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The problem of the mechanism of diffusion in metallic copper is discussed from the stand-
point of the modern theory of metals. Three competing processes are considered in detail,
namely the mechanism of direct interchange of atoms, the mechanism of interstitial diffusion,
and the mechanism of vacancy diffusion. The energies of the equilibrium and saddle-point
conhgurations for the processes are determined first in an approximation in which the electronic
charge distribution is assumed to be uniform throughout the lattice, and second in a further
approximation in which polarization is taken into account by a simple variational method
based on the one-electron scheme. The results indicate that the vacancy mechanism is strongly
preferred and yield a value of the activation energy for diffusion in reasonable agreement
with the observed one. The vacancy process is considered in greater accuracy in a paper by
Huntington following this.

I. INTRODUCTION

HERE are three reasonable mechanisms of
atomic diffusion in the interior of solids,

namely diffusion by direct interchange of neigh-
boring atoms in a perfect lattice, diffusion by
means of interstitial atoms, and di6'usion by
means of vacancies. The likelihood of each of
these processes has been examined' most com-
pletely for ionic crystals since the computational
techniques for this type of solid are most widely
known and easiest to apply. As a result of this
work, it seems to be generally agreed that diffu-
sion by means of holes is the most probable in
all ionic crystals in which the ions have rare gas
configurations and the coordination number is
high. This includes, for example, the alkali
halides possessing sodium chloride and cesium
chloride structures and such divalent salts as
magnesium oxide. On the other hand, it seems
likely that interstitial atoms play an important
role both in crystals of low coordination number,
such as oxides and sulfides having zincblende
and wurtzite lattices, and in highly coordinated
crystals, such as the silver halides, in which the
metal ion contains a newly closed d shell. A
large amount of supporting evidence concerning
the, crystals of low coordination number has been
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obtained by Wagner' and his associates on
experimental grounds, whereas the evidence for
salts such as the silver halides is still mainly
theoretical.

The purpose of this paper is to examine the
diffusion mechanism in metals more closely than
has been done hitherto. Naturally, it would be
most convenient from the purely theoretical side
to carry out computations for the alkali metals,
since their cohesive properties are most fully
understood. Unfortunately there is not available
at the present time experimental information on
diffusion in these metals and it seems unlikely
that such information will become available in
the immediate future. For this reason, we have
decided as a compromise to work with copper,
in which self-diAusion has been measured by
radioactive tracer methods. ' The theory of
copper has been investigated extensively by
Fuchs4 and the results of his work, which will
now be described brieQy, are summarized in

TABLE I. Copper data.

~ Now at Washington University, Saint Louis, Missouri.
~ W. Jost and C. Nehlep, Zeits. f. physik. Chemic 832,

1 (1936). See also the book by %. Jost, DQ"Nsion end
Chemiscke Reaktiones in festen Stolen (J. Steinkopf, 1937).
N. F. Mott and M. J. Littleton, Trans. Faraday Soc. 34,
485 (1938).

' C. Wagner, Zeits. f. physik. Chemic 322, 181 ff. (1933).' J.Steigman, W. Shockley, and F. Nix, Phys. Rev. 56,
13 (1939); B. D. Rollin, Phys. Rev. 55, 231 (1939).' K. Fuchs, Proc. Roy. Soc. 151, 585 (1935); 153, 622
(1936); 15'7, 444 (1936).
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Table I. It should be mentioned at this point
that the inherent accuracy of Fuchs' computa-
tions for copper is considerably less than that
for lithium and sodium. It seemed worthwhile to
proceed with copper in spite of this fact, for,
as will be shown, the results in which we are
particularly interested turn out to be relatively
insensitive to the weaker points of Fuchs' work.

Fuchs determined approximate wave func-
tions for copper by the cellular method and con-

4.0 4.5 5.0
DISTANCE OF APPROACH IN ATOMIC UNITS

Fio. 1. Comparison of the two alternative curves for the
closed-shell repulsive force, (1) the displaced Fuchs model
and (2) the exponential force law. The equilibrium distance
of nearest neighbors is 4.77 a0.

eluded that the electrons are very nearly free,
as in sodium. %'e shall accept this approximate
result as a basic assumption in deriving the
Fermi energy, exchange energy and correlation
energy for the metal. In this approximation, the
electronic energy of the valence electrons in the
metal is'

k' 2.2 1 e' I. t p(r )
F.=Xi eo+ + i p(rg) I dVgdV~

2m r, ' 2X & rg2

e' 0 458e' 0.288e' ~.+2' p(r ) d V— — —

~
(1)

~c ~&a r+5.lao)
'See for example, The Modere Theory of Solids, Chapter

X {McGraw-Hill Book Company, 1940).

in which N is the number of unit cells in the
lattice, r, is the radius of the sphere whose volume
is equal to that of the unit cell, eo is the energy
of the lowest electron in the field of the nearest
ion core, and p(r)is the valence electron charge
distribution function. The terms in the right-
hand side of Eq. (1) have the following interpre-
tation. The 6rst is the combined potential and
kinetic energy of the lowest energy electron,
exclusive of its potential energy of interaction
with other valence electrons and with ions other
than that in the unit cell in which it is tem-
porarily located. These two energy terms are
given, respectively, by the third and fourth
terms in (1), the integration in the fourth being
over a single cell and the sum extending over all
ions in the lattice except that in the given cell.
The integration in the third term extends over
the entire crystal. The second term in (1) is the
mean kinetic energy of all electrons relative to
the kinetic energy of the lowest, and is the same
as the expression for the mean kinetic energy of a
set of perfectly free electrons in a Fermi distribu-
tion. If the effective electron mass were not unity,
as Fuchs' work indicates to be nearly the case,
the m in the denominator would be replaced by
the effective electron mass m*. The fifth term
in the expression is the mean exchange energy of
one of the valence electrons and the last is the
correlation energy.

Fuchs computed the ion-ion repulsive inter-
action with the aid of an interaction potential
derived by a modihed Fermi-Thomas method.
We shall call this interaction the "Fuchs po-
tential" in the following discussion. Now the
ion-ion interaction is of fundamental importance
for determining the elastic constants in a metal
of the type of copper, so that the merits of a
particular interaction can be evaluated by ex-
amining the elastic constants computed with it.
Fuchs found that his interaction gave excellent
results for the theoretical equilibrium spacing of
the lattice, which, unfortunately, is about 17
percent larger than the actual spacing (Table I).
Ke may conclude from this that his potential is
too large at the actual spacing.

As a result of this difhculty it was decided to
use two alternative ion-ion interaction functions.
One of these was a curve derived from Fuchs'
by displacing his to shorter distances by 17
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percent, and the other was a two-parameter
exponential function of the type used by Born
and Mayero in their treatment of ionic crystals,
where the parameters were chosen to yield the
best least square determination of the three
elastic constants. If the Born-Mayer function
is taken in the form Ae &"»&, the best values of
A' and p are A =5.64 Rydberg units per ion pair
and p=0.284A. As may be seen from Fig. 1,
the two types of curve differ appreciably. It
was hoped that by considering both a good idea
could be obtained of the importance of the ion-
ion interaction in two rather extreme cases.
Actually we have every reason to expect that
the Born-Mayer type of curve is the more ac-
curate of the two for, not only does it yield
reasonable results in the case of ionic crystals,
but in addition, it would lead to a compressibility
that would steadily decrease as the crystal is
compressed, whereas the displaced Fuchs curve
would lead to a compressibility nearly inde-
pendent of the volume in the neighborhood of
the equilibrium spacing, in contradiction with
experiment.

In addition to the exchange repulsion energy
between ions, we are interested in the van der
WVaals attraction between ions. This has been
discussed by Mayer and Levy' in connection
with computations of the stability of the copper
halides. They employed a function of the form

to pass from one equilibrium position to another.
The 6rst of these is of course zero for the mecha-
nism of direct atomic interchange. As we shall
see, the two energies may be evaluated individu-
ally in two successive stages of approximation,
namely, a first approximation in which the elec-
tronic charge distribution is regarded as uniform
throughout the crystal, and a later approxima-
tion in which the redistribution of charge in the
immediate neighborhood of the diffusing atom
is taken into account. Steigman, Shockley, and
Nix give 2.6 ev as the experimental value for the
activation energy for self-diffusion in copper.

INTERSTITIAL CONFIGURATIONS

1

1

jK
r

I

f w

INTERCHANGE VACANCY GONFIGURATIONS

II. ACTIVATION ENERGIES IN APPROXIMATION
IN WHICH ELECTRONIC REDISTMBUTION
ABOUT DIFFUSING ATOMS IS NEGLECTED

The equilibrium and saddle-point con6gura-
tions for the three types of diffusion to be con-

4.1X10 "/r' erg

for the van der Kaals energy of two copper ions,
r being the distance of separation in cm. The
contributions arising from this term are prac-
tically negligible compared with other quantities
for the values of r with which we shall be
concerned.

We shall now proceed with the computation
of the activation energy for the three diffusion
processes described above. In each of the cases
this activation energy may be divided into two
parts, namely, (1) the energy required to form
the lattice defect in an equilibrium state, and
(2) the additional activation energy required

M. Bo«and J.E. Mayer, Zeits. f. Physik 75, 1 I', 1932)
e$ sag.' J E. Mayer and R. B. Levy, J. Chem. Phys. I, 647.
(1933).

FIG. 2. Configurations involved in the various mecha-
nisms for diffusion. denotes an atom at an ordinary
lattice site. + denotes an interstitial atom. Q denotes a
vacancy. Small arrows indicate displacements under the
inRuence of the closed-shell repulsive force. Configuration
A shows the plane of interchange (3.00). Atoms in planes
directly above and below are indicated by .

sidered are shown in Fig. 2. In the case of direct
interchange, the equilibrium configuration is,
of course, that for the perfect lattice, whereas
the saddle-point conhguration is shown in

Fig. 2A. In this arrangement two nearest neigh-
bors, namely those indicated by squares at the
face-center positions, have rotated through 90'
about a (100) axis bisecting perpendicularly
their line of centers. The spacing of these neigh-
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bors will of course change in general during the
process. Figure 28 shows the probable equilib-
rium position for the interstitial atom at the
center of the unit cube, whereas Fig. 2C shows
the saddle-point configuration in which the
interstitial atom and one of its six nearest
neighbors have become symmetrically disposed
relative to one of the cube faces. The neighboring
atoms are shifted from normal sites in both of
these cases in the manner suggested by the
arrows. It evidently is not clear at this stage of
our reasoning which of the two configurations
has the lower energy, but subsequent work will
show that the assignment probably is as given.
Figure 2D shows the equilibrium vacancy con-
figuration whereas E shows the transition con-
figuration during diRusion.

1. Direct Interchange

For investigation of the saddle-point for
direct interchange, consider the two diffusing
ions to be taken from their equilibrium positions
and placed near adjoining "interstitial sites, "
i.e., body centers and edge centers. If we desig-
nate their distance from the respective neighbor-
ing interstitial sites by v2Xa/2, where X is a
parameter and c is half the cube-edge distance,
their mutual distance of separation is (1 —2X)V2a.
Similarly, we shall designate the distance by
which the nearest neighbors in the plane of
motion move in the (100)-type directions by
pa/2, and shall designate the displacement
vectors of neighbors to the interstitial sites lying
in other planes by (va/2, 0, 0), etc. The total
change in repulsive energy is then given by

&2a (a 6
5E(X, p, v) = R -(1—2X) +4R —((1+v)"-+2X2)» +4R —((1+X+g)2+X )»

2 l2 2

—23R

G v2a
+SR —((1+y)'+(1+v)')» —40R

2 2

/a 6
+16R —((1—v)'+1)' +16R —((1—y)'+1)»

12 2

where R(x) is the energy of repulsion per ion
pair at an interatomic distance x. When the
two diRusing atoms are taken from their equi-
librium positions, 23 repulsive contacts are
broken since these atoms had one contact in
common. The first three terms in Eq. (2) repre-
sent the new contacts established in this con-
figuration. Each of the four atoms in the plane
in which the interchanging atoms move, which
are displaced by an amount determined by the p,

parameter, alters its contacts with other atoms
behind it. These changes account for the coef6-
cient 16 in the sixth term. The situation for the
atoms whose displacements are determined by
the v parameter is similar. By evaluating this
expression numerically for suitable ranges of the
parameters the minimum value was determined.
Since the interesting ranges of the parameters
turn out to be small, it was found permissible
to disregard all but the linear terms in the ex-
pansion of the arguments of the functions.

Kith the use of the exponential repulsive
curve, it was found that the energy minimum
occurred at about 6.2 ev for X =0.11, p, =0.2, and
v=0.08. The displaced-Fuchs type of repulsive
function, on the other hand, leads to meaning-
less results in the present case because of the fact
that it varies comparativelv slowly with inter-
ionic distance, as we remarked in the previous
section.

In addition to the energy arising from ion-
ion repulsion, it is also necessary to take into
account the change in electrostatic energy re-

sulting from the motion of the ions through the
electron cloud. Assuming that the electronic
cloud remains uniform, we found that the elec-
trostatic energy increased by more than 11 ev
in going from the normal to the saddle-point
configuration. This gain would be diminished
somewhat by including the eRect of polarization
of the valence electron distribution, perhaps to a
third or half of its original value.
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2 2.21 k' j. 0.458e' 0.288r,e'
—x ——X
3 rg 2' 3 rg 3(r,+5.1)'

t p(r )+—
I p(r, ) I dgmdgi. (3)r„

For the uniform electron distribution, the self-

energy of the electrons in a cell is 0.6e'/r, .
Taking r. equal to 2.64 ao for copper, we obtain
7.34 ev for (3).

A value of this energy could also be obtained
from experiment by considering a process in
which an atom is evaporated from the surface,
ionized, and the electron is replaced in the metal
at the top of the Fermi band. If the dipole layer
at the surface of the metal is small, the net

2. Interstitial ConSgurations

In order to find the energy required to form

an interstitial atom under the assumption that
the electron distribution remains neutral, it is
necessary to consider the situation in which an
ion is taken from the surface and placed in an
interstitial site and the electronic charge which

previously surrounded ihe ion is distributed in a
thin, uniform layer throughout the crystal.
Consider the change in kinetic and electrostatic
energy of the system. If we regard the lattice
from the standpoint of the "s sphere approxima-
tion, "we see that the interstitial ion is very
near to the peripheries of the s spheres of the
surrounding atoms, so that its et.t electrostatic
interaction with the electrons and remaining
ions lattice is small. Thus the increase in electro-
static energy may be obtained in hrst approxi-
mation by considering the remaining system
alone. Each of the electrons is still in the electro-
static held of an ion, so that there is no change in

co Lsee Eq. (1)].On the other hand, the electron
gas is compressed, so that the other terms are
altered. The changes in Fermi, exchange, and
correlation energies may easily be derived by
noting that the effective sphere radius is changed
from r, to r, (1—1/3X). Similarly, the change in

the electrostatic self-energy of the electrons may
be derived by noting that the new electron
density is (1+1/X) and that it extends over
X—j. cells instead of E. Hence the total change
in electrostatic energy is

+4R —((1—X)'+ 1)& —7R
2

v2ui

2 f
(4)

in analogy with (2). This has a minimum of 5.5
ev at ) =0.2 for the exponential repulsive func-
tion and a minimum of 3.85 ev at X=0.1 for the
displaced Fuchs repulsion. Addition of the
7.34-ev term derived from Eq. (3) leads, re-
spectively, to values of 12.84 t v and 11.19 ev
for the energy of configuration 8 (Fig. 2) in the
present approximation.

Using the repulsive force, we have estimated
that the additional repulsive energy required to
go from the 8 con6guration to the C configura-
tion is about 0.5 ev.

energy required should be nearly equal to (3),
since the isolated ion at inhnity, like the inter-
stitial ion in the present approximation, would
not interact electrostatically with the rest of the
metal. A computation of this energy, based on
the measured quantities leads to a value of
7.19 ev, in remarkably close agreement with the
foregoing value. Since it is reasonable to suppose
that the surface dipole moment of pure copper
is not larger than i ev, this agreement suggests
that the free electron approximation is reliable.

The nearest neighbors of the interstitial ion
will retreat from it under the inAuence of the
short-range repulsive forces discussed in Section
1. This motion will, of course, inhuence the
electrostatic energy of the interstitial ion, but
it seems unwise to compute this effect at present
since it should be considered along with the
energy resulting from polarization of the elec-
tron cloud by the ion. The change in the short-
range energy may be evaluated approximately
as follows. In taking an ion from the surface and
placing it at an interstitial site, six surface
repulsive bonds at the ordinary interatomic
distance (v2u/2) are broken and six new re-

pulsive bonds are formed at a distance (1+X)a/2.
If the six neighbors remained at their normal
sites, the parameter X evidently would vanish.
If we neglect the displacements of next nearest
neighbors, the change in repulsive energy can
then be written

AZ„p ——6 R —(1+X) +2R (1+X)
tG

t
&2'

2 2
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TABLE II. Ion-core contributions for "E"con6guration.

Exponential Displaced Fuchs

Broken repulsive contacts
Energy of mutual neighbors
Energy of 14 other neighbors

Value for X-parameter

-0.69 ev
0.52 ev—0.19 ev

—0,37 ev
0.125

—1.65 ev
1.59 ev—0.40 ev

—0.46 ev
0

3. Vacancy Con5guration

In the vacancy case, those terms which ap-
peared in Section 2 as a result of compressing
the electron gas now appear with reversed sign
since the electron gas expands by an amount
equal to the volume of a single cell when an ion
is taken from an interior site and placed on the
surface. However, this gain of 7.34 ev Lsee Eq.
(3)j is counterbalanced by the fact that in the
present approximation the vacancy is occupied
uniformly by an electronic cloud uncompensated
by a positive charge. Thus in the sphere ap-
proximation this electron distribution has an
energy equal to —eo, the energy of the lowest
electron in the filled band. One may estimate
—eo from the sum of the ionization energy, the
heat of sublimation, and the mean Fermi energy
to be about 15.5 ev. As a result, the increase of
electron energy needed to form a hole can be
taken as 8.2 ev for a basis of comparison at this
stage.

The change in repulsive energy may be com-
puted next following the same general procedure.

For the simple vacancy distribution D, the
number of ordinary repulsions mill be decreased
by 6 in taking the ion to the surface, but a fur-
ther decrease results from the motion of the
atoms neighboring the vacancy toward it. This
change is

Na &2a
AZ„p ——12R (1+)) +48R —(1+X+X')»

2 2

&2a %2a
+24R — (1—X) —90R, (5)

2 2

in which the displacement of nearest neighbors
is given by XV2a/2. The decrease is about 0.4 ev
for the exponential repulsion with X=0.025 and
about 1.0 ev for the displaced Fuchs function
with ) =0.038.

The configuration 2 of Fig. 2 is the saddle-
point arrangement for the process since its energy
is higher than that of the configuration just dis-
cussed. In the new arrangement, two ions are
taken from adjacent positions in the interior
and one is placed at the surface with a net
decrease of IT repulsions (12+11—6). Next, the
other ion is placed at the center of the rectangle
formed by the four ions that are mutually
adjacent to both vacancies. These ions retreat,
as a result, and the displacement vectors may
be represented in the form (Xa/2, Xc/4, Xc/4).
The part of the change in repulsive energy aris-
ing from the variation in ) is

6&a 10&a a ] a
AZ„p ——4 R (1+X) +R —+3R —(2 —X)»i+g'R —(2+2K)»

4 2 2

+2R -(2 —3X)» +2R -(2+))» —7-', R
2 2

(6)

in which terms in X' have been omitted in the
expansion of the arguments. Using the exponen-
tial repulsion function we obtained a net energy
increase of 0.51 ev relative to the normal lattice
for X=0.125, whereas the increase was 1.59 ev
for X—0 when the displaced Fuchs function
was used. Now each of the two "half vacancies"
in the E configuration have seven neighbors
whose environment is indirectly aR'ected as a

result of the presence of the vacancies. For an
order of magnitude estimate, their change in

energy was taken to be the same as the decrease
found in the case of Fig. 2D for the neighbors
of the simple vacancy. Adding together the three
results (see Table II), we obtain as the repulsive
energy for the F configuration —0.37 ev when
the exponential curve is used and —0.48 ev
when the displaced Fuchs curve is employed.
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y~(1+f(»)) (7)

The fq are the normalized, free-electron func-
tions V &exp L2mit r], for the case in which
the charge is uniformly distributed, and f(») is
a function equal practically to zero everywhere
except in the immediate vicinity of the inter-
stitial atom or vacancy, where its value is to be
determined by variation. We shall assume that
it is radially symmetric about the lattice defect.
The functions (7) may be readily normalized

by the use of the condition

(1+f(»))'d V= V, (8)

in which the integration extends over the entire
lattice and V is the volume of the lattice. The
function f is not exactly zero at large distances,
because the redistribution affects the density of
electronic charge in6nitesimally throughout the

III. COMPUTATION OF THE ELECTRONIC REDXS-
TMBQTION SY k VNUATIONAL SCHEME

An easy method for estimating the lowering
of the energy which results from electronic
redistribution is a variational procedure based
on the use of one-electron functions of the form

crystal. It is convenient to introduce at this
point for later use a function, g(»), which is
exactly zero except in the neighborhood of
the lattice defect and is de6ned by setting
(X/V)L1+g(»)] equal to the electronic density
in the lattice. The density can also be expressed
in terms of f(»), as

%~1
L1+f(»)]'

V

The plus or minus sign applies according to
whether we are dealing with an interstitial or
vacancy defect respectively. It follows that

g(») = L2f(»)+f'(»)]&1/X.

The functions (7) are not, however, mutually
orthogonal and therein lies the chief weakness
of the present method. It is simple only if the
functions are treated as though they were
orthogonal. Fortunately the results obtained
here by assuming orthogonality are in reasonable
agreement with those obtained by a more exact
procedure employed in the following paper.
This indicates that the lack of orthogonality
does not prevent the method from giving sensible
answers to problems concerning energy.

The total energy of the system is then'

I' c IA(»i)(1+f(»i)) I'IA (»2)(1+f(»2)) I'
E»=Z~'~ ——Z Z '

~

d Vgd V2

+ ,' Q' —Q-Vg(» )+E,+E,+E„, (11)
c P f~p cx

in which E, and 8, are the total exchange and correlation energies for the electrons and E„ is the
ion-ion repulsive energy. The third term is the mutual electrostatic interaction of the ions of the
lattice, and the fourth term gives their interaction with the lattice defect. The energy parameter eI,

is the mean value of the Hamiltonian for the kth electron wave function,

~'~ =
~
"6(1+f)JIA(1+f)d V (12)

For this problem the Hartree Hamiltonian operator for the system of wave functions (7) becomes

$2
I I

IA(»)(1+f(»))I' » IA(»)I'II= — 6+ V((»)+ Vg(»)+s' Q I

2m
(13)

'See, for example, reference 5, Chapter VI.
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in which V~(r) is the potential of the lattice for a uniform charge distribution, V~(r) is the radial
symmetric potential of the lattice defect, either interstitial atom or vacancy, and finally the term
in braces is the difference in potential resulting from redistribution.

Now we can write

r ( )'i'

E '~=K I*i(1+f)~ — ~+Vi+ V~ ~gi.(1+f)dV
2m

t ~ A (r2) l'(2f(r2)+f'(r2))+2 e' i&(ri)(1+f(ri)) i' — — d V2 d Vi (14)
a, a J

The summand in the first term of this expression can be transformed to

( h2 O26
0'.(1+f)'I — ~+ Vi la~d V— I4.I'(1+f)

~

— + V. l(1+f)d V
2m i 2m i

k2

/*i(1+f) grad Pi, grad fd V (15).
mJ

The first term in (15) is evidently equal to ei„ the energy parameter for the uniform distribution,
whereas the third term is

1
2mk grad f(1+f)dV,

Vm&

which vanishes when summed over the range of k values occurring in a uniformly filled band. Hence
the sum of terms arising from (15) becomes as a result of the plane-wave character of the ifi„

k2 X
(1+f)~(1+f)dV+ (1+—f)'V/V

2m V~ VJ

The second term in (14) may be expanded to give

~ ~ 2f(r2)+f'(r2)
e2 d Vid V2+V~J~

¹e'
I

2f(r,) +f-'(r, )
I 2f(ri)+P(ri)d Vi — d V2.

V2
(17)

If the second term in (11) is expanded in a similar way and added to (17), we obtain

¹e'
t t 1 ¹

e2
I g(r.)—d VidV~+ —— g(ri)dVi ' d V.

V' 2 J rig P'2 2

The quantities involving 1/X which appeared in the last term can be easily shown to be negligible.
Combining all these results, we find

¹e'p t. 1 e2

E,= P..———
I dv, dV, + ', P —+E.+E.+-E, —P V.(r.)

'f/ 2 2 ~ /12 ese P f~p

N k2
¹

e' r g(r)
+— (1+f)'Vqd V (1—+—f)h(1+f)d V+ — g(ri—)d Vi de (19).

VJ V2m ~ V22~
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If we assume that E, and 8, are changed by relatively small amounts during the redistribution of
charge, the expression in brackets gives the energy of the lattice before redistribution, except for
terms involving the potential of the lattice defect.

1. The Interstitial Case

From the terms in (19) not in the bracket one can set aside

—p Vd(r.)+— VddU.
a

(20)

They represent the interaction of the interstitial atom with the lattice in the state of uniform elec-
tronic distribution. We have previously shown by the s sphere argument that this quantity is small,
The remaining terms in (19) give then the lowering of the energy with the polarization of the elec-
tronic charge.

By an application of Green's theorem,

"(1+f)~(1+f)dV=)' (1+f)~fd V=, (2+f)~fd V, (21)

we can express this polarization energy in the form

N I ( k' ) ¹ ~ g(rm)
' (2+f)~ — 6+V~ ~fdV+ e' g—(r,)dV, — dV, .

) V2~ 4

Though the integration indicated in the hrst term is over the whole lattice, it can be shown that the
only non-negligible contribution arises from the region in the vicinity of the interstitial atom. A
convenient estimate of the size of this term can be made by taking f(r) to be the eigenfunction of the
valence electron in a free copper atom, and, with this choice, the energy becomes

¹e' t t' g(rm)
ec — (2f+f2)dv+ g(r, ) dVgdV2,

VJ V2 J
(23)

in which —~c„ is the ionization energy of copper, namely 7.7 ev. For the limited region of integration,
indicated by dv, (2f+f') is equivalent to g. It is obviously necessary to assume that the interstitial
ion polarizes the electronic charge distribution by one electronic unit since this is just sufhcient to
neutralize its charge at large distances. This means that (N/ V) J'g(r)dv= 1. If the second integral of
(22) is evaluated for the copper functions with the use of the same normalization for g(r), it is found
to have the value 5.0 ev. Thus the polarization energy is found to be about 2.5 ev in the present
approximation. This indicates that the polarization energy is not suf6cient to reduce the 13 ev of
activation energy computed in the previous section for the unpolarized system to a value comparable
with the observed value of 2.6 ev. As a result we may conclude that the interstitial mechanism is
highly improbable in copper.

2. The Vacancy Case

We can make use of Eq. (19) a,iso in computing the energy needed to form a vacancy. That part of
the energy of the lattice before redistribution, which is represented by the expression in the brackets,
excluding B„,has already been discussed at length and shown to lie 7.34 ev below 8, the energy of a
normal lattice containing the same number of copper ions.
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T'ai.E III. Summary of results.

Direct
Interchange A

Interstitial
8 C

Vacancy
D E

Direct
Interchange A

Interstitial
8 C

Vacancy
D E

Electronic energy
in uniform
distribution

After polarization
Repulsive energy

(Fuchs)

11 ev 7.34 ev
4 ev

3.85 ev

8.2 ev
1.4 ev

—1.0 ev

Total energy
(Fuchs)

Repulsive energy
(exponential) 6.6 ev

~8 ev .4 ev

5.5 ev 6ev —.4ev —.37ev

1.0 ev
—.46 ev Total energy

(exponential) over 8 ev 9.5 ev

The first term which follows the bracket in (19) gives the electrostatic, ion-ion interactions which

must be subtracted when a vacancy is formed. According to the sphere approximation this is equiva-
lent to

r

(1+g.) Ved V,
y J

(24)

in which g, is a "step function" which is zero everywhere but in the vacant cell where it has the value
minus one, and V~ is no longer the potential field of a copper ion, as it was in the case of the inter-
stitial defect, but this field with a reversed sign, since the defect is now a vacancy. In the next term
one may replace (2f+f') by g. The combination of these two terms gives then

—
~
"(g—g.) v.d v.

yJ
(25)

The total energy can now be expressed,

Er =E„7.34ev+—dE,+ '(g —g,)—Vd(r)d V

r g(r2) O' E
+——

~l g(ri) t d Vid V2+ —,~grad f~'d V (26).
2m V~

Ke evaluated the last three terms with the use of the function

nr 1r(1/a—
r) 1/a,

(27)

in which n'=2/Sr 3, and obtained the result

0.12e' h' '5" 1 053e'
+ ]

—
i
—+

2m &2)
(28)

The firs termwasevaluatedby determining the potential arising from the distribution (X/V)e'(g —g.)
and assuming that the ionic charge is localized within the region near the origin where this potential
is nearly constant. Numerical evaluation of (28) gives Ei E„=1.9 ev+hE, .—This result is not very
sensitive to the analytic form chosen for (27). A function which avoids the discontinuity in derivative
is a Gauss error function,

f(r) — e—('/')' (29)

in which normalization determines d to be 0.77S r,. The corresponding energy needed to form a va-

cancy turns out to be 1.4 ev.
These results, like those found in the interstitial case, do not include the change in exchange and

correlation energies that occurs in polarizing the distribution, nor does it include the change in ion
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repulsion. The former wi11 be discussed in detail in the paper by Huntington, whereas the latter was
found in the preceding section to be —0.4 ev when the exponential-type function was used for the
equilibrium con6guration. The variational procedure then indicates about 1.0 ev as the complete
energy needed. to form a vacancy. For the saddle-point confIguration, the change in the repulsive
energy, when the exponential function is used, is found nearly the same, —0.37 ev, but the polariza-
tion of the electronic distribution is far less effective in lowering the energy for this conhguration
because of the more complicated density modulation that is involved.

IV. CONCLUSION

The results of these computations are summarized in Table III, and seem to show beyond a
reasonable doubt that the vacancy mechanism of diffusion is greatly preferred over the other two
types considered here for copper. A more careful treatment of the vacancy case, presented in the
paper by Huntington, supports this conclusion further.
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Self-Consistent Treatment of the Vacancy Mechanism for Metallic Di8usion*

H. B. HUmINmoN)
Banda/ Morgan Laboratory of Physics, University of Pennsylvania, Philadelphia, Pennsylvania

(Received December 6, 1941)

Previous calculations have indicated the predominance of the vacancy mechanism in
metallic self-diffusion. Here a more detailed calculation of the energy needed to form a vacancy
has been carried out. A self-consistent solution-to the Hartree-Fock equation was used with
a free-electron model corresponding to the copper lattice. The result agreed essentially with
the value predicted by Huntington and Seitz. In addition a rough upper limit was established
for the energy required to move a vacancy. This value compares satisfactorily with the observed
energy of activation for copper self-diffusion. The anisotropy recently observed in zinc self-
diHusion can also be qualitatively explained to some extent on the basis of a vacancy process.
In the case of the alkali metals present considerations are insufFicient to decide between the
interstitial and vacancy mechanisms.

INTRODUCTION

ATTICE vacancies are physically important
' ~ in metallic difII'usion. In the preceding paper'

by Huntington and Seitz we investigated three
possible mechanisms which might be responsible
for diR'usion in a typical metal, copper. Energetic
considerations indicated dehnitely that vacancy
diffusion plays the dominant role, as against
interstitial dift'usion and diffusion by direct inter-
change. The calculation for the energy needed to
form a vacancy had, however, two short-

~ Part of a Dissertation presented to Princeton Uni-
versity for the degree of Doctor of Philosophy.

t Now at %'ashington University, Saint Louis, Missouri,' Frederick Seitz and H. B. Huntington, Phys. Rev. 51,
315 (1942); preceding paper. Equations, figures, and tables
of this paper will be designated by primed references.

comings. In the fIrst place, the wave functions
used in the variational procedure were not a
mutually orthogonal set, though the simpli6ed
treatment there employed necessarily used them
as though they were. Secondly, no account was
taken of the change in'the exchange potential
which must accompany any modulation of the
electron distribution. Therefore it was decided to
undertake a self-consistent solution of the prob-
lem in the Hartree-Fock approximation.

L SELF-CONSISTENT SOLUTION FOR THE
VACANCY PROBLEM

1. Potential Field near the Vacancy

To handle the problem at all it was necessary
to use throughout the free-electron model with


