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repulsion. The former wi11 be discussed in detail in the paper by Huntington, whereas the latter was
found in the preceding section to be —0.4 ev when the exponential-type function was used for the
equilibrium con6guration. The variational procedure then indicates about 1.0 ev as the complete
energy needed. to form a vacancy. For the saddle-point confIguration, the change in the repulsive
energy, when the exponential function is used, is found nearly the same, —0.37 ev, but the polariza-
tion of the electronic distribution is far less effective in lowering the energy for this conhguration
because of the more complicated density modulation that is involved.

IV. CONCLUSION

The results of these computations are summarized in Table III, and seem to show beyond a
reasonable doubt that the vacancy mechanism of diffusion is greatly preferred over the other two
types considered here for copper. A more careful treatment of the vacancy case, presented in the
paper by Huntington, supports this conclusion further.
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Previous calculations have indicated the predominance of the vacancy mechanism in
metallic self-diffusion. Here a more detailed calculation of the energy needed to form a vacancy
has been carried out. A self-consistent solution-to the Hartree-Fock equation was used with
a free-electron model corresponding to the copper lattice. The result agreed essentially with
the value predicted by Huntington and Seitz. In addition a rough upper limit was established
for the energy required to move a vacancy. This value compares satisfactorily with the observed
energy of activation for copper self-diffusion. The anisotropy recently observed in zinc self-
diHusion can also be qualitatively explained to some extent on the basis of a vacancy process.
In the case of the alkali metals present considerations are insufFicient to decide between the
interstitial and vacancy mechanisms.

INTRODUCTION

ATTICE vacancies are physically important
' ~ in metallic difII'usion. In the preceding paper'

by Huntington and Seitz we investigated three
possible mechanisms which might be responsible
for diR'usion in a typical metal, copper. Energetic
considerations indicated dehnitely that vacancy
diffusion plays the dominant role, as against
interstitial dift'usion and diffusion by direct inter-
change. The calculation for the energy needed to
form a vacancy had, however, two short-

~ Part of a Dissertation presented to Princeton Uni-
versity for the degree of Doctor of Philosophy.

t Now at %'ashington University, Saint Louis, Missouri,' Frederick Seitz and H. B. Huntington, Phys. Rev. 51,
315 (1942); preceding paper. Equations, figures, and tables
of this paper will be designated by primed references.

comings. In the fIrst place, the wave functions
used in the variational procedure were not a
mutually orthogonal set, though the simpli6ed
treatment there employed necessarily used them
as though they were. Secondly, no account was
taken of the change in'the exchange potential
which must accompany any modulation of the
electron distribution. Therefore it was decided to
undertake a self-consistent solution of the prob-
lem in the Hartree-Fock approximation.

L SELF-CONSISTENT SOLUTION FOR THE
VACANCY PROBLEM

1. Potential Field near the Vacancy

To handle the problem at all it was necessary
to use throughout the free-electron model with
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TABLE I. Wave function formu1ae.

Uniform
distribu-
lon

For r large

sin (kr)
kr

sin (kr) —kr cos {kr}
{kr)s

{kr}~
6

kr (kr)
3 10

For r small Density at small r

k ' k 'r'
3 15

k 'r'
45

Harrier
distnbu-
tion

sin (kr —aq)
kr

d sin (kr —ap)
dr k'r

sin. (kR —a8) sinh (Kr)
sinh (XR)kr

sin (kR —a~) Kr cosh (Xr}—sinh (Er)
sinh {ER) X (Kr)'

~m K sin (kR —ag}
sinh (XR)

dk

Kkr sin (kR-ap)
3 sinh (ER)

dk

uniform distribution to represent the original
state of the copper lattice. Any lattice defect,
such as a vacancy at a lattice site, would bring
about a disturbance in the electron distribution,
which would nearly possess spherical symmetry.
The solution to the problem is then most simply
expressed in a series of spherical harmonics which
reduce at large distances to the well-known ex-
pansion of plane waves. Since the vacancy cell is
a region of high potential, the electronic density
is there necessarily reduced. The situation is
closely analogous to a scattering problem in which
electrons of various energies impinge from every
direction upon a spherical barrier.

The form of this potential barrier is, to some
extent, dependent upon the assumption made in

setting up the problem. Since one wishes the
solutions to reduce to plane waves at large
distances, it is not practical to use the actual
lattice potential, but rather to replace it every-
where by a constant value. The withdrawal of an
ion to form a vacancy involves the introduction
of a potential peak —U(r), where V(r) is the
potential field of the ion, upon the uniform
potential plane. As a consequence our potential
held near the vacancy goes infinite as r—&0, in
contradiction to what one knows must be the
case. This error is unimportant, however, because
the region concerned is small and because it is the
very region in which the uniform-distribution
model breaks down. Since this potential infinity
had no physical meaning, it was a great help in
the work of numerical solution to consider the
potential as being Hat from r =0.8ao into r =0.

Besides the potential —V(r) of the missing, or
pseudo-"negative, " ion at the vacancy site, there
is also an electrostatic contribution from the
electronic charge displaced from this region. This

displaced charge is assumed equivalent to one
electron, so that the vacancy region may be
neutral at large distances.

Ag(x) = tx( )Ex ( )x'()
d Vg (1)

2x.(x) &

and so varies with k. The xl, are the wave func-
tions of the metal. The summation over k' in-
cludes all the electrons of both spins. The use of
such a set of AA, in solving for the self-consistent
xA, would lead to non-orthogonal functions. To
avoid this it was decided to replace the Az(x) by
a suitable average over k, A(x). The procedure
for averaging is determined only to the extent
that A(x) must reduce to 0.916e/r, for plane
wave functions, the eigenvalue for the exchange
operator in that representation. Therefore in the
interest of simplicity the following average was
chosen,

where

e t' p(x, xq)2
A(x) p(x, x) =— d Vg,

2 & fr r&l—
p(x& x2) 2 x &(x&)x&(xm)

The problem of finding the exchange potential
in the neighborhood of the vacancy is, to some
extent, the radial analogue of the one-dimensional

2. Exchange Potential

In addition to these electrostatic forces some
account was taken of the change in the "exchange
potential" in the neighborhood of the vacancy as
a result of the decrease in the electronic distri-
bution. In general such an "exchange potential, "
Aq(x), is written
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problem of the metal surface, which Bardeen'
investigated when studying the inhuence of the
double layer on the work function. (Bardeen used
the As(x) as he was concerned with the electronic
densities rather than energies. ) Since the problem
involves spherical symmetry, it was convenient
to expand the plane waves into spherical
harmonics:

e'"'= Q (2n+1)i "j„(kr)P„(cos8).

Here the j„(x) are the spherical Bessel functions'
and the P„are the Legendre polynomials. It soon
became evident that only the S, I', and D parts of
the wave (i.e., n= 0, 1, 2) would be appreciably
affected by the disturbing potential at the
vacancy.

It is to be emphasized that the exchange
contributions to this disturbing potential are the
differences between the exchange potentials for
the vacancy wave functions and those for the
free electrons. Moreover, the exchange contri-
bution is diferent for each harmonic. To see this
one expands the vacancy wave functions also into
spherical harmonics:

5(kr) +BiP(kr) P t(cos 8)

—5D(kr)Ps(cos fi)+etc. (4)

Then A ~ and A p, the respective exchange po-
tentials for the 5 and P parts, are evaluated from
the expressions:

SQUARE BARRIER 8 S-WAVE FUNGTIONS

--P

EXGHANQE

--' p76~
5

POTENTIAI. S '5

,„eg
$ ~ I

where k is integrated from 0 to k =1.92r„and
d&os is the solid angle in k-space. (The factor 2 is
supplied by summation over spins. ) This choice
insures the normalization of electron density to
unity over the unit cell.

Because of the complications involved, a gen-
eral evaluation of the A's is very dificult. Instead
one can expand about the center of the vacancy
in powers of r (henceforth called s) and investi-
gate the size and curvature of A q and the size of
A~, at this point. Since this point will give the
largest values of the differences between vacancy
and free-electron exchange potentials, a reason-
able estimate can be deduced for the behavior

I ~5(kr) )'dVs Ae

e t. ~ 5*(kr)5(krt)p(x, xt)
d VI,d Vi,

Fr@. 1. (a) Comparison of S(kr) for a square barrier with
corresponding plane wave, jo(kt'), for the free electron. The
square-cut barrier is superimposed. {b) Tht: exchange po-
tentials for the harmonics in the neighborhood of the
vacancy center. The upper full lines are for the free-
electron functions, the lower full lines for the solutions of

(5) the square barrier, and the dotted lines for the seif-
consistent solutions.

e I
~ P'(kr)P(krt)p(x, xt)

d VpdUg,
fj

where the summation over k states has been
replaced by integration, not only as shown
explicitly but also implicitly in the expression for
p(x, xt). The k-volume element is (2x) s2k'dkd&os,

~ J. Bardeen, Phys. Rev. 49, 653 (j.936).' See P. Morse's Vibration and Sound, pp. 246, 335.

throughout of this contribution to the disturbing
potential. The factor

~
s r&~

' can b—e replaced by
its expansion in harmonics:

1//s —r, f

(1/rt) Q (s/rt) "P„(cos8) for s &rt,
(6)

1 for e& rg.

All three of the integrations over solid angle can



H. B. HUNTI NGTON

now be carried out, with the help of the relation„

P.(cos 8)P.(cos 0')d&»

=4w(2N+ 1)P(cos 8"), (7)

+—S(», r)P(», r)+ r'dr
r2

t" t'1 1)
-fS(». »)]»,

(

——~r»dr
&, (r»)

2e ~" ~P(». r)~'
P(», »).Ap(») =—

0 r

+ $(», r)P(», r)+ r'dr
3r2

Here $(x, y) is an abbreviation for J»""'$(kx)
XS(ky)k'dk and similarly for P(x, y).

If we consider first the A's for the free-electron
distribution, then S(kr) =j»(kr) =(sin kr)/kr and
P(kr) =jl(kr) = (sin kr kr cos kr)/(kr)—'. All inte-
grations over k and r can be performed exactly
and give:

5k 'e2

~
S(», r)

~

'rdr =
4 36

~
P(», r)

~

'rdr =
~)0 108

(9)

S(», r)P(», r)dr=k '»/54.

Solving for the Ae(») and the Ap(») we obtain
[see Fig. ib]

3ek 2(k„») '
Ae(») = 1+-

2x 135

3ek 25
Ap(») =

2Ã 27

where 8 and 8' are referred to poles which make
an angle of |I"with each other. By considering no
terms of higher order than e2, i.e. no D terms, one
obtains the following expressions for the A' s:

t
--

~
$(», r)

~

S(», »).Ae(»)=—

The constant free-electron exchange, Q.916e/r„
is given by 3ek„/2s. Moreover, if we take the
weighted sum S(», »)Ae+3P(», »)Ap, the terms
quadratic in e drop out, as one would expect,
since A is a constant for free electrons.

To obtain values for the exchange potential
with vacancy distribution, one must make some
choice of starting functions from which to work
towards self-consistency. It was decided to repre-
sent the potential in the neighborhood of the
vacancy by a square-wall barrier in the first
approximation with height II for r &R and zero
elsewhere. For this case the wave solutions can be
found immediately by fitting at the barrier wall.
In Table I are compiled the analytic expressions
for the S and 2' functions of both uniform and
square-barrier distributions inside and outside
the barrier. The respective contribution of each
function to the density at the origin is also given.
The a8 and the a~ are the phase shifts which
appear in the vacancy wave functions as a result
of the repulsive potential. For the S waves the
ag are given exactly as a function of k by

cot (kr ae) = (K—/k) coth KR,

where 2(K'+k') in atomic units is equal to H.
Expressions for a~ and O.D proved to be more
complex, but could be closely approximated by

tan np (2/45)kR——'H sin' kR
and

tan»»n = (2/1575) k'R'H sin» kR. (12)

The greater sensitiveness of the higher harmonics
to the extent of the potential barrier is shown by
the presence of the R2"+' factor. On the other
hand the height of the barrier appears only to the
first power in each expression for the wave shifts.
An actual barrier was next chosen with R equal
to r, and II equal to ~~A ', since this seemed about
the size needed to displace one electron from the
region of the vacancy. A comparison between a
square-barrier function $(kr) and the corre-
sponding j»(kr) of the uniform distribution is
shown by way of illustration in Fig. 1(a). The
square-barrier potential has been schematically
superimposed.

The integrations over k, indicated in the ex-
pressions for S(x, y) and P(x, y), were next
approximated by summing appropriately over
five evenly spaced values of k. Then the inte-
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Frr. 2. The electrostatic potential for the 6rst integration is shown here; also
the potential used for the 5 functions formed by adding AA8. The distribution
of the displaced charge for the 5 and P functions are superimposed for comparison.

grations over r were carried out numerically with
the following results:

S(e, e) = (0.357 —
0. 04 4c')r

P(e, e) = .01 5''r, ',

~
S(. .) ~

2rdr = (0.164+0.08«2) r

1

~P(e, r) ~'rdr=(0. 061m')r, 4

"o

S(e, r)P(e, r)dr=0 072&'r, .

Here e is measured in units of r, . Substituting
these values in Eq. (8), one obtains

A s(c) = (0.56—0.26&') s/r,

Ag (e) =0.67e/r, .

In Fig. 1(b) these data for the square-barrier
exchange potentials are shown in full lines. The
corresponding quantities for the uniform distri-
bution, also in full lines, lie above them. By
subtracting one set from the other, one obtains

the vacancy in the region of its center. Moreover
these contributions must become negligible at
about that distance where the distribution regains
its normal density, or near 1.8r, .This information
was sufhcient to determine A8 with accuracy
sufFicient for our purpose, since the exchange
terms did not play the dominant role in dis-

placing the electrons. The shape of ihip was
taken similar to Mg.

3. Integration of the Self-Consistent Solution

The contributions of the exchange potentials
were next added to the potential of the "negative
ion" and of the initial distribution of the dis-
placed charge, which has been previously
discussed. The initial distribution, which de-
termines the shape of the "hole" formed in the
electronic fluid about the vacancy site, was com-
posed of about 60 percent of an 5 electron, 30
percent of a P electron, and 10 percent of a D
electron. In their respective potential fields 5 and
P functions were next integrated numerically for
five evenly spaced values of k. If one writes
XpRp, a(r) for krS(kr) and ¹R~,~(r) for krP(kr),
etc. , the wave equation becomes

d'R„, ~(r) /dr'
~As(e) =(0.35 0 20~')e—/r, .

hA ~(e) =0 18e/r. .
and n(~+1)-—2 V„(r) —k'+ R„g(r) =0, (,16)(15)

r2
These differences describe the contributions of
the exchange terms to the disturbing potential of for the radial part of the nth harmonic, where
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.6

DISTR I BUT ION

INTEGRATION

t NT EGRAT I ON

—&IN 0,

Fir. 3. Comparison of densities of displaced charge in units of eao for the various
distributions of each step in the self-consistent process.

atomic units have been used throughout. In the
region from r=0 to 0.8up the U„(the potentials
appropriate to the harmonics in question) were
taken to be constants, for reasons which have
been previously discussed. Thus the starting
conditions for the R„were determined at 0.8cp
to 6t with hyperbolic functions of the type used
for the square barrier. Beyond the value Sap,
the U„(r) become nearly zero and one could
identify XoRO with sin (kr as) a—nd ¹R~with

(1/kr) Lsin (kr nJ*) kr co—s—(kr aJ ))—The ph. ase
shifts 0.„,could then be determined together with
ihe normalizing constants, N„.

After these functions were obtained, the next
steps were to normalize them with multiplication
by N„, to square them, to average over k, and
hnally to subtract these densities from the
corresponding quantities computed from the free-
electron harmonics to get the distribution of
displaced charge. In Fig. 2 the 5 and I' contri-
butions to this distribution are shown for this
stage of the solution, What is plotted is the
density of charge in a spherical shell of radius r
as a function of r. The electrostatic potential and
V„=p used in the integration are superimposed on
the same graph. The results from this step give
0.49p5 electron and 0.35sP electron. Little could
be said about the D function with certainty, since
the exchange potential was not known. Investi-
gations of this potential in the region around r =0
would be necessarily laborious and give little
information about this term at distances where

the D function would be most sensitively affected.
Certainly the effect of the exchange potential will
decrease with increasing order of the harmonic.
For the D function it may well be negligible. One
integration was carried out by using the electro-
static potential alone. Comparing the phase shift
so obtained with that Of the corresponding
square-barrier function, one could estimate, on
the basis of an approximate treatment applied to
the latter, that less than 3 percent of a D electron
was displaced. In all this gives a total of nearly 88
percent electron displaced at this stage.

In the next step a new electrostatic potential
was devised, essentially by treating the 88 percent
electron as a whole. (It seemed reasonable to
assume that the vacancy cell will be neutral at
large distances. ) New integrations gave 47 percent
5 electron and 44 percent I' electron, whereas
about four or five percent D electron was esti-
mated. With the second step in the self-con-
sistent process about 96 percent of an electron
had been displaced. A new potential calculated
from this distribution would differ but slightly
from the previous one—it would show in fact a
small increase. Adequate self-consistency, under
the condition that one electron be displaced,
seems assured to the accuracy with which it is
feasible to determine the displaced D. The be-
havior of the initial distribution and of those
from the two successive integrations is illustrated
in Fig. 3.

With the final wave functions the exchange
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calculations were repeated, both to check the
previous work and to determine the sensitiveness
of the A„ to the distribution used. The results
gave:

bA s = (0.424 —0.278&') e/r,

bA p =0.27ge/r, . (17)

The potentials from which these values are
obtained are represented by dotted lines in Fig. 1,
where they may be compared with the other
exchange potentials.

t A(1+5)II@(1+f)dV

k'
(1+f)d(1+f)d V

2m V~

1
+— [1+f(rg)j'

VJ
s'

I
2f(r2)+f(r2)'

X V(«)+- 8 V2 d V, (18)

now nearly corresponds with the energy para-
meter, e'I„of our self-consistent solution. The
correspondence is not exact because in this paper
we have been dealing with the Hartree-Fock
equation, whereas in the other no attempt was
made to take into account any change in the
exchange energy. This marks the second impor-
tant difference between the two procedures.

Let us investigate the e'~, of the self-consistent
solution. They differ from (kk)'/2m of the free
electrons because of the wave shifts introduced
by the vacancy barrier. The new wave functions

4 Compare wigh Eq. (12') and (1.3').

4. Energy of the Vacancy

The procedure for setting up the expression for
the energy of the vacancy is somewhat involved.
Fortunately it resembles that followed in the
preceding paper by Huntington and Seitz where
the vacancy was treated by a variational method.
Except for two important changes, the develop-
ment is the same. In the first place the self-
consistent wave functions are actually eigen-
functions of the vacancy problem in the expanded
lattice. The mean value of the Hamiltonian for
the kth electron, which was formerly written'

must satisfy the same boundary conditions as the
eigenfunctions of the expanded lattice. At large
distances the principal diAerence between the two
sets of functions arises from the wave shifts,
a(n, k). If we consider our copper specimen to be
a sphere of radius R, then the wave number k' of
the self-consistent solutions must be related to
the k of the expanded lattice by the equation,

(k'R —a) =kR, or k' =k+ (n/R). (19)

There is then a small change in k, inversely
proportional to the linear dimensions of the
copper crystal. The change in energy parameter
of a given electron wave is given by 2ka/R in Ry.
The number of wave functions belonging to the
same harmonic but to di6'erent values of k is
given by X=k R/s. . For a given harmonic it
follows that the increase in the energy parameters
is given by

2(2n+1) A

AE„= P ka(n, k) in Ry. (20)

The value of the summation was approximated
by taking k times the evenly weighted average of
the five values for kn obtained from the five
integrations for S and P harmonics. Results gave
680=0.103 Ry for S and dB&=0.048 Ry for P.

In the final expression for the energy in the
variational scheme, Eq. (19'), the term involving
the Laplacian of f appears. It measures the
difference in the kinetic energies of the modified
wave functions and the free-electron waves of the
"expanded lattice. " Since the left-hand side of
Eq. (18) can be evaluated as the sum of the e'~ of
the self-consistent solution, one can solve this
equation for the kinetic term and obtain the
expression

BED+DER t p, (rg)—
t. p*(r2) —p,.(r2)

U(rg)+e', '

d Vg d Vy. (21)

Here the subscripts u and s on the density func-
tions refer to the uniform and self-consistent
functions, respectively.

There is still to be treated the second point of
diAerence between the two procedures. When the



H. B. HUNTI NGTON

(A,p, —A„p„)dV=

(A.—A„)p,d V+-,') A„(p„—p,)d V. (22)

The exchange operator for plane waves, A„, is a
constant, and consequently the second term on
the right vanishes. The first term can be treated
by breaking it up into 5 and I' parts.

A compilation of the terms which enter into the
energy of the formation of a vacancy follows here.
It contains the energy of the "extended lattice"
and the potential terms analogous to those ap-
pearing in the earlier treatment, the kinetic

TAM, E II. Energy contributions from neighbors for"D" configuration.

Lattice potential term
Dipole interactions
Shielded vacancy ion potential
Ion-core repulsions

Value for X-parameter

Exponential

0.00 ev
0.00 ev
0.84 ev—0.24 ev
O.N ev
0.00

Displaced
Fuchs

0.02 ev
0.03 ev
0.90 ev—0.68 ev
0.27 ev
0.01

energy expressed in its new form, and finally the
exchange terms just discussed above.

Energy of the "extended lattice"
Self-energy of the displaced charge

p„—p, ——g, V(r) {see Eq. (31'))

Change in the energy parameters for the S
functions

Change in the energy parameters of the P
functions

( } V( )+ gJP&(ra) Ptt(rm}g V d V
ri —re

Exchange term for the 5 function
Exchange term for the P function

—0.544 Ry
0.393

0.168

0.103

Q.Q48

—0.017

—0.051
—0.009

1.23 ev =0.091 Ry

variational attack was used, no attempt was
made to take into account any change in the
exchange potential. Now that the recent method
has incorporated into it a term of this nature in

the potential field used in solution, one must
finally subtract away one-half of the average
exchange potential, in accordance with the
standard procedure for obtaining the total energy
in the Hartree-Fock approximation. The quan-
tity to be included can be written as follows:

This result is surprisingly close to the 1.4 ev
found by the variational method with the use of a
function of the Gauss error type in the neighbor-
hood of the vacancy. Evidently the decrease in

energy, which one wouM expect in a numerical
solution, has been compensated in part by the
inclusion of the change in the exchange potential.

The radial distributions plotted in Fig. 3 show
that the density is greater than its normal value
at distances of 5t20 and 6uo. Apparently the
electrostatic potential of the vacancy is actually
positive at a radius equal to the interatomic dis-
tance. Some electrostatic considerations can now
be used in conjunction with the results already
obtained for the repulsions of closed shells to
redetermine the positions of next neighbors.
There are first the potentials of the vacancy and
of the lattice,

(tu 'Aa

12 Zi —,—,0 i
—E(0)+ —V(r )

.~=~~(l —})P
(23)

The potential of the lattice for an ion in its own
cell, E(x), can be accurately calculated by some
method such as Ewald's, but for these purposes it
will be adequately represented by the quadratic
term of central symmetry, r'/r, ' Ry. The dis-
placement of nearest neighbors toward the
vacancy is given by )I.v2a/2. There are, in addi-
tion to (23), the interactions of the displacements
of the various neighbors, which may be calculated
by the standard formula for dipole-dipole energy.
The results after including these quantities are
shown in Table II. The exponential repulsion
gives the energy of neighbors as 0.6 ev, the Fuchs
repulsion as 0.3 ev with X equal to 0.01. In each
case the positive contribution from the electro-
static interactions has overbalanced the decrease
in the repulsive energy. Final values for the
energy needed to form a vacancy are 1.8 ev and
i.5 ev, according to the exponential and Fuchs
repulsion, respectively.

The large increase in the electrostatic energy
just considered is to some extent a spurious efIect,
which arises because the spherical modulation of
the wave function alone is inadequate at large
distances from the vacancy center. This situation
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with the next neighbors contributes the largest
uncertainty in the valve for the energy of vacancy
formation. The next largest causes for error arise
from the use of the free-electron model and from
the limited degree of accuracy to which the self-
consistent solution has been carried.

II. UPPER LIMIT TO THE ENERGY OF THE
SWODLZ-POINT

Unfortunately the saddle-point for vacancy
diffusion, configuration 8,' cannot be treated as
rigorously as the situation in the preceding
section. Here the problem is more complicated
because only symmetry about the direction of
diffusion remains. A direct attack by the varia-
tional method would give a reasonably good
answer, since the variational and Hartree-Fock
methods have shown substantial agreement in the
preceding case. Unfortunately the integrations
involved in the self-potential and kinetic terms
would be extremely awkward. I have chosen
instead a rather makeshift approach, which
nevertheless can give considerable information.
There follows a discussion of the model employed
and the assumptions which are necessarily made
in treating it.

1. Description of the Assn~ed. Electronic
Distribution

As before, we start from a uniform distribution
in the "expanded" lattice with its energy of
—7.34 ev. Next in the region of diffusion two
vacancy cells are placed at adjoining sites, and a
diffusing ion is put halfway between them.
Suppose this ion brings with it its atomic cell and
that this cell is deformed to include the region
about the diffusing ion which is not part of the
polyhedron cells of its four nearest neighbors. '
Then the deformed atomic cell will fill up one-half
of each of the vacancy cells an either side. The
rest of these vacancy cells will be henceforth
referred to as the "regions outside atomic cells, "
and they may be taken to be hemispherical in
shape, as shown by the cross-hatched areas in
Fig. 4(a). These regions have a high potential
energy as compared with the rest of the lattice.
In line with previous treatment one must intro-
duce some modification of the electronic distri-

See Fig. 2 in preceding paper.

bution to decrease the density of charge at these
places. The only kind of distribution which can
be dealt with simply, i.e., without introducing
extremely complicated spatial integrations for
the kinetic and potential terms, must possess
spherical symmetry. Accordingly a model was
chosen in which there were removed two spherical
distributions, each of charge -', e, one from each
hemisphere. The center of each distribution was
placed at the centroid of the respective hemi-

/

.r
g' u)

Frt-. 4. (a) A model for the two-vacancy configuration,
where the "regions outside atomic cells" are shown as two
hemispheres separated by the cell of the di8'using atom.
(b) Here the spherical holes of charge &e have been made
in the electronic distributions, as represented by the cross-
hatched, circular areas. The centers of these charge holes
coincide with the centroids of the hemispheres shown in (a).

sphere, and its radial behavior was taken to be
the same as that of the self-consistent solution in
Part I for the single vacancy, except that the
radial scale was reduced by the factor 1/4T (see
Fig. 4(b)).

There are several apparent defects in this
model and it is well to examine them critically
before proceeding. In the first place no account
has been taken of the change in form of the self-
cansistent solution when applied to the smaller
"region outside atomic cells. "Such a charge hole
will be relatively more shallow, as a rigorous
solution would show. To obtain an upper limit
for the energies involved, however, the present
procedure will suSce. A far more serious short-
coming, I believe, is the fact that the charge
taken from the hemispherical "regions outside
atomic cells" has been assumed to have a
spherical arrangement. This is very different from
what is actually the case, but one must remember
that, even for the exact solution of the pmblem of
the hemispherical potential barrier, the surfaces
of equal electronic density will have a more nearly
spherical form than the equipotentials of the
barrier itself. This reduces modulation of the
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wave functions and resulting kinetic energy. At a
later point an estimate of the involved error will

be made by calculating the increase in kinetic
energy which would accompany the deformation
of our charge holes from spherical form into
oblate spheroids of the same volume. Finally the
assumed electronic distribution of the two charge
holes leaves the density of charge about the
diffusing ion at its uniform value, whereas we
know that this cell is at a higher potential than
the rest of the crystal and consequently collects
some extra charge within it. This latter is,
however, a minor defect and probably causes only
a small error in the final energy value for this
model.

Z(-,'a, —,'a, 0) —Z(0) &2e'/a. —(24)

The last term comes from the change in the
Coulomb interaction of the diffusing ion with the
"vacancy ion" (negative). Actually the expres-
sion (24) gives a negative result. The reason for
this is that, while the diffusing cell moves to a
higher potential, the self-potential energy of the
charge outside atomic cells has decreased from
that of a uniformly charged sphere to that of two
uniformly charged hemispheres at a distance L
apart, where L, the distance between the centroids
of the two hemispheres, is -', &2u+ 4r, .The classical
problem of the self-potential of a uniformly
charged hemisphere cannot be solved in closed
form but estimates (as obtained in Appendix I)
place the size of this energy at approximately
nine-tenths of that for a sphere of the same charge
density and total charge. For a uniformly charged
sphere the self-potential is 0.6C'/R, where C is
the total charge and R is the radius. Then the
change in the energy of the charge outside atomic

2. The Ion-Ion Electrostatic Interaction

Before proceeding with the charge holes, one
considers the increase in the ion-ion electrostatic
interaction which comes about when the diffusing
atom moves to the saddle-point position. If one
starts with a vacancy and the uniform distribu-
tion of the "extended" lattice, then the increase
in energy of the lattice as a whole, when one of
the neighboring ions moves halfway in to fill up
the vacancy, is given by

cells is given by

e' f'eq ' V2 e'
0.6 ——2(0.9)

~

—
I
———

4r.
(25)

and this term must be added to (24) to give the
increase in the electrostatic ion-ion interaction
for the diffusing ion.

u. —n. ——a. 1'(r)d~
V

(26)

These considerations do not give the complete
energy for the formation of the two charge holes,
since there has been omitted any account of the
error introduced by replacing the high potential
hemispheres with "vacancy ions" of charge —-', e.
There seems, however, no convenient way to
compute simply and directly this effect.

3. Consideration of the Charge Holes

At this point one introduces "vacancy ions" of
charge ——,'e, placed at the centroids of the
hemispheres. The uniform distribution is replaced
by the modulated distribution containing the two
charge holes, as has already been postulated. The
terms which occur in the expression for the
energy for the one-vacancy "D" configuration
can now be taken over into this calculation, after
they have been multiplied by the appropriate
factor, as determined by dimensional analysis.
For the "D" configuration the kinetic energy in

Eq. (21) was obtained from the difference be-
tween the change in the energy parameters of the
electron waves and the integral of the final
distribution in the final vacancy field. Within
vacancy cells, whose linear dimensions are re-
duced by the factor 2 &, this term is accordingly
multiplied by 2&. In considering the potential
terms the relatively less important exchange
potentials were combined with the corresponding
electrostatic terms. The self-energy quantities
were multiplied by 2—

&, as obtained from reasoning
exactly analogous to that applied above to the
uniformly charged spheres. In addition the
interaction of the two charge holes gives e'/41. ,

which cancels a similar term of the opposite sign
in Eq. (25) of the preceding paragraph. A factor
2—

& multiplies also the quantity
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(c) Finally, the Coulombic interactions with
the "negative ions" and the charge holes. Here
the X displacement can be treated as a dipole of'

moment —~6&Xae. The distance between the
diffusing ion and a charge hole is nearly -',0. The

TABr.E III. Energy contributions from neighbors to"8"con6guration.

17 broken repulsive contacts
Energy of 14 "D"-type neighbors
Energy of 4 neighbors of dif-

fusing ion

Value of X-parameter for 4
neighbors

Exponential

—0.69 ev
0.98 ev

0.89 ev

1.18 ev

0.08

Displaced
Fucbs

—1.65 ev
0.99 ev

2.56 ev

0.90 ev

0.025

distances from the displaced neighbor to the
negative ions and to the charge holes are, re-
spectively, ~~Ha and 4'10&a. Accordingly these
terms give

The combination of these three contributions
with the curves for ion-core repulsion has a

4. Behavior of Nearest Neighbors

Some revision of those quantities, as given in
Table II, which relate to atoms adjacent to the
site of the diffusion jump, can now be made by
including electrostatic forces with the ion-ion
repulsions. In our procedure we have added to
the regular lattice potential, two negative
"vacancy ions, " one positive diffusing ion, and
two holes in the negative electron charge. For the
four nearest neighbors of the difFusing ion, the
following electrostatic terms are to be considered
in addition to the previously calculated ion-core
repulsions:

(a) The potential of the lattice for the ion in
its cell, which can be conveniently approximated
as before by r'/r, ' Ry.

(b) The energy gained by allowing each ion to
retreat from the diffusing ion a fraction, ), of its
equilibrium distance, which is given per ion by

2&2m' 1
1 ~

Au 1+X

minimum of about 0.89 ev with X equal to
0.08 exponential repulsion, and a minimum of
1.56 ev with X equal to 0.025—Fuchs repulsion.

As before the fourteen neighbors, which adjoin
only one or the other of the two vacancies, can be
treated as though they were simply neighbors of a
"D"-type vacancy. This is not strictly true, but a
detailed consideration would hardly be con-
sistent with the other approximations involved.
The energy of such a neighbor of a "D"-type
vacancy has already been treated in the pre-
ceding section. All the terms for the saddle-point,
which depend upon neighboring ions, are com-
piled in Table III. The energy for exponential
repulsion is given as 1.18;for the Fuchs repulsion,
0.90 ev.

5. Compilation of Terms

From the terms so far considered some idea can
be gained of the energy for the 8 configuration as
follows;

8{~a, ~a, 0)—E(0) 1.177 e'/a
—g2H/a —1.414 e2/a

0.6 e'/r, [i (2) &(0.9))— 0.663 e~/a

Ion-ion electrostatic energy 0.426 e'/a =
Kinetic energy term
Self-energy of charge in electronic distribution
J'Q —pl —(X/V)gs jV(r)d V
Expanded lattice term

1.698 ev
2.94 ev
2.84 ev
1.43 ev

—7.34 ev
1.55 ev

Exponential Displaced Fuchs
With the inclusion of 2.73 ev or 2.45 ev

neighbor terms

0. Estimate of an Upper Limit

Because an important potential term has been
omitted in obtaining these values for the energy
with the two spherical charge holes, the results
cannot be considered to represent -an upper limit
to the activation energy for diffusion. It is
possible to estimate the error by the following
argument.

The potential term which has been neglected in
the preceding treatment would have been unim-
portant if the shape of the charge distribution
had been chosen to minimize its interaction with
the hemispheres of high potential, A non-
spherical distribution would have also a lower
self-energy but its kinetic energy would be in-
creased. One can estimate the increase by this
device: Suppose F(r) is a spherically symmetric
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wave function for which the associated kinetic
energy is known. By a volume-conserving trans-
formation of coordinates one obtains a new wave
function FI [(x'/V) +)y'+ V']&) . It can be shown
(see Appendix II) that the kinetic energy resulting
from the Laplacian of the new function is
-,'(X '+2K) times that of the old. Let the x axis
coincide with the direction of the diffusion and
set X equal to the ratio of the radius of the
hemisphere to the diameter of the equivalent
sphere, namely 0.628. Consequently the kinetic
energy associated with the new wave function is
higher by 27 percent than that of the spherically
symmetric one. This increase, or 0.79 ev for our
case, is a measure of the inaccuracy of the two-
vacancy procedure. If it is added to the other
results, it gives for upper limits to the energy of
the saddle-point, 3.52 ev on the exponential
basis, and 3.24 ev with the displaced Fuchs curve.

The experimental value for the energy of
activation for copper is 2.6 ev, as given by
Steigman, Shockley, and Nix. This lies in the
region where the present results indicate that the
energy for configuration Z is also located. The
approximations throughout have the effect of
putting the energy values too high with a
probable error of roughly 35 percent. Within such
limits the agreement is satisfactory. On the
other hand Fuchs made use of a modified free-
electron model in his work on copper. His result
for the binding energy is less than half the
experimental value, as can be seen from Table I'
in the preceding paper. That such a discrepancy
has not been encountered here in calculating the
activation energy for di8'usion indicates that the
computed energies for vacancy configurations are
not greatly sensitive to the inadequacies of the
models assumed for the normal state of the
metal.

The ion-core repulsion term is relatively unim-

portant for the vacancy configurations. It is
fortunate that the uncertainty of its behavior did
not prevent the determination of the favored
mechanism for diffusion. In this regard it may be
emphasized that these results definitely complete
the case for vacancy diffusion from the theoretical
standpoint. It has been shown that the energy of

the saddle-point for this process lies below those
required in either interstitial or direct-interchange
diffusions.

III. EXTENSION TO OTHER METALS

It is natural to inquire to what extent these
results for copper may be applied to other metals.
It should be pointed out that it is the ion-core
repulsion which plays the dominant role in
eliminating from consideration the interstitial
and direct interchange processes. There is reason
to believe that the same forces mould be im-
portant for metals near copper in the periodic
table.

The self-diffusion of zinc, both in single crystals
and in polycrystalline specimens, has been
studied by Banks and Miller. ' Their results indi-
cate that diffusion in this substance is strongly
anisotropic. From preliminary work they give
that the energy of activation is about 0.85 ev
along the |, axis and about 1.24 ev in the basal
plane. It is customary to set the diffusion con-
stant equal to Doe &~sr, where Q is the activation
energy for diffusion and Do is the temperature
independent factor. It is also found that the Do
for the diffusion constant for the basal rate is
larger by a factor of about 10' than for the
corresponding quantity for diffusion along the
hexagonal axis.

Because zinc is very far from a free-electron
metal, such calculations as we have applied to
copper are out of the question here. Nevertheless
some qualitative remarks, based on consideration
of a simple, central-force law, can be made con-
cerning the relative probabilities that a vacancy
is filled by an atom in the same basal plane, or by
a neighboring atom in an adjoining plane. For a
close-packed hexagonal lattice the atom which
makes the jump to 611 the vacancy, whether it
stays in the same basal plane or not, must pass
through an activation point where it is equi-
distant from four of its neighbors. The shortest
distance of approach is (VX/2) times the normal
interatomic distance. For such a close-packed
lattice one would expect nearly isotropic diffusion.
Actually zinc departs from close-packing by a 14
percent elongation along the hexagonal axis. In

' J. Steigman, %. Shoekley, and F. Nix, Phys. Rev. 55,
13 {1939).

~ Floyd R. Banks, Phys. Rev. 59, 376 (1941); F. R.
Banks and P. H. Miller, Phys. Rev. 59, 943A (1941}.



VACANCY MECHANISM FOR DIFFUSION

/

r

/ 03

BASAL ~ PLANE

I -888&-~
/I

Ih III
I

Ii I)

~8ASAL PLANE ~

I Op &

I
I
I

I I

I I

I I

I
I

,'BASAL PLANE '

JUMP IN BASAL PLANE

(a)

NON-BASAL JUMP

(b)

Fir. 5. Positions for diffusing atom in a zinc lattice.
+ Diffusing atom. y Neighboring atom. a Normal inter-
atomic distance in the basal plane. In each case there are
indicated the positions of the diHusing atom and its four
nearest neighbors at the instant when the di6'using atom
is halfway between vacancies, The plane section presented
is that perpendicular to the path of the jump.

Fig. 5(a) the diffusing atom and its four nearest
neighbors are shown in a cross section, perpen-
dicular to the direction of diffusion, at the mid-

point of a jump in the basal plane. The corre-
sponding configuration for a jump from one basal
plane to another is shown in Fig. 5(b).

If one calculates the activation energy for each
case, the results turn out to be sensitive to the
type of repulsive law chosen to represent the
action of the ion-cores at close distances. For
the exponential type, under certain conditions, the
basal diffusion has a slightly higher activation
energy than the non-basal diffusion. A curve of
repulsion like Fuchs' would reverse the situation.
Even with the exponential repulsion it seems
hardly possible to account for the observed
difference in activation energies, but there can be
no doubt that such a treatment is far too
simplified for the problem. This investigation
does, however, throw some light on the reason for
the larger Do for basal diffusion. In this case only
the two neighbors in the same basal plane are
near enough to obstruct the diffusing atom. For a
jump from one adjoining plane to a vacancy in
another, the moving atom is obstructed equally
by four neighbors. It is evident that occasions
propitious for a basal jump occur when two

neighbors are favorably displaced from their
equilibrium positions. On the other hand the eon-
basal jump is a more highly cooperative process
since it depends on the favorable displacement of

four neighboring atoms. One would expect that
opportunities for the latter process would occur
much more rarely.

To summarize the argument, then, one can
remark the following: Self-diffusion rates in zinc
appear to be markedly anisotropic. Were zinc
strictly close-packed hexagonal, such a behavior
would be dificult to explain on any model of
diffusion. Taking into account the observed
departure from close-packing and a rapidly in-
creasing, close-range repulsive potential, one is
able to show that the mechanism of vacancy
diffusion predicts qualitatively at least the ob-
served anisotropic behavior of the temperature-
independent factor in the expression for the
diffusion constant.

For the alkali metals the situation is to some
extent reversed, in that they adhere quite closely
to the free-electron model in their behavior,
which greatly simplihes the theoretical problem.
On the other hand no experiments have been
performed to measure self-diffusion and there is
little prospect that such experiments can be
devised for some time to come.

When the results of the copper calculation are
extrapolated to the alkalis with their larger
lattice constants, the various kinetic and po-
tential terms are decreased in size accordingly as
their dependence on r, indicates. The energy for
the "extended lattice" can be taken from the
analytic expression derived from free-electron
consideration, or still better, from the sum of the
ionization potential and heat of sublimation
minus the work function, since Wigner and
Bardeen' have shown that the two agree closely.
The repulsions of the ion-cores can be treated
with some assurance since the Born-Mayer
formula has been well tested for its validity in
dealing with these elements. The energies are,
however, much smaller, of the order of' O. i ev for
an interstitial position, as contrasted to 6 ev for
copper. In this way one can obtain crude values
for the energies needed to form an interstitial
atom, or a vacancy. Two clear deductions can be
made. First, these energies range around one or
two ev. Second, the interstitial and vacancy
mechanisms are in much closer competition for
the alkali metals than for copper, because here

8 E.P. Wigner and J. Bardeen, Phys. Rev. 48, 84 I', 1935),
see Fig. 1.
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the ion-core repulsion is nearly negligible. A more
detailed attack, perhaps along the lines of the
foregoing self-consistent solution, is required,
before one can state with de6niteness which is the
important mechanism for diffusion in the case of
any given alkali,

The author wishes to express his very sincere
thanks to Professor Frederick Seitz for sug-
gesting this problem to him and for his many
helpful suggestions and criticisms in the course of
its development.

APPENDIX I. ESTIMATE OF THE SELF-ENERGY
OF A HEMISPHERE

An estimate for the self-energy of a uniformly charged
hemisphere was obtained by the two following simple lines
of investigation. In each case it turned out to be about ten
percent lower than the self-energy of the sphere with the
same charge density and total charge.

Along the axis of the hemisphere the potential can be
found directly by a simple integration in polar coordinates.
For that part of the axis which lies inside the hemisphere
the potential is given by

where $e is the total charge, r, is the radius of the hemi-
sphere and cx is the ratio R/r, . The distance between the
field point and the center of the polar system of coordinates
is measured by R, with the positive direction on the same
side as the hemisphere. This potential has a maximum near
the centroid of the hemisphere at a =g. On substitution one
gets P($) =1.795 in e/2r, . The potential at the center of
the equivalent sphere is 1.5e(2)&/2r„or 1.892 in e/2r. .
This shows that the potential plateau is five percent lower
for the hemisphere than for the sphere. We may assume
that the self-energy of the two bodies will differ by twice
as much, or ten percent.

A more convincing line of argument is to consider a com-
plete sphere sliced into two hemispheres. Since the self-
energy of the sphere is known, the problem reduces to
finding the potential interaction of one hemisphere with the
other. We approximate this by the potential of one hemi-

sphere at the centroid of the other. Along the negative
direction of the axis of the hemisphere we have

P {a)= (1+~')& —1+Q/2

2 A

Since P (331) =1.067 e/2r„ the interaction of the hemi-
spheres is approximated by 0.267 e'/r, . The self-energy for
the sphere is 0.6 e'/r. , and there is left then for each hemi-
sphere 0.167 e'/r, . For the equivalent sphere the self-
energy is 0.6 e'(2)&/4r, or 0.189 e'/r, . The value for the
hemisphere is about 12 percent below the corresponding
self-energy for the sphere.

APPENDIX II. KINETIC ENERGY OF
A SPHEROIDAL DISTMBUTION

The kinetic energy associated with a wave function
possessing spherical symmetry, say F(r), is proportional to
the integral,

ft(r)q'p(r}dV =fF(r) I:"(r)+ F'(r) dr. (3—O)
2 I

If a new wave function is obtained by a volume-conserving
transformation, the normalization will be unaltered. The
Laplacian of F(Lx'/X~+) y~+)s'j&) is, when developed in
Cartesian coordinates,

x ~ X2+—(x'+~') ~"(p))2p pS

—+2& — — +x2y~+ &~2,2, (31)
1 x' ~'(p)

X2 p X~ P

where p has been written for the argument of I'. If this
expression is substituted in (30) and the inverse transfor-
mation, x=kt, y=) &y, s=X 4, and p=r, is employed,
then the integral becomes

(,))""(*}+I)r+e'))-.
—+2@-——+Xy~+u~ d V. (32)

P(r) 1 1 g~

r X~ r2 X2

The form of the integration is unaltered, because the trans-
formation has left the size of the volume element unchanged
and because the limits extend to infinity. If one now aver-
ages over angle, replacing S~/r~, etc. by ~3 the resulting
expression is ~)) [(1/hs) +2K] times the kinetic energy expres-
sion associated with the original, spherically symmetric
wave function.


