpson's $\frac{1}{3}$ rule. In all but a few of the quadratures, the interval in x is so small that the sum of the odd terms is equal to the sum of the even terms to the first six or more figures. The equality of these two sums is regarded as an internal check on the accuracy of the numerical computations.

The values of $\Psi(x)$ and $x^5/\Psi(x)$ are exact to only six of the seven figures given in Table I. The values of Θ_n and $\Phi(\alpha)$ are computed to eight figures and are given correct to seven figures in Table II and Table III.

Values of the probability integral are taken from the table of Burgess.9 Values of the descending exponential are obtained from the table of Newman.10

Mr. David S. Cohen assisted in the numerical computations.

⁹ J. Burgess, Trans. Roy. Soc. Edinburgh **39**, 257 (1898). ¹⁰ F. W. Newman, Trans. Camb. Phil. Soc. **13**, 145 (1883).