
MARCH j. AND i$, f 942 PHYSICAL REVIEW VOLUME

Elasticity and Creep of Pb Single Crystals
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(Received January 12, 1942)

The rigidity modulus and Young's modulus of lead single crystals have been measured by
static methods as functions of crystal orientation. The elastic parameters so obtained are in
agreement with the previous values determined dynamically by Goens and Weerts. The bend-
ing-torsion. effect is large for certain orientations, and its eHect upon the measurement of
rigidity modulus by torsion has been studied. The elastic limit for lead under longitudinal
stress occurred when the resolved shear stress on. the most favorably placed octahedral plane
was about 2X10s dynes per cd. Observations have been made of the transient creep under
longitudinal stress. The creep strain velocity at any instant was found to be proportional to
the difference between the hnal strain reached under that load and the strain present at the
instant.

1
OENS and Keerts' have measured the~ adiabatic elastic constants of lead from

torsional and flexural oscillations of single crystal
rods. The elastic region under steady stress has
been studied by Deming~ who measured Young's
modulus by the bending beam method. ' He found
definite elastic behavior with a linear relation
between stress and strain up to a resolved shear
stress of about 2 X 10' dynes/cm', beyond which
creep and permanent set (after removing the
load) appeared. The values of Young's modulus
for crystals with orientation functions near zero
agreed fairly well with those of Goens and
Weerts, but for other orientations the agreement
was poor. '

In the following, the elasticity of lead under
steady stress has been studied by determining
the rigidity modulus for various crystal orien-
tations with a torsion apparatus, and the
Young's modulus by observing the increase in

length under applied longitudinal stress. Some
observations of creep have also been made with
the latter method.

The lead was f'rom the same lot used by
Deming. ' The preliminary castings were made in
an iron tube' in the shape of cylinders about 15

cm long and 0.9 cm in diameter. After being
sharpened to a point at one end, they were
coated with Alundum cement, dried, rolled in
moistened asbestos paper, and slipped into a
brass tube. They were formed into single crystals
by the Bridgman method of lowering through a
furnace. The rate of growth was about 2 cm/hr.
and the gradient was about 10'C/cm. The
cement-asbestos paper coating was removed
from the 6nal crystal by soaking in water. This
procedure was believed to be less likely to pro-
duce strains than other methods such as growing
in a glass tube, etc. The orientation of each
crystal was determined after etching~ by the
reflection of light from crystal planes by the
procedure described by %ebb. ' The reflections
were mainly from the {111Iand {100}planes,
although fainter reflections were also observed
from the {1101and {113Iplanes.

RIGIDITY MODULUS

The elastic properties of a cubic crystal such
as lead may be expressed in terms of three main
parameters, si~, s~2 and s44, when referred to the
crystallographic axes. One may also use a set of
axes, x', y', and s', not coinciding with the

' E. Goens and J. Weerts, Physik. Zeits. 3V, 321 (193&), Betty, and Moore (Trans. Am. Inst. Min. and Met. Eng.
A. Deming, M.S. thesis, State University of Iowa &28, 111 (1938), Inst. of Metals Div.}.

1939, unpublished. s A spectrographic analysis showed no impurities were
'Wayne Webb, Phys. Rev. 55, 2&7 (1939), footnote 2& introduced.
4 This is now believed to be due to the reciprocal bending- ~ Two etch solutions were used; a stronger to remove

torsion effect, the influence of which could not bee6'ectively oxide (for $ hr. ) and a weaker (for several hr. ). The two
estimated with the apparatus used by Deming. solutions are composed of nitric acid, acetic acid and water

'We are indebted to Professor H. F. Moore of the in the proportions 1:1:2 and 2:3:20. This procedure
University of Illinois for the material. It has about 0.005 was suggested by Deming and is a modi6cation of the one
percent impurity, according to an analysis made by Baker, used by B.B. M.
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crystallographic axes, and a set of "primed"
parameters, s';;, which are, of course, functions
of the main parameters and of the relative orien-
tation of the two sets of axes. In general, a
crystal either under axial torque or with an
applied bending moment both twists and bends.
Kith an appropriate choice of axes, the following
equationss hoM for a cylindrical crystal of length
l and radius r:

srr'8/21 =s'sN s'ssM, —

1/p = (2/srr') (s's4N 2s'ssM), —(2)

FIG. i. Curve A, reciprocal of rigidity modulus; Curve B,
reciprocal of Young's modulus, as functions of orientation.
Lines and solid circles (g} are from Goens and Weerts.
Other points are the writers' values. On Curve A, the
symbols have the following significance: Q, no bending-
torsion correction; Q, from "maximum slope" run; ,
from minimum slope" run and correction factor @.

crystallographic axes. In the following, we shall
define G' (= 1/s's) as the "free" rigidity modulus
[N only; &=0 in Eq. (1)],and G as the modulus
which is measured when bending is prevented
[1/j=0 in Eq. (2)].If the crystal is free to bend,
the expression for G' reduces to G'=2/N/srr48,
the usual "isotropic" formula. If the crystal is
prevented from bending the reciprocal of the
free modulus is given by' 1/G'= (1/G)tt where
@= 1/[1 —(I"ss/2s'sss', )] and G is given now by
the "isotropic" formula. The correction factor
p is 1.00 for orientations in which the length of
the specimen is in the [100] (f(y) =0), [110]
(f(y) =0.25), and [111](f(y) =0.33) directions.
It has a maximum value of about 1.25 for lead.

The torsion apparatus was of the usual type
having for the measurement of the twist, 8, an
optical system with a minimum observable angle
of about one second of arc. The fixed end of the
crystal was set in Kood's metal, and the movable
end was held in jaws on a torsion head which was
free to rotate in ball bearings. An approximately
pure torque, clockwise or counter-clockwise, was
appIied to the torsion head by a suitable arrange-
ment of four springs.

Three crystals for which the bending-torsion
coupling was absent were grown and measured.
The stress-strain" plots for these crystals were all
straight and the slopes consistent, within the
experimental error of about one percent. The
points indicated by open circles (0), curve A, Fig.

in which 8 is the angle of twist, N is the axial
torque, p is the radius of curvature, and M is the
component of the applied bending moment in the
plane in which bending occurs. The parameters
s'„s'33, and 8'34 are expressed in terms of the
main parameters by the following:

s', = sss+4sf(y),

s ss = sos —2$f(r),

(3)

(4)

s"ss =4s'[(yg'+ps'+ps') —(vs'+ vs'+Vs')'], (5)

where

Crys-
tal
No.

0.0046
0.006

0.099

0.151

0.189

0.233
0.250
0.254

1.00

1.02

1.21

1.19

1.12

1
Ql
—X10'~

6.91

7.11

11.50$
10.274
13.3t
13,0f,
14.8$
14.1$

17.35

X10l21

(9.71}+
9,47

(9.61)+
9.31

4.70
4.22
4.41

TABI.E I. Summary of data.

Stress at
elastic limit)

Re-
Longitu- solved

dinal shear

6.8

4.3
S $11 $12 gS44s

1 (6)

f(V) = Vs'V ss+V s'Vs'+Vs'Vs' (&)

and the y's are the direction cosines of the length
of the crystal specimen with respect to the

' E. Goens, Ann. d. Physik 16, 693 (1933).

~ Before annealing.
t Computed from maximum slope.

Computed from minimum slope and correction factor, sts.
'In 10' dynes/cm~.

' This may also be written in the equivalent form 1/6'
=1jG plus a "bending-torsion" correction. See W. A.
Good, Phys. Rev. 60, 605 (1941).

'0 More accurately —angle of twist es. axial torque.
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1, are the averages of a number of runs on these
crystals and are in good agreement with the data
of Goens and Weerts. '

For the crystals which had an appreciable
bending-torsion correction (P) 1), the situation
is more complicated. The ball bearings were not
perfectly tight, but had a play estimated to be
about 10-' cm, which is actually about sufficient
to allow free bending. Thus one might expect the
stress-strain curve to have a slope corresponding
to the free modulus (G'). If, however, the bearing
reaction produced a partial restraint, the slope
should correspond to something greater than G',
i.e. nearer G. In the extreme case where the
torsion head was initially definitely in contact
with one side of the bearing torque in one sense
would produce no bending while under the op-
posite torque very nearly free bending w'ould

occur, The stress-strain curve should then be
two straight lines, one with a slope, for one sense
of torque, corresponding to G, and the other to
O'. These two cases are illustrated by curves C
and D of Fig. 2, which are successive runs on
crystal No. 5. In the first, only a pure torque
was used, and the line is straight, with a slope
fairly close to that corresponding to free bending.
In curve D, a weight was hung on the torsion
head sufhcient to press it definitely against one
side of the bearing. Since a constant bending
moment (contrasted to a bending moment which
is proportional to the torque) gives a hne with a
slope corresponding to G', a double slope line was
expected and was actually obtained. The dif-
ference in the slopes of the two lines (14 percent)
corresponds fairly well to the computed differ-
ence of 19 percent (&=1.19) between G and G'.
This experiment was repeated with another
crystal with similar results. The same experiment
with a crystal having no bending-torsion coupling
gave a null result.

Of all the runs on the crystals having a bend-
ing-torsion coupling (p)1.00), the results were
about as follows: Either single straight lines were
observed, with slopes corresponding fairly well
to G', or they w ere of the double slope type.
Examples of the latter are curves Band F, Fig. 2.
From the various slopes observed for any one of
these crystals (5 to 20 runs), the extreme values
were picked out. The maximum was assumed to
be that for free bending and G' was computed

from it. The minimum value was assumed to
give G and from it another value of G'

(1/G' = (1/G) P) was computed. These two values
are plotted in Fig. 1 with separate symbols and
are given in Table I. The average of these two
values should be and is reasonably close to the
value of G'.

The diversity of slopes of the stress-strain re-
lations for crystals with a large correction factor
as compared with the constancy of slopes for

20
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Fj:G. 2. Angle of twist against axial torque. Curve A is
for a brass rod. Curves 8 to F are runs on lead single
crystals. 8 and C are typical examples of straight line plots,
while 8 and F are typical examples of runs of the double
slope type. The slopes are shown by the numbers near the
curves. The unit of torque is 1960 dyne cm and the unit
of twist is 5.6X 10 ~ radian.

crystals with no (or very small) bending-torsion
correction is shown in Fig. 3.

YOUNG'S MODULUS

The apparatus used for determining Young's
modulus" and observing creep was developed
particularly for measuring very small extensions
of metal single crystals under longitudinal stress.
It consists of an optical lever system attached to
the specimen, a change in length of which causes
the image of a scale to move past the cross hair in
a low power microscope. The magnification of the
device is about eight hundred. If one considers
the smallest definite observable change in scale
reading as 0.01 mm (one-tenth of the smallest
scale division), the corresponding least observ-

&& rhjs is P' Fq. (4) and is 1/s'&3.
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tation functions near zero and near 0.25. The
results are plotted as open circles (O), Curve 8,
Fig. 1, and are given in Table I. They agree well
with the adiabatic" determination of Goens and
Weerts. The load-extension curves for both
increasing and decreasing loads were straight
lines, with no observable hysteresis or permanent
set. Two of the crystals (see Table I) gave some-
what high values for 1/B' when first run but
yielded values in agreement with Goens and
Weerts after an anneal of three hours at 200'C,
followed by slow cooling. Crystals which gave the
expected value on the initial determination were
not annealed. "

ELASTIC LIMIT AND PLASTICITY

0" I I I I I
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FIG. 3. The number of runs giving values of 2/E/xr48
to the closest value plotted against these values. A is for
a crystal (No. 6, qb = 1.12) which has a large bending-torsion
coupling and 8 and C are for crystals having zero and small
coupling (No. 8 and No. 2), respectively. A value of
2/N/~r'8 obtained from a straight run is plotted as a
circle (O) while the two values obtained from a double
slope are plotted as plus signs connected by the arrow ~,

able increment of strain on a specimen 7 cm
long is 1.8X10-'. A fairly accurate stress-strain
curve can therefore be run with the upper limit
of allowable strain as low as 4X10 ' above the
strain caused by the initial, or zero, load. By the
use of a photoelectric multiplying device very
similar to, and suggested by, one used by
McKeehan and CiofFi, "the accuracy of observa-
tion is increased and the lower limit of observable
strain reduced. Kith it, in fact, a 1.-cm scale
deflection of a galvanometer corresponds to a
strain increment of about 2X10 ' (on a 7 cm
length), and a determination of Young's modulus
can be made with a total strain not exceeding
about IO ' beyond the initial value. The initial
load was made small enough to produce in a
crystal of 0.65 cm' cross section a stress of
0.6X j.06 dynes" per cm'.

Young's modulus was determined by the
photoelectric method for five crystals with orien-

'~ L. %. McKeehan and P. P. Cion„Phys. Rev. 28, 146
(1926)."For the orientation, f{y}=0, with the smallest modulus
this is an initial strain of about 5&(10 6.

Three of the crystals were taken into the
plastic region. This was done mainly by the
visual observation method. The load was ig.-
creased by steps of about 275 grams. In all cases
the load which caused the first deviation from a
linear relation between load and extension was
accompanied by easily observable creep and by
subsequent permanent set when the load was
removed. This was taken to be the elastic limit.
Elastic limits so determined are given in Table I
both as longitudinal stress (column 6) and as

X
O 4
x
4l

X
4l

2 4 6 8 IO I2 14 IS I 8 20 22
LOAD

Fir. 4. Load against extension for crystal No. 1. Each
unit of load produces a stress of 0.415X10' dynes/cm'.
The zero load is 0.67 dyne/cm'. Each unit of extension
corresponds to a longitudinal strain of 18)(10 6. Curve 8
was taken directly after curve A and the ascending branch
coincides with the descending branch of curve A, but is
ofFset to a~aid confusion. The first elastic limit observed
for this crystal was at 14 an the load scale.

i'The theoretical difference between the reciprocals of
the adiabatic and isothermal modulus is 0.016&10»
cm~/dyne and is too small to show in the graph.

'~ Crystal No. 9 was also high, but this was a crystal
with a somewhat irregular cross section. It had also had
considerable previous use.
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resolved shear stress (column '7). The resolved
shear stress was obtained as follows. The glide
plane is known to be the most favorably situated
of the octahedral planes and the component of
longitudinal stress parallel to this plane was
obtained and then resolved into the nearest glide
direction t 110j. This resolved shear stress, for
any orientation, comes out fairly close to four-
tenths of the longitudinal stress, except for the
case where glide may take place on two equally
favorably situated glide planes. In this case the
resolved shear stress is half as great as for resolu-
tion on a single plane. Crystals Nos. 3 and 9
seemed to satisfy the former condition, while
crystal No. 1 was so nearly oriented along a
cube edge that the assumption of double glide
appeared correct. Computing the resolved shear
stress on this assumption we obtain the values in

the table. If single glide for No. 1 is assumed, a
value twice as high is obtained.

It must be realized that any speci6cation of
elastic limit, the presence of permanent set,
presence or absence of hysteresis, etc. , are in-
herently inde6nite and conditioned by the par-
ticular observationaI method used. Thus, the
writers feel safe in saying that the load-extension
curve is linear and the same for increasing and
decreasing loads up to a fairly well-de6ned point,
corresponding to a resolved shear stress of not
more than 2&10' dynes per cm~. It is implied,
however, that this is true within the limitations
of the apparatus, namely, the ability to determine
a change in strain of about 2&10 ~ which may
occur in, sa.y, 6ve or six minutes. The same
change occurring in 6ve or six hours is not con-
sidered observable. " Elastic curves were ob-
tained whether the runs were made in ten minutes
or in one hour, but a run which took a week could
conceivably be difFerent.

A decrease in the load after the specimen had
been taken slightly beyond the elastic limit
produced a load-extension curve parallel to the
increasing load curve, but oR'set by the amount
of the plastic deformation. Curve A, Fig. 4 is an

"The reason for this is that the apparatus is temperature
sensitive, because of unequal expansion of crystal and
measuring system. Vhth the best compensation of this,
good thermal insulation, etc., it is always probable that
some small change taking place in several hours is due to
temperature change. Long time observations were there-
fore precluded.

example of this behavior. Curve 8, taken di-
rectly after A, shows the e6'ect of again increasing
the load. The first, very small creep was observed
at F, the maximum load of the previous curve.
At G, H, and I„ the lower point indicates the
reading taken as soon as possible after reaching"
the indicated load. The higher point indicates
the extension reached after several minutes when
the creep had practically stopped. The curve
from I down is parallel to the increasing load

—So 8.56

S~& 4.89

o+
lO 3

So l.62

0 ) 2 3 4
T IMK (MINUTKs)

Frr. . 5. Creep as function of time. Ordinate is longitudinal
strain, S; abscissa, time in minutes.

~~ The load was applied by gradually running mercury
into a container hung from the lower end of the crystal.
Adding the 27S gram increment took not more than tw'enty
seconds.

curve. In general, after a specimen was left
Ioaded until the creep seemed to stop, its sub-
sequent behavior was elastic almost up to this
point with no certain change in moduius (not
more than 1 percent). The elastic limit of the
crystal in Fig. 4 has been raised about 50 percent
by other runs of this sort. No self-annealing at
room temperature was observed, i.e. , after the
elastic limit was pushed up to a certain vaIue, it
stayed there.

The progress of creep with time at such points
as G, H, and I, Fig. 4, is of some interest.
Curves A, 8, C, Fig. 5, depict this behavior. The
strain existing at each of the lower points G, H,
I in Fig. 4 is set equal to zero, with time equa1 to
zero also, and the subsequent longitudinal strain
(S=hl/l) under the steady load is plotted as a
function of time. The experimental points are
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indicated by circles and the curves are plotted
from the equation:

S=S0(1—e ")
with a equal to unity and the values of $0 shown
on the curves. The constant e was found from
suitable pairs of experimental points. The values
actually found were: from points on A, 1.14;
from 8, 1.04, 0.87, 0.97; from C, 1.18, 0.70, 1.00.
Another set of three similar curves, taken previ-
ously on this same crystal at somewhat lower
loads, were also fitted quite weIl with c equal to
unity. After several intervening runs, which
pushed the elastic limit higher yet, a set of two
curves taken beyond I, Fig. 4 (at 22.3 and 22.6
on the arbitrary load scale) was fitted by
S=7.00(1—e '"') and S=7.29(1 —e "") It is
to be noted that the a is de6nitely less. Although
the 6tting of such a curve to three points is not
very sensitive to changes in a, a value of unity
for e produced no fit at all.

The strain velocity, during creep, is given by

dS/dt = Soae "=a(SO
—S), —(9)

that is, the velocity is proportional to the creep
(strain) still to be accomplished. If Ii, curve 8,
Fig. 4, is taken as the elastic limit, G, H, and I
are 1, 2, and 3 load units, respectively, beyond
this. The values of 50 on curves A, J3, and C,
Fig. 5, are 1.98, 9.06, and 20.96&10 ' strain
unit, respectively above the extrapolated elastic
curve. These numbers are roughly in the ratio
of 1:4:9, or proportional to the square of the
load added above the elastic limit. Thus, if it is
valid to extrapolate the strain velocity relation,
Eq. (9), back to this point, such loads if applied
suddenly would produce initial creep rates pro-
portional to the square of the load above the

then existing elastic limit. These initial strain
velocities are, of course, equal to 1.98, 9.06, and
20.96X10 ' per minute. Chalmers' has found
very similar results for tin, although he found a
linear relation between strain velocity and stress
in this region of "transient creep, " and found
that the previous history of the specimen had no
eA'ect.

The data on creep presented here are not very
extensive but it seems that results of this type
should throw useful light on the general problem
of plasticity in metals and particularly the
validity of Taylor's dislocation theory. " Thus
the relations of Eqs. (8) and (9) may imply that
under a given load there are a certain number of
dislocations which are capable of moving (or dis-
appearing) in such a way as to change the
specimen length by a certain amount, and that
the number of these which move (or disappear)
per unit time is proportional to the number
present at that time. A further increase in load
then makes an additional number of dislocations
efkctive, and so on throughout the region of
transient creep. In this way one might, with
more extensive data, arrive at quantitative
results for density of dislocations, energy to
move them, etc.

Finally, the writers do not believe that their
data on elasticity warrant any change in the
elastic parameters s~~, s~~ and s44 from those
recommended by Goens and Weerts. The iso-
thermal parameters are, 'then, in cm'jdynes:
s~~ =9.28, s~~ ———4.24, s44 = 6.94, all & 10
and the compressibility, computed from these is
2.40X10 " cm'jdyne.

"B.Chalmers, Proc. Roy. Soc. 155, 427 (1936).
"See Frederick Seitz and T. A. Read, J. App. Phys. 12,

470 {1941),particularly Figs. 43 and 44.


