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Theory of Electrical Contact Between Solids
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(Received November 6, 1941)

The phenomena of electrical contact are examined in detail. The difference between the
behaviors of metals and semi-conductors is pointed out. It is shown that the density of con-
duction electrons in a semi-conductor can be expected to change appreciably from its normal
value which may be important for the explanation of certain phenomena.

INTRODUCTION

HE theory of electrical contact between
two metals gives the well-known relation

between the contact potential and the work
functions of the metals. A theory has also been
developed for the contact between a metal and a
semi-conductor. ' The theories are necessarily
very crude as the subject concerns the surface
phenomena. Since the surface is a region of dis-
continuity, the phenomena taking place there
are much more difFicult to handle than those
inside the body and rigorous treatment would be
very difEicult. However, by examining the prob-
lem more closely we can get a clearer picture,
bring out explicitly the assumptions and limita-
tions of the existing theories and derive some
additional information about the problem. This
is the purpose of the present paper.

To simplify the problem we shall assume that
the electron energy states are not affected by the
surface. Various investigators' have shown that
the surface gives rise to energy states within the
forbidden band and other changes. To take such
effects into consideration would greatly com-
plicate the problem. As the number of surface
states is small compared with the number of
normal states we shall make the approximation
of neglecting them.

SURFACE POTENTIAL BARRIER

The potential of an electron inside a solid is
periodic with the period of the lattice, going
through deep depressions in the neighborhood of
each atomic nucleus. It rises sharply at the
surface forming a potential barrier which keeps
the electrons confined to the body. The potential

energy is lowered inside a solid owing to the
actions of the positive charges of the atomic
nuclei and of the a.egative charges of the rest of
the electrons. (Determining factors in the 1atter
action are the exchange forces between electrons
of the same spin and the electrostatic repulsive
forces between pairs of electrons. ) These actions
of the charges continue outside the body. In
the case of metals these actions reduce to the
image force at sufficient distances from the
surface. The above cause of the lowering of the
potential energy inside a solid is a volume effect.
In addition the potential barrier is affected by
surface phenomena. The electron distribution
around the surface ions is not symmetrical
because of the fact that the charge about these
ions on the inner side of the surface is different
from that on the outside. This unsymmetrical
distribution of negative electrons around positive
ions results in a double layer which produces a
potential difference across the surface. It has
been shown by Bardeen' that for pure metals
the surface double layer plays only a minor part.

Let us consider the relation between the
potentials inside two solids in contact. When the
bodies are far apart the relation is indicated by
Fig. 1a. As. they approach each other closer and
closer the two parts of Fig. Ia simply shift
toward each other (Fig. 1b) until at suSciently
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FIG. 1. (a) Potential barrier bodies far apart; (b) bodies
near each other; (c) bodies in contact.

' A. H. Wilson, Proc. Roy. Soc. A135, 487 (1932}. 3 E. Wigner and J. Bardeen, Phys. Rev. 48, 84 {i.935);' E. T. Goodwin, Proc. Camb. Phil. Soc. 35, 205 (1939). J. Bardeen, Phys. Rev. 49, 653 (1936).
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close distances the distributions of electrons
near the surfaces of the two bodies begin to
change under mutual interaction of the charges
of the two bodies. The potential barriers will
then be changed. As a result we cannot simply
shift the two parts closer to each other at such
close ranges. If we neglect, however, the change
of potential barriers owing to changes of charge
distribution near the surface then the relation
will be given by Fig. ic. Actually such a picture
does not correspond to equilibrium, which re-
quires that the number of electrons entering
one body from the other must be just balanced
by the Row in the opposite direction. (Of course
the energies carried by the electrons Rowing in
opposite directions must also balance each other. )
This condition has not yet been taken into
consideration.
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FIG. 2. (a} Potential barriers and conduction bands;
(b) metals in contact.

the two metals in contact. We have disregarded
the condition for equilibrium. The bottom of the
conduction band should actually not be at
the same level clear up to the surface as indi-
cated by horizontal line O~ or 02, since the
potential near the surface is not the same as
that inside the body. But this takes place near
the very surface and we neglect it to simplify
the picture and bring out the points we want to
emphasize.

CONTACT BETV/EEN TW'0 METALS

The energy levels of solids are grouped into
bands separated by gaps of forbidden energy. The
lower bands are 611ed with electrons, each level.

having its full quota of two electrons. In metals
there is a band only partially filled above the
full bands. This is the conduction band, only
electrons of this band participating in conduc-
tion. Upon coming into contact with another
metal the full bands having their full quota of
electrons cannot receive any more from the
latter, and under equilibrium conditions no
electrons should go over to the other metal
from these bands. Therefore these bands can be
disregarded in considering the exchange of elec-
trons between the two metals and only the
conduction bands need be considered. The
electrons are distributed among the energy levels
according to Fermi-Dirac statistics:

Let us now consider the equilibrium condition.
Frenke14 gave a good discussion using the free
electron model. Bethe' gave substantially the
same treatment, but he used a wave-mechanical
treatment. We shall give Bethe's derivation with
a few additions for clearer understanding. The
wave function of an electron in a periodic 6eld
inside a solid is of the form:

f=e*"u

where u is a periodic function with period of the
lattice. The velocity of the electron in the
direction x is

s, = (2s ik) (BE/Bk,),

the electron energy being a function of k(k„k„,k,).
The number of electrons in body 1 arriving at
the boundary surface (FZ plane) with a velocity
component toward body 2 is

n—
&(8—g)/Kr+ y

p 00 po0

dk, '
~

dky' dk

The parameter f is the thermodynamic potential
per electron and is determined by the total
number of electrons which should be equal to the
summation of n over all energy states. The choice
of energy zero is arbitrary and it is convenient
to choose the bottom of the conduction band.
Figure 2a shows the potential barriers and con-
duction bands for two metals and Fig. 2b shows

2K DENT 1
x— . (4)

1 ~(Ey—fy)/KT+ $

The integration with respect to k,' is over all

values for positive v . This integral can be re-

4 J.Frenkel, W'ave Mechanics, Elementary Theory.
~A. Sornmerfeld and H. Bethe, Handbuch der Physik

Vol. 24/2.
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written by changing the variable from k, to 8& The number of electrons entering body 1 is

367

dE i
dk„' dk,', (5)

(& ) ~(81—f1)/&&+ g
dk„' dk,

~
D2)(E), k„, k, )

where (Ei) is the minimum value of Ei for the
set values of k„' and k.'. Similarly the number of
electrons arriving at the contact surface from
body 2 heading for body 1 is

2 f p t/s dE2
2

~ dk 2 (5a)
(2s') & J J J (E ) e(Es r»/KT+

Let the wave number (k,', k„', k,') of an electron
in body 1 change to (k,', k„', k 2) upon crossing
the contact surface . To insure the same relation
along the contact surface between the wave
functions on both sides we must have k„' =k„'
and k.' =k,2. Since the electron energy should
remain the same we have the fol lowing relation:

E2(k, ', k„', k, ') =Ei(k, ', k„', k.') P, (6)—
where 2' is the diRerence between the energy
zeros adopted for the two bodies. Whether an
electron may enter a body or not depends in the
6rst place upon the occupation of the particu 1ar
energy level by electrons. The probability can
be written in the form

dE 2 1
1-

i
e&E&—i'»/KT+1 ( e&E2+T r»/KT—+1j

00 pQ0

J~ dk„') dk. '

X Dmi(E& —P k ' k. ')
~ (&s)+P

dE i
X (8 )

r &/ET+1 ( e(E r ET+1)

The lower limit of integration for Ei in (8) and
(8a) should be the same. Let (Ei) & (E2) +P.
The electrons with energies Ei & (E2) +P cannot,
however enter body 2 in which no electrons
can have energy less than (E2). These electrons
must be reAected. The transmission coe%cient
obeys a general theorem which states in terms
of our notation: D&2(k ', k, ', k.') =Du(k~', k,', k*2);
it follows: Dig(E), k„', k.') =Dmi(E) —P, k„', kP).
Thus we have

1
~(&1—&—gm) I&~+

(7a)

~(~~+I—r»IE. r+ j

for electrons of energy E2 in body 2 to enter body
and correspondingly

dk„' dk, ' Dim(E), k„', k, ')
I'

—00 —Q0 814

djv -
ie&E& i»/ T+ 1 g -e&E~ «&/KT+-1 -)

dk ~ t dk 2 " D»(E k i k i)
—00 4 Qt4

for electrons of energy 8~ in body 1 to enter
body 2. Furthermore electrons may suAer
reQection at the boundary surface where two dE )
different periodic fields join together. We have X

I
1 —

i (9)
to introduce a transmission coeKcient which is a
function of the wave numbers: D(k, k„, k,) or
D(E k k } Th b f 1 t t, where Ei is the common lower limit of integra-

dk„'
~

dk. '
~

D 2(E, k„', k, ') dk„' dk, ' D)2(Ei, k„', k, ')
/'

QO 00 %4

1 1 1
X (8) X

I idE = 0. (10)e(Et r»/KT+ 1 ( e(E—& P r»/KT+ 1/—— (e(Ej r»IKT+ 1 e(E& P h)/ET+ 1]——
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This equation can be satisfied only with statistics the density of electrons in space is
given approximately by'

This means that the energy zero for body 2

(chosen at the bottom of its conduction band)
should be higher than that chosen for body 1

by the amount (1 i —l q), therefore the levels
f'i and f2 must be the same energy level when a

Top of potential barrier

~fw]
l

fP p
Jl 3[

Metol I

FIG. 3. Energy relations for metals in contact.

common energy scale is taken for the two bodies.
This is the condition for equilibrium.

The same result is obtained directly from a
general consideration of statistical equilibrium.
When groups of electrons are in equilibrium their
thermodynamic potentials must be equal. For
the conduction electrons of the two bodies to
be in equilibrium we must have

when a common energy zero is used for the two
bodies. Difference between li and l'q must be
due to the difference in the chosen energy zeros:

Sm
L2~O. —V) j&,

3h3
(12)

I"= Wg —8'2,

where V is the potential energy of the electron
at the point under consideration. The force
driving the electrons from a point of higher to
a point of lower potential is compensated by the
force resulting from the difference in the electron
densities at the two points. In metals the density
of conduction electrons is very high and a space
charge (excess or deficiency of electrons) enough
to produce an appreciable' potential field makes
little change in the electron density. The action
due to the diRerence of electron densities is,
therefore, unimportant in metals. The space
distribution of electrons is predominantly gov-
erned by electrostatics a fact.which shows that
charges on metals must be all on the surface
(actually —near the surface). At the contact a
sort of double layer will be formed. The electron
potential inside metal 1 which is negatively
charged will be raised and that of metal 2 will be
lowered. The energy difference between the
level f' and the bottom of the band, being a
measure of the electron density, remains the
same inside each metal. At the contact surface
we have l'i'&l'i and f (2l' du2e to the excess
of electrons in metal 1 and deficiency in metal 2.
The energy di8'erence at the contact between the
bottoms of the conduction bands is approxi-
mately given by (see Fig. 3):

Thus the same result as given by (11) is ob-
tained. The first derivation is given because it
shows the physical process more clearly.

Such condition as shown by Fig. 2b does not
therefore correspond to equilibrium. More elec-
trons will How from body 2 to body 1. The
former will be charged positively and the latter—
negatively. We can look into the problem more
closely by using the free electron model and
consider the space distribution of the excess or
deficiency of electrons and the average potential
inside the two bodies. According to Fermi-Dirac

in which we have neglected the e6ects of the
proximity of the two metals and of the charges
resulting from elec&ron How on 8"~ and 8'~. '
fj,' and f&' adjust themselves by the metals'
losing or gaining electrons near the surface until
the condition for equilibrium (11) is satisfied.
The electron potential and consequently the
bottom of the conduction band of metal 1 have
a convex form near the surface due to the nega-
tive charge of excess electrons and those of
metal 2, concave. The detailed examination of

6 J. Frenkel, lVave Mechanics, Elementary Theory.
~ Actually these efkcts may be very important.
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electron exchange at the surface gives in fact
only

(13)&'=1 i' —la'

whereas from the general consideration of
statistical equilibrium it follows that we should
also have

Therefore

6 V/4w= —,'pea(a+9) = 20(a+9). (16)

0 is the charge of each sign per unit area. Such
a rough picture shows that the charge near the
contact per unit area is

k(a+&) k(a+b)

Consider on the other hand the charges at the
surfaces A and 8 of Fig. 4. The potential differ-

The work function is dehned as the energy
di&erence between an electron at rest outside of
the surface and an electron at energy level I'.

The space charge near the surface due to excess
or deficiency of electrons causes an additional
potential difI'erence between the interior of the
metal and the outside. The work function will
thus be changed by the contact. Actually such
eA'ect should be very small everywhere except
at the contact. This can be made clear by the
following consideration. The charges at the
contact surface are responsible f'or producing the
shift of potential

8= Wg ——W2 (I x
—I g)—

= (IVi —I i) —(~'2 —I 2) = s i —s 2 (14)

These charges are distributed over a very narrow
region near the contact surface, this shift having
to be produced within a very short distance,
therefore the density of charges must be very
high. A uniform layer of positive charge density
p& of thickness e joining a uniform layer of
negative charge density —p2 of thickness
produces a potential difference between the
two ends

6 V=pea'/2+ pub'/2 (15)

To make ds/dx=0 at the two ends the following
relation has to hoM

ence between two points each immediately
outside the surface of one metal is de6ned as
contact potential and is given by the difference
between the work functions of the two metals:

The potential diR'erence between the surfaces
A andBis

4Ã0d = py —p2,

therefore
0'x = 0'p = (Fi—%2)/4~d.

Since for metals charges must be nearly on the
surface, the values of a and b of (17) must be
very small. O.g and sr~ will be of di6'erent orders
of magnitude. The e8ect of O.g on the potential
between a point inside and a point immediately
outside the metal must be negligible compared
with such e8'ect of 0& which is measured by
(y~ —p2). It follows that the work functions of
the metals are not changed appreciably by their
coming into contact. The contact potential is
quite accurately given by the di6'erence between
the original work functions of the metals.

Fro. 4. Arrangement of two metals.

CONTACT BETWEEN METALS AND SEMI-
CONDUCTORS (OR INSULATORS}

In an insulator the highest occupied band is
completely full of electrons at O'K and the next
higher band is empty. At higher temperatures a
small number of electrons will go over to the
higher band. Depending upon whether the num-
ber of electrons going over to the higher band is
large or small the substance is classi6ed as
insulator or semi-conductor. A semi-conductor
has usually another source of electrons. Such
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Top of potential barrier
~l P ~

'I
Empty band

the number of electrons in the conduction band
and the number of holes in the next lower band
is given by

$= 268+ET log c,

Metal

Full band
!'-Jh

Semi-conductor

where C is a constant and AF is the energy gap
between the two bands. If the number of elec-
trons in the conduction band should be in-
creased to N times the number of holes in the
lower band the increase in t' will be:

Fro. 5. Energy relations for a metal and semi-conductor
in contact.

substance usually has impurity atoms with
localized electron energy levels. These atoms
may supply electrons to the empty band by
being ionized or absorb electrons from a full

band in case of electronegative atoms. Besides,
their energy levels may provide a sort of stepping
stone for the electrons of a full band to go over
to the higher empty band. ' For each kind of
substance we have a dehnite relation between
the numbers of electrons in the different bands
and impurity levels. The numbers of electrons
are all functions of the thermodynamic poten-
tial l The la. tter can therefore be determined
from this relation. Fowler' gives expressions of g

for different types of semi-conductors in terms
of the density of impurity atoms and the energy

gaps between the different bands and the im-

purity levels. It is shown that as hrst approxi-
mation l' lies half way between the two sets of
energy levels, one full and one empty. The con-
tact between a semi-conductor and a metal is
usually treated by simply putting f's of the two
substances on the same level.

As we have seen, in order to bring about equi-
librium an initial unbalanced How of electrons
is required, resulting in the bodies becoming
charged. The electron density in the semi-

conductor will therefore be changed upon com-

ing into contact with the metal. The normal
relation between the number of electrons in the
different bands will be upset and l will not be
given by the usual expression. But it can be
shown by a rough estimation that such eBect
is ordinarily small. For an intrinsic semi-con-
ductor (no impurity) l' obtained by equating

s B. Gudden, Ergebnisse d. exakten Naturwiss. , Vol. 13.
R. H. Fowler, Statistical Mechanics, second edition.

(2~mk T) &

n=2 gf/E 2' (22)

the potential energy of the electrons or the
bottom of the conduction band being taken as
zero. When the semi-conductor is in contact with
a metal f' is changed due to the gain or loss of
electrons. By entering the expression for n in the
exponential factor it is found a small change in g
will cause considerable change in n, in agree-
ment with the statement made above. The
epergy difference between the bottoms of the
conduction bands is given by (W —W,), there-

'o W. Juse and B. %. Kurtschatow, Physik. Zeits. de
Sowjetumon 2, 453 (1932}.

"N. F. Mott and H. Jones, Theory of Properties of
Metals and Alloys, p. 83.

Al'=KT log QX.

With X=10 and at T=300'K this amounts to
only 0.03 electron volt. This is small compared
with the order of magnitude of AZ (0.72 ev for
Cu20)."

Although the effect of the contact on g itself
is small the electron density in the conduction
band which is normally small can be changed
appreciably. Therefore the change in l' should
not be neglected when the electron density is
being considered and it is not proper simply to
equate l of the metal with the original l of the
semi-conductor. Since there are only a few
electrons in the conduction band of a semi-
conductor their distribution is Maxwellian.
For simplicity of treatment it is usually assumed
that these electrons behave like free electrons
with an effective mass. While this is not strictly
correct" rigorous treatment would be too com-
plicated. With this approximation the density
of electrons is given by the usual formula for an
electron gas:



DISTRI 8UTION OF PROTONS

fore as shown by Fig. 5:
I'=I ' —W +W..

The semi-conductor is charged positively or
negatively depending upon whether q & q, or
rp„& y, . (Figure 5 shows the semi-conductor
positively charged. ) In the first case the electron
density in the conduction band will be less than
normal and the reverse is true for the second
case. The excess of dehciency in elec&ons will

not be concentrated near the surface as in
metals. Because the numbers of electrons in the
conduction band and holes in the lower band are
small a semi-conductor can support a space
charge and appreciable potential difference. The
density of conduction electrons at the contact
surface is given by (22). The space charge (con-

duction electrons and holes in the lower band)
inside the body is determined jointly by Poisson's
equation and Boltzmann's distribution law.
With the additional condition of equilibrium
between the electrons in the two bands the den-
sity of conduction electrons and the density of
the holes in the lower band can be determined
separately.

The space variation of the density of conduc-
tion electrons to be expected in semi-conductors
may be important in the explanation of certain
phenomena. Upon this is based Schottky's
theory" of semi-conductor recti6ers which as-
sumes the semi-conductor to be charged posi-
tively with region of low electron density at the
contact.

~ W. Schottky, Zeits. f. Physik 113, 367 (1939).
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Distribution in Angle of Protons from the D-D Reaction
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Department of Physics, ¹ur York University, ¹mYork, ¹mYork

(Received December 5, 1941)

The angular distribution of the disintegration protons from the D—D reaction has been
investigated as a function of energy from 60 kev to 390 kev. The distribution was found to be
well represented by I(8) =1+A cos~ 8 at any one energy. The value of A increases smoothly
with bombarding energy over the range investigated.

INTRODUCTION
' EASUREMENTS of the relative yield of

protons from the reaction

H'+H'= H'+H'

as a function of the angle of the emitted proton
with the line of approach of the deuterons have
shown an anisotropy of the form

I(8) = I+A cos'8

in the center of mass system of coordinates.
Previous investigators" have disagreed markedly

~ Now at National Bureau of Standards, Washington,
D. C.

f Nowat Frankford Arsenal, Philadelphia, Pennsylvania.' Huntoon, Ellett, Bayley and Van Allen, Phys. Rev. 58,
97 (1940).

'Kempton, Browne, and Maasdorp, Proc. Roy. Soc.
A15V, 386 (1936);Haxby, Allen, and Williams, Phys. Rev.
55, 1940 (1939);H. Neuert, Ann. d. Physik 315, 437 (1939).

on the value of A and its dependence upon
energy.

The desired condition for angular distribution
measurements where the anisotropy is energy
dependent is that all observed disintegrations
be due to impinging particles having the same
energy at the time of impact. This condition is
most nearly realized in a gas target. Without
using foils thick enough to invalidate the use of
a gas target, permanent gases require the use of
a very small capillary and high speed pumping
at high vacuum and at an intermediate pressure.
Vapors can be handled with a larger capillary
and a cold trap, refrigerated with liquid air.
This allows higher counting rates and a great
reduction in statistical error without loss in
angular resolution. Thus, since the deuteron
reaction with oxygen is highly improbable below


