
C. UFFORD AND E. KIGNER

of molybdenum, found that when molybdenum
which had been heated to a certain temperature
was raised to a higher temperature its emissivity
immediately dropped, then gradually rose to its
original value. If the emissivity of filament II
were rising during this early period, and, there-
fore, its temperature at constant brightness were

dropping, one would indeed have a rather rapid
decrease in V'I until the emissivity reached its
final value. This does not explain, however, why
the various curves for H should differ from the
corresponding curves for the other filaments.

In conclusion, the data show that there is a
definite decrease in V'I with time, though quanti-
tatively the results obtained from the various
filaments do not agree. No explanation has been

found for the differences between the various
filaments on the basis of the available data.
It would seem necessary, in view of the results,
to reconsider previous work in which constancy
of V'I was assumed.

The writer wishes to express his indebtedness
to Dr. A. G. Worthing, who suggested this
problem, for his help and encouragement during
the course of the work. He also wishes to thank
his colleagues for the help they have rendered at
various times. Special thanks are due Dr. David
Halliday and Dr. Charles S. Smith, for helpful
discussions. The analysis of the wire used in the
filaments was supplied by Mr. A. Poritsky, of the
Cleveland Kire Works of the General Electric
Company.
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The distribution function for particles confined to a large circle is found for a repulsive
potential of long range. The distribution function is calculated exactly from the Boltzmann-
Gibbs equation, and compared with the solution of an implicit equation of the type used by
Debye and Huckel in the theory of electrolytes. The solution of the Debye-Huckel equation
agrees, for our particular potential, only fairly well with the exact distribution function.

A LTHOUGH the problem of classical statis-
tical mechanics is, in principle, solved by

the Boltzman-Gibbs equation

+(x1& $1& zlzz
' ' xny yes zn)dxl' ' 'dza

=exp (—P V)dxg. dz. (I)

which we shall assume to be the sum of inter-
actions between pairs.

Many of the quantities of immediate physical
importance depend on the distribution function
g(r), i.e., on the probability of a distance r
between, say, the particles 1 and 2. This is
given by

V= 2 ~(lr;-r. l), (1a)

for the probability of the configuration charac-
terized by the rectangular coordinates x1, y1, s1,~, x„, y„, s„, the answering of questions of
immediate physical interest meets, in most cases,
serious mathematical difhculties. In (1),P = 1jkT
and V is the potential energy

g(lr& —rml) =const. exp (—PV)

Xdxgyadzs dx„dy„dz„. (2)

However, one can evaluate (2) easily only in the
case of dilute matter, i.e. , gases. For condensed
material, the integrations in (2) are so difficult
that indirect methods had to be devised for the
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evaluation of the distribution function. These
methods have two features in common: (a) they
do not give g directl'y but only as the solution of
an implicit equation the solving of which, though
in most cases not very easy, is still less di6cult
than the integrations of (2); and (b) the implicit
equation for g is not exact, i.e., its solution is
only an approximation to the rigorous expression
(2). The ftrst implicit equation was given by
Debye and HOckel' in their theory of electrolytes.
More rigorous equations are due to Kirkwood'
Rnd MRyer.

The present authors became interested in these
methods because integrals of the type (2) occur
in the theory of the so-called correlation energy.
The present note deals with a special problem in
which all particles are confined to a large circle
of length I; and in which the potential between
a pair of particles is given by

Pv(x) = —In sin' vx/L, . (5)

where x is the distance between the particles,
measured along the circle. %e found that for this
interaction the distribution function can be
evaluated exactly by (2), and that the implicit
equation corresponding to Debye and HQckel's
theory also can be solved. The comparison of the
two results gives Rn lndlcatj, on of the accuracy
of the Debye-Hiickei equation (5) for the case
of a repulsive potential of long range. In the case
of long range forces the Debye-Hiickel equation
can be expected to give good results.

In the Debye-HOckel theory the distribution
function is given, apart from a constant, by an
average potential U

ln g(x) = —P U(x)+ C. (4)

The average potential contains the potential
v(x) of the original particle around which we
investigate the distribution of the others, and the
average field of the other particles. There are
g(x')dx' particles at a distance x' from the
original particle; and their potential, at x, is

given by g(x')dx'v(x —x'). Hence

U(x) =v(x) +j"g(x')v(x —x')dx' (4a)

and the implicit equation becomes

The constant C is determined by the condition
that the integral of j, must be e —j.,

) g(x)dx=e —1. (5a)

In most cases g is a constant if x is large compared
to the average distance between neighboring
particles. One can, therefore, substitute

g(x) =gs(1+&(x)), (6)

in which k(x) vanishes for large x. Substitution of
(6) into (5) gives a somewhat different form to
the implicit equation

ln (1+It(x))= —Pv(x)

—gspjth(x')v(x —x')dx'+ C', (6a)

since the integral of gsv(x —x') is independent
of x.

The calculations remain to be done. For
evaluating (2) we can write

cs;=exp 2rrsx;/L, (7a)

exp (—PV) =II sin'x(x; xs)/L—
(exp 2xsx~/L —exp 2rrsx„/L)

xexp ( (vs+x)x/sL—) I'. (7)

The factor exp (—vi(x~+xs)/L} may be omitted
since its absolute value is 1. If we write

' P. Debye and E. Hgckel, Physik. Zeits. 24, 185, 305
(1923); P. Debye, Physilc:. Zeits. 25, 97 (1924).' J.G. Kiritsrood and Elizabeth Monroe, J.Chem. Phys.
9, 514 (1941); J. G. Kirkvvood, J. Chem. Phys. 3, 300
(1935).

~ J. E. Mayer and E. Montroll, J. Chem. Phys. 9, 2
(1941);J. E. Mayer and S.F. Harrison, J.Chem. Phys. 5,
87 (1938).

p (-P v) =2-"'"-"
I II ( '- .) I

', (»)
the product on the right can be written as a
determinant 5=

I 4;~ I
where

6;(='ss,'=exp 2zilx;/L (l=0, 1, 2, rs —1).(8)
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This gives

exp ( P P) 2—e (a—1)gpss

+Q-
Ef)x
Ch
& I.t:

The determinant I 5;~~ is, in case of odd n, apart
from a factor exp x—s(n 1—) (xi+ +x~)/L,
the wave function of a one-dimensional de-
generate Fermi gas.

One can integrate (9) immediately by develop-

ing both 6 and 5* with respect to the two rowed
minors of the first two rows. The minor of the
tyler columns In 6 18

exp 2 xi (1ixi+ lmx2)/L

—exp 2xi(12xi+lix2)/L (10.)

Its cofactor is orthogonal to the cofactor of every
two rowed minor of h~, excepting the cofactor of
the minor of the le~ columns. The product of the
cofactors of the lIlg minors of 6 and d* gives

(e—2)! if integrated over xq, , x„.Thus

~ .
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FIG. 1. Distribution functions. The ordinates are the
distribution function g{x))/(e/I) representing the density
of particles divided by the average density. The abscissae
are y =~mr/I. , ~ times the distance divided by the average
distance of nearest neighbors. The distance is equal to the
average distance for the abscissa y =e. Curve A represents
the rigorous value of the distribution function g{x)/(e/I)
given by {11}from the goltzmann-Gibbs equation. Curve B
represents the distribution function, g'{x}of (12a), obtained
by inserting the rigorous value (11) in the right-hand side
of the Debye-Huckel Eq. (5). Curve C represents the
distribution function (13) obtained by solving the Debye-
Hiickel equation.

exp (—PV)dxg dxn
sL) a)

this gives

= Q 2 "~" "(n 2)!
~

—exp 2+i(lixi+lmx2)/L

—exp 2+i (12x,

+lixed)/L

~

'. (10a) or

sin 2snx/L
ln g'(x) =- +2Ci (2xnx/L) (12)

mnx I.

This is, according to (2), proportional to g (x&
—x2).

The sum in (10a) can be readily evaluated and

gives, with (5a),

n ( sin'vrnx/L )
g(x)=—

I
1-

L ( n' sm' xx/L)

s ( sin' ~rfx/L$
=—

] 1 — /. (11)
I. 4 x'n'x'/L' )

The last expression is valid if x remains of the
order of' magnitude of the average distance of
two particles, i.e., is not very much larger than
I /e. Equation (11) gives the rigorous expression
for j, ; it is the lowest curve in Fig. 1. The
abscissae in this figure are nsx/L so that the
average distance of two particles corresponds to
the abscissa x in the graph. The ordinates are
multiphed by L/~.

That the solution of the Debye-Huckel Eq. (5)
is di8erent from (11), can be seen by inserting
(11) and (3) into the right side of (5). If g'(x) is
the value of g(x) obtained by these substitutions,

sin 2xnx/L
g'(x) = exp +2Ci(2 nx/L) . (12a)

mnx/L

g'(x) is the uppermost curve in Fig. 1. If (11)
were a solution of (5), the value of g'(x) in (12a)
would be equal to the rigorous value of g(x)
given by (11);and the uppermost curve of Fig. 1

would coincide with the lowest curvy. One sees
that this is f'ar from being true. The evaluation of
the integral obtainai by inserting (11) and (3)
into (5), i.e. , the derivation of (12), requires a
somewhat lengthy calculation and will not be
given in detail. Ci in (12) is the cosine integral as
defined in Jahnke-Emde. '

One would expect, on the basis of the lowest
and highest curves in Fig. 1, that the solution of
(5) would be represented by a curve similar to
the middle one of the 6gure. This corresponds to

R ( 1
g(x) =—

i
1-

I. & 1+n' sin' xx/L)

4E. Jahnke and F. Emde, Tables of FNgctions (B. G.
Teubner, 1933), second edition.
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and the following calculation shows that (13) is
indeed the solution of (5) for the potential (3).
In order to show this, one can first verify (Sa),
using the assumption e&&1, and then calculate

i= —
P~ g(x')s(x —x')dx'

n 1»' p 1

1+n~ sin' xx'/LJ

&(In sin' ~r(x —x')/Ldx'. (13a)

The 6rst term is a well known definite integral;
its value is —2m ln 2. In order to integrate the
second term, one can change the limits of integra-
tion and integrate from )L to i—,L. Then the
first factor wi11 be very small, except for very
small x' for which the sine ca,n be replaced by its
argument. Thus (13a) becomes

n !
i In sm'x(x —x')/L,I= —2n ln 2 —— dx'.

L ~ -i J. 1+x'n~x"/L~ (13b)

If x is of the order of J, the remaining integral
will have two maxima: at x' =0 and at x'=x.
However, the integral over the second maximum
is inversely proportional to n and can be neg-
lected. The integral over the 6rst maximum
becomes, if one replaces x —x' by x in the
numerator

I= 2n ln —2 —In sin'xx/L for x»L/n. (13c)

If x is not large as compared with L,/n, the sine
can be replaced by its argument in (13b) since
the denominator becomes very large for x'»L/n.
Tllis gives, wltll y =x'nx /L and y =xnx/L,

1 r
" In (y y')'/n'—

I= —2mln 2 ——
~

dy'
1+y"

1 t "ln (y-y')'
= —2n ln 2+In n' ——

~~ dy' (13d)
1+y"

BI 2 f dy 2y
(13e)

x ~-- (1+y")(y—y') 1+y*

since the main value of the integral has to be

taken in (13e). We now have

J= —2n In 2+In n' l—n (1+y')

1 I" lny"
dy'. (13f)

OQ 1+y

In the last integral the lower limit can be re-
placed by 0 if a factor 2 is inserted. Substitution
then of s for In y shows that the integral in (13f)
vanishes and we have

J= 2n In 2+—ln n' —In (1+x'n'x'/L')

for x&&L. (13g)
Since ts&&1,

I= —P tg(x')v(x —x')dx'= 2n—ln 2

+ln n' —ln (1+n' sin' nx/L) (14)

holds for both regions (13c) and (13g). Insertion
of (13), (14), and (3) into (5) shows that (5) is
indeed satisfied by (13). C in (5) has the value
In 2'"n/L. The solution (13) of (5) is shown in
Fig. 1 lying for small abscissae between the other
two curves.

One sees that the solution of the Debye-
Huckel equation agrees fairly well with the
correct distribution function if the potential is
given by (3). In particular, the total volume of
the "hole" in the distribution function is 1 in
both cases. Nevertheless, (5) gives too high a
probability of a close approach of two particles
since (13) is too high for small abscissae. The
failure of (5) in this respect could have been
foreseen and depends only on the repul-
sive character of our potential (3). What is
essentially neglected in (5) is that the particle
under consideration, particle 2 in our notation,
has an effect on the rest of the particles. In our
case, it pushes them away from itself so that the
distribution of the particles 3, 4, , e will, in
reality, show a hole around the point where
particle 2 is. Thus particle 2 will be under a
lower potential than the average potential U
given by (4a). However, the difference between
the actual and the average potential is smallest
for small x because, where the second particle is
close to the 6rst, there are very few particles to
be shoved away from its neighborhood,


