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is added. The difference is® Here 7 is the relaxation time and m the reduced
mass.
B — N = . .
N N Z/S. M) It appears from (1) combined with (2) that the
Further, Jones has shown that, if one assumes effect of reducing the overlap would be to add an
complete circular symmetry about [111] (actu- additional term to py over and above the linear
ally it is trigonal) then the conductivity perpen- term due to the random atomic scattering. The

dicular to the principal axis (our casc) is given by experi.mental results, however, indicate just the
opposite effect. It appears, therefore, that onc

o1=0. 40, P, (2) must suppose that the low temperature con-
where ductivity is due mainly to positive holes, and
= 3_2 TOND further that as the overlap is reduced the density
¢t ome of such holes sharply increases.

In conclusion we should like to express our
e TN thanks to Dr. S. H. Browne for providing some of

o= . . . .
PR the crystals used in this experiment. This work
o o was supported, in part, by a grant from the

9 H. Jones, Proc. Roy. Soc. A155, 653 (1936). George Sheffield Fund.
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This paper gives a closed formula which entirely replaces for the two-electron spectra the
previous lengthy calculations with the diagonal-sum method. Applications are also made to
some configurations with three or more electrons and to the p’’ configurations of the nuclei.

§1. INTRODUCTION

HE first-order perturbation energy for the terms of a given configuration was calculated at
first by Slater.! In his classical paper he showed that the electrostatic interaction between two
electrons depends on a very few integrals F* and G*, and he developed the diagonal-sum procedure
for calculating the coefficients of these integrals; with this procedure he obtained numerical tables of
coefficients for the two-electron configurations involving s, p, or d electrons. These tables were
extended by several authors? to f electrons and to some configurations with three or more electrons.
But the diagonal-sum procedure has some deficiencies. Firstly, when two terms of a kind occur
in a given configuration, this procedure will determine only the sum of their energies, and they can
be separated only by other methods. Secondly, this method does not give general formulas, but only
numerical tables; it is therefore impossible to make generalizations, and one must begin again for
each new case with new and more complex calculations.?
It is the purpose of this paper to substitute for the numerical methods of Chapters VI and VII
of TAS more general methods and more conformable to Chapter III of the same book.

1 J. C. Slater, Phys. Rev. 34, 1293 (1929).

2See E. U. Condon and G. H. Shortley, Theory of Atomic Spectra (Cambridge 1935), (which we shall denote by TAS)
Chapters VI and VII, for definitions, notations and bibliographical indications.

3 G. H. Shortley and B. Fried, Phys. Rev. 54, 739 (1938).
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§2. TWO-ELECTRON CONFIGURATIONS

If w is the angle between the radii vectors of the two electrons, the coefficients fi of F* are* the
eigenvalues of the matrix
(Llomimg I P, (cos w) [lllgmll‘)ng') H (1)

here P, is the Legendre polynomial of the order k. The transformation which diagonalizes this
matrix is (IioL M |l1lsmym,), and therefore

f;;(lllgL) = Z (lllzLjW! lllgmﬂl‘lz) (111211117?12 I Pk(COS w) 'lllzmllﬂ’LQ’) (lllgm 1"7”2, ! l1l2LM), (2)

mymomy'my’
or

fk<lll2L) = (lllgLMlPk(COS w) |l1lzLM) (3)
In the same way, if &g, are the coefficients of G* for the singlet and for the triplet terms, we have

gk(lllzL) = Z (lllzLMI lllgmﬂnz) (l1l2ml7n2 l Pk(COS w) [lzllmlzm’l) (l1l2m,1m12 I lllgL]l/[), (4;)

mymom’ ym’ 5
and in view of?
(lll2m’1m'2 | lllgL.A/[) = ( - 1) Ut l2—1‘(lzllm,2m,1 l lgllL]L[) , (5)
this becomes
gk(lllgL) = (— 1) I‘+12—L(1112LMIP];(COS w) ]lzllLM) (6)

Slater calculated the matrix elements of Pj (cos w) in the ljJomm, scheme, and then obtained the
eigenvalues of this operator by means of the diagonal-sum procedure; we will calculate the matrix
clements of cos w directly in the /:/;LM scheme by the method of Giittinger and Pauli,® and then
calculate f; and g, with the ordinary methods of matrix calculations.

If u; is the unit vector in the direction from the origin to the electron 2, by comparing TAS 4321
with TAS 9311, we have .

L@@

COS w= (ul-uz), (8)

(Tinil) =0, (iuili—1)=(;—1iuil) )

and since

introducing (7) in TAS 1222 we find that the only non-vanishing elements of (J4/sLM |cos w|li'l’LM)
are

Chtb+L+1) U+ l+ L)+l — L) b+ —L—1) ]}
2[ (20— 1) (2L +1) (2L — 1) (2L+1) ]

(AL =4 2) (L4l — b4 1) (L4l —1) (L4l —1—1) ]
2[(2041)(20,+3) (20— 1) (21, +1) ]}
LL+hL=L)(L+h—1L—1)(L+l—h+2)(L+l—L+1)]

2020 —1) (2L +1) (2l+1) (2043) ]
LGitl+L+3)(h+l+L+2) i+l — L+2)(h+l—L+1) ]
2L 2L+1) (2L +3) (2L+1) (21,4-3) ] '

(hloLM |cos w|ly—11,—1 LM) = —

’

(WL M|cos w|li+11,—1 LM)=

)
(Ll LM|cos w|li—11,4+1 LM)=

(lllzLMiCOS w[l1+1 lg-*—l LJM) = -

From these formulas it is possible to calculate the matrix elements of P, (cos w) with the ordinary
methods of matrix calculations; in order that these elements may have a value different from zero, %
must satisfy the conditions

E+L+11=2g,, k+l+1.=2g, (10)

+TAS §8.

5 TAS 143 7.

6 Giittinger and Pauli, Zeits. f. Physik 67, 743 (1931); TAS §103 ¢t seq.
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(g1 and g: are integers), and the so-called triangular conditions
(L= SEShHYy, L=Vl SRS (11)
if these conditions are satisfied, the final result is
(—1)ortork(2g,—21)1(2g2—21'5) g1 g,!
(@r—R) (g1 — 1) g1—1"1) Hga— k) (g2 —12) (g2 — 1) 1261+ 1) 1282+ 1) !
QL+1) (2 +1) (2 +1) 2V 2+ 1) (-l + L4+ 1)1+ +L+1) ! :
X h+l—LD) V1V o— LY L+ — 1) (L —1')!
L4V =V)(L+1—1)!
w4V 1=V W utle— 1) o+ 14V —u)!
(uAL+1)1u—L) (Al —u) AV s— ) o=l — s tu) !

(lllzLMlPk(COS w) [lllllzLM) =

2w (=1 (12)

where, in the summation, « takes on all integral values consistent with the factorial notation, the
factorial of a negative number being meaningless.

In order to demonstrate this formula, it suffices to verify that (12) reduces to 6(J'1)6(lsl's) for
k=0 and to (9) for k=1 and that, introducing (12) for k=n—1 and k=%—2 in the formula’

2n—1 n—1

P, (cos w) = cos wP,_1(cos w) ———P ,_s(cos w) (13)
n

n

written in matrix form, we obtain again (12) for k=#n. These verifications are somewhat long, but
they are not difficult and will be omitted for brevity.

It is remarkable that (12) has an unsymmetrical aspect: it is however possible (as is shown in the
appendix) to transform this formula by means of algebraic identities and to replace it with®

(I, LM | Py(cos w) |V s LM)
(= 1)ortorb=L(l, - — b — 1) Wkl — 1 — D) Wkl =l — 1) 11
X+l s— k=)t 10— s — 1) N(k+1 20— 1 —1)!!
(k41 1+ 1) M+ 41+ 1)
QL+1) Q2L+ + 1)V 1) (W4l —L) /(1 + . — L) ! !
X (LAl =) (LAY =V ) (LAl — ) (LAY —1'1)!
(h+l+L+D( 1+ 4 L+1)!
T (=1 (thet Tt b1 20! . (12)
(h+la—L—-)\( 1+l —L—0) (L1 —k—v) /(L1 o —k—2) 1!
X(k+L—-L—=1's+v)(k+L—-1'1—1140)!

Introducing (12’) in (3) and (6), and putting
v=L+l,—L—w,

7 Courant and Hilbert, Methoden der Mathematischen Physik (Springer, 1931), p. 73, Eq. (19).
8 With the sfymbol n!! we indicate the semifactorial of n, that is the product 1.3.5 . . . #n if n is odd, and the product
24.6 ... nif niseven.
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we obtain
(=D)L ==L —k—1)11(2L4+1) (24 1)
QL+E+D)1(20L+E+1)1!

h4b+L+14w h+l,—L L+1—1, L+1,—1,
<o () (T )0 )C) e

k—w k—w

fk(lll'lL) =

and

(WaL) = (— 1)1+ L(k+ll—lz—1)”2(}34‘12—11—1)!!2(ll+l2—k“1)!!2(211+1)(212+1)
grllibals)=(— 1)1~

(h+l+E+1)102

(]1+12+L+1+'ZU (l1+l2—L)( L+]1—'lz ) L+l2—11 ) (‘l')
. d
sz (-—1)'” w ) w E+li—ly—w (k+lg—l1—'w

The dependence on L of such formulas was already given by Kramers® for f; and by Brinkman!®
for g by means of a group-theoretical procedure, but it was impossible, by such a general method,
to give the first factor.

Putting

p=hl+Dh041), s=Li+1)+hl+1), A=L(L+1), >\=_2"‘=(11‘12), g= (Li+1,+1)% (16)

we obtain, for the most common and important cases:

fo=1,
6N +3N—2p
0= , (17)
(20, —=1)(21,4-3) (21, —1) (21,+3)
; TON350N = 10(6p— 55—~ 39)A*— 10(17p 65— 9)A+3p(2p — 45 —27)
q e 4(21,—3)(21,—1)(211+43) (21, +5) (21, — 3) (21, — 1) (2124 3) (212 +5) ’
o (—1)btir—L 22k AA—=2)(A—6)---[A—(E—1)k]
g (LiloL) = ( ) ’
hele 22k B/ (2l,4+1)(21,+3)2(21,45)2- - - (21— 1)2(201+1)
(= 1)tttk 2 —2
g (lllzL)=————-———( )A(A—Z)(A——é)'--[A—(k—3)(}a—~2)]. (18)
L2 22k—1 B—1 '

.

E(2k—1)A2—2(k—1)(2k—1)(g—E) A+ (F— 1) [ (2k — 3) g2 — (4k%— 6k — 1)q+ (k—1)k*]
(20,—1)2(2L,41) (214 3)2(215+5)*- - - (21— 1)2 (21 +1) (21, +-3)* '

By means of these formulas all results of TAS and of Shortley and Fried® were checked, and a sole
mistake was found : the coefficient of F, and of G, in the F terms of the configuration ff is not 410,
as reported in TAS (p. 207), but —10, as given in the original paper of Condon and Shortley.!!

§3. CONFIGURATIONS WITH THREE OR MORE ELECTRONS

The expression of the electrostatic interaction of two electrons as function of A is not only important
for a more rapid calculation of the two-electron terms: in the case of three or more electrons the
methods of Chapter III of TAS give us the possibility of calculating the matrix elements of

9 Kramers, Proc. Amst. Acad. 34, 965 (1931).

10 Brinkman, Zeits. f. Physik 79, 753 (1932).
1t Condon and Shortley, Phys. Rev. 37, 1030 (1931).
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Ni;=(1;+1;) in every complex case of vector coupling; and it is therefore possible to calculate the
terms of more complex configurations, even if two or more terms of the same kind occur.

We will at first pay attention to some particular applications to atomic and nuclear spectra, that
can be treated without matrix calculations ; then we shall treat in detail the p*p configuration, and give
the results for the p% configuration. For other important configurations and for the cases of (jy)
coupling the calculations are more complex, and a new general procedure for this purpose will there-
fore be developed in a later paper.

The first application was already made to the p» configurations by Van Vleck,”* who found em-
pirically the formula of f; for p electrons, and expressed \%; as a linear function of \;; and of (s;s;)
by means of Dirac’s vector model; but, as Van Vleck himself pointed out, such a procedure is not
generally sufficient for d* configurations.

This procedure suffices however for the terms of d* with higher multiplicity. In these states all
spins are parallel, and it follows therefore from the principle of antisymmetry that the possible
values of each X are 0 or —5 (F or P resultant) ; from this we have that

AN45A=0; (19)

introducing this relation into the expressions

IN24N—24 35A4 417503 —585A2—2655A— 162
faldd) = —, fildd)= , (20)
147 7938
we obtain
fo=—(3\+8)/49, fi=(152—9)/441, (21)
and therefore
3\, +8 150;—9
E=Y( Fo— R4 _ 4);
i<i 49 441
since for a d” term
LL+1)=6n+2 3 Ay, (22)

i<y
we obtain that for all d» configurations with S=#x,2

n(n—1) 35L(L+1)+n(4n—13) 155 L(L+1)— %n(n+9)
E= Fo— P24 .
2 49 441

(23)

§4. THE NUCLEAR CONFIGURATIONS p~

The calculation of the energy levels of a nuclear configuration p” with symmetrical forces was made
by Hund!® with the diagonal-sum procedure. After very long calculations he obtained a numerical
table for the energies of such configurations, and from this table he deduced empirical formulas for
the interactions of Wigner and of Majorana. The direct calculation of such formulas is a remarkable
application of the above developed methods.

Putting, as customary in order to avoid fractional coefficients,

Fy=F°, F,=F?/25, (24)
we obtain from (17) that the normal (Wigner) interaction between two particles is
Vii= Fo+(6Ni;*+3Nij—8) F; (25)

12 T, H. Van Vleck, Phys. Rev. 45, 412 (1934).
13 Hund, Zeits. f. Physik 105, 202 (1937).
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hence the Wigner interaction between all particles of the configuration is

n(n—1)
Vw=—"—Fot L (N +3Ny=8) P (26)

i<y

In order to calculate this sum, we cannot use Dirac’s vector model, because the exclusion principle
does not hold for a proton and a neutron ; but we can observe that for p particles the operator

My=Xi2+Ni—1 (27)

is Majorana's operator of position exchange, since it has the eigenvalue 1 for the symmetrical states
S and D, and the cigenvalue —1 for the antisymmetrical state P : from (26) and (27) we obtain

nn—1)
VW: 2 F0+Z (611/[”—3)\”—2)FZ (28)

<1

The sum
i<y
is Hund’s («—@) and depends only from the symmetry character of the positional eigenfunction of
the level : it is the difference between the number of symmetrically connected couples and the number
of antisymmetrically connected couples. From (29) and from

S Nj=iL(L+1)—mn, (30)
i<j
we obtain
nn—1)
W= Fot+[6mM—3L(L+1)—n(n—4) ]F.. 31)
The Majorana interaction is
V=3 M;Vi=MFo+Y, Aii2+Nii—1)(6N;;2+3N;;—8) F» (32)
i<y i<j
and reduces to .
I’,\[z E)RF()'*'Z (lWij~3)\;j+3) Fz (33)
i<i
in virtue of
)\,‘j3+2)\£j2'—)\,‘j—2 =0 (34)

(which expresses the fact that \;; has only the cigenvalues 1, —1, and —2) and of (27). In view of
(29) and (30), (33) becomes
Vi=9MFo+[M—3L(L+1)+3n(n+1)]F,. (35)
Putting
Fo=A—+43B and F,= 1B

in (31) and (35), we obtain Hund'’s formulas.
When two terms with the same L, R, S and 91 occur, Hund could only calculate their sum, and
said that his formulas hold for their mean values; since our method gives the energies of all terms

separately, we can say that in the later case the first-order energies are the same, and that Hund’s
formulas hold for each term separately.

§5. THE CONFIGURATION 7%

It follows from §2 that the interaction between two non-equivalent p electrons is

OAZ+3NA—8 ON2+3N—8
Wop = Fo(np, )+~ Pinp, 'p) (- 1>L[G°<np, w'p)+

G, n’p>], (36)
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where the upper sign holds when the spins are antiparallel, and the lower sign when the spins are
parallel.
Following Dirac’s vector model'* we can substitute the operator

14+4(s-s’) 14+u
2 2

(37)

for the double sign. For (—1)* we can substitute the operator (27).
Considering that \ satisfies the Eq. (34), we have that

6A+3N—8
Wop=F'(np, 1L’p)+——25———F2(n[), n'p)

9

1+ +2
—-2—[()\3-}—)\— DG (np, n'p) +——2_ G*(np, n’[))]. (38)
J

Putting
Fo=F(np, np)+2F(np, n'p), Fo=155F*(np, np), Fr=155F*(np,n'p),
G0=G0(77’pv n'[)), G2= }ésGQ("Pv n/p)»

and marking by 1 and 2 the two np clectrons, and by 3 the #'p electron, we obtain for the electro-
static interaction of the np*n’p configuration:

2
E=Fo+(6M12*+3N12—8) Fa+ 2" :(6N 13+ 3N i3 —8) F's
1
2 1+#13

-3,
! 2

[t Ni—1)Go+ (N> — 20 ;3+2)G2]. (39)

The most convenient scheme for calculating this energy operator is the Ls scheme of the parent
ion np®. In this scheme \y; is diagonal, and the coefficient of F is therefore the diagonal matrix

D
D1 0

(L] 6A 122 +3N12—8 L) ||=P|O0 =5 O (40)
s|0 0 10

In order to calculate the cocfficients of F's, Go and G» we must at first calculate the matrices of Ay.
From TAS 1032 we have

D P S
1 1
D| - +— 0
2 2V3
1 1 2\ ¥
lLidin)=p| — - i(—) : (41)
2V3 2 3
2\ ! 1
s 0 :i:(—) -
3 2

4 Dirac, Proc. Roy. Soc. A123, 714 (1929) and Quantum Mechanics (Oxford, 1930), Chapter 11.
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the upper sign holding for =1 and the lower for 7=2; from this table and from TAS 1232 we obtain

D P S
A—8 [A(12—A) ]
b, — F— = 0
4 4V3
[A(12—A) ] A—4 [A(6—A)]
”(LL|>\{3|L'L)”=P + 1,
03 4 /6
[AG—A4)T A=2
S 0 F
V6 4

A having the meaning of (16); and this matrix gives us easily the coefficient of F’s:

ILL|S: (6Mig2 4303 —8) | L/L) || =P
1

7

D p S
A2—15A+40 A[(12=A)(6—4A)
2 V2
—3A2421A-20
0 ——————— 0
2
A[(12=A)(6—A) ]} . —5A2+42A—64

4

(42)

. (43)

In order to calculate the coefficients of Gy and G; we must also calculate the matrices of u;3=4(s;-ss3).
From TAS 102 and 1232 we obtain in the same way

HENITEIA
s=1 s=0
s=1 S(S+1)— 114 FLOSS+D+ 4013 —S(S+ D]
Cs=0| FILSSH1) + 15015 = S(S+1) T S(S+1)— 3

and therefore

(o

and

143

(vr

14ps
2

mL, "L)II =

I 1L
1 %)
L —— F—
2 2
V3 1
1| F— —
2 2

L 4L) =1,

(44)

(45)

(45)



194

From (42) and (45) we get

GIULIO RACAH

TasLE I.

Configuration (4P —4D) /(4D —2S)

npn'p 0.667
2p%3p 0.521
2p%p 0.504
2p23p 0.520
3p%p 0.604

2 +ﬂ13
("'L 2L Z 132+)\:'3—1) m'L! 2L)H
D 3P 1S
A2—12A+24 A=4)[A(12—A)TF AL(12—=A)(6—A) ]
D
24 8 12v2
A=H[A(12—0)7] —8A+8 (A=1)[A(6—A) ]
=3p (46)
8 8 2V2
A[(12=A)6—MNT] A—=D[A6—A)] —5A2448A—60
15
12v2 2V2 48
and
LI S T 1
("*L L Z,’ (}\,’32—2>\' mL’ EL) i
1
1D 3p 18
A2—30A4240 (A—=10)[A(12—A)]F AL(12—A)(6—A)T]}
1D
24 8 12v2
(A—=10)[A(12—=A) ]} —2A-40 A=T[A(6—A)]}
=3p (47
8 8 2V2
A[(12—A)(6—A) ]} (A=7)[A(6—A) ] —5A24+12A+156
1S
12v2 2V2 48
From (42) and (45’) we get
2 +p,13 A0—8A+8
(31’ AP i Nis—1) 5P 4L) (46')
1
and
2 1+p,,‘3 ZA 40
(“P LIS, N 32—2N;3+2) |5P 4L) ——, (47
1

Introducing our results into (39) we obtain
‘D=F;—5F,—
4P=F0'—5F2+SF12——

—Go—4Go,
Go—10G,,

4S=F‘()-—SI;‘z—].()F‘Iz“}‘2G(]"‘ 10G2,



THEORY OF COMPLEX SPECTRA 195

2S=F0_5F2_10F,2_GO+SG2,
2F=F0+F2+2F’2—G0—Gg.

The energy matrix for the *D terms is

1D 3p
D F0+F2—7F’2+%G0—4G2 —%Go+3Gg
ip —%Go+3G2 FO—SFQ—F/2+%;G0+2G2

and has the eigenvalues
D=Fo—2F;—4F y+3Go— Gy £3[(Fa— F'y—G1)*+ 1(Go—2G,)* 1.

The energy matrix for the *P terms is

1D sp 1S

D | FotFot-TF y— 15Go— 234G (—=Got+2G2)4/5 (4F'y— 15Go— 14Ga)/S
3p (—Go+2G2)\/5 F0—5F2+5FI2+ }5Go+SGg —G0+5G2

1s| (4F'y3— 14Go— 14G2)\/5 —Go+5G, Fo+10F:— 15Go— 195G

It follows from our results that the ratio (P —*D)/(*D—2S) has the theoretical value of 2. The
comparison with the experimental ratios!® is given in Table I.
The deviations are of the same order as those of the #np? configurations of the same elements.!®

§6. THE CONFIGURATION »%

The terms of the configuration np*n’l can be calculated in the same way as those of np?n’p. The
only difference is that the coefficients of G*! and G**2 in W, are polynomials of higher degree in X,
and must be reduced to the second degree by means of the equation

N42N2— (1241 —1)A—1(14+1) =0, (48)

which corresponds to the Eq. (34) of the pp case. This reduction cannot be carried out without
specifying the value of /; it is possible however to avoid such direct reduction, by calculating at
first the single values of g, 1(/1L) and g,;1(/1L) for the three possible values of L by means of (15),
and then determining the polynomials of the second degree which assume these values for the values
I, —1, and —(I4+1) of the variable \. By this procedure we find that the electrostatic interaction
between a p and a [ electron can be expressed by means of the formula

W= F(np, n’l)+[6)\2+3)\—4l(l+1)]F’2—1——£ﬂ[(>\2+l>\—1)G,_1+()\2—(l+1))\+l+1)61+1l (49)
where!?
F2(np, n'l) 3G (np, n'l) 3G (np, n'l)
Tsa—nats T an@—0? 0T @)

From this point the calculations were carried out exactly in the same way as for p?p, and give the
following results

4

(50)

15 See Bacher and Goudsmit, Atomic Energy States (McGraw-Hill, 1932).
186 TAS, p. 198.

17 Our definitions (50) differ in some cases by a factor 3 from the definitions of TAS, p. 177.



196 GIULIO RACAH

Quartets:
L=Il41: Fo—=5F,—1(2l—1)F,—1(2l—1)G1-1—2(1+1)G 141,
L=1I: Fo—=5F+(21-1)2143)F =121 —-1)G -1 — (I +1) (214-3)G 141,
L=l-1: Fo—5F:—(+1)Q2I4+3)F'3+2G, 1 — (I+1)(2l4+3)G 141
Doublets:

L=142: Fy+F42l2—-1)F =12l —1)G 11— G144,
L=1-2: Fo+F+2(0+1)2+3)F:—Gi1—(0+1)(2143)G 144,
L=I14+1: Fy—2F,—(43)2l—1)F3+121—1)G 11— G141
+[[3F:—=3Q2I=1)F—3(1—-1)(21—1)G 11— (+2)G 111 *+310+2)[§(21 - 1)G11— G111 124,
L=1—1: Fo—2F,—(1—2)(243)Fs—Gr1—1(2+3)G i1
£[[3F+3Q2I+3) F2+(—1)G1a—5(042)(214+3)G 11 1P+ 31— 1) [Gia+3(204+-3) G 2 T
The energy matrix for the doublets with L =1 is of the third order and has the elements:

212—1314+12 224+1714-27

(1D[E|‘D)=F0+F2*(2l—3)(2l+5)F/2—- p Gl_l— p Gz+1,
(| E|) =Fo—S5Fy+ (21— 1)(2l+3) F';+3(2l = 1)G 11+ 5 (1) (214-3)G 141,
(18| E|18) = Fo+10F,— 32— 1)G 11— 21+ 1) 214+3) G,
(D|E[®)=3[(2-1Gi1+(+3)Gr J[(20—1)(21+3) ],
(P|E[18) =3[ (21 =1)G 11+ (204+3)G i J[210+1) T},
(D|E|1s)=Q2F = §G1-1—$Gi)[20(0+1) (21— 1) (214-3) .

APPENDIX

From the addition theorem for binomial coefficients

>()C)-(Y) @

putting x=a—>b, y=5, z=a—c¢, we have

a! (@a=bd)l(a—¢)!
— =¥ . (52)
ble! s (a=b—s)(a—c—s)!(b+c—a+s)!s!

If y is negative, we can transform (51) by means of

() ()
B (7))
= ()TN

and obtain

or
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putting y=3z—¢—1 we have from (54)

(1 (t—s)! ( 1)z(t—z)!(oc—{—z«t—l)! ] 5550 s

T T v T IR Bt Sy 53
and from (54') | ‘ '
—$)! t—x)!(t—2)!

I LS G b i LR IS (55"

s!(x—s)!(z—s)!_x!z!(t—x—-z)!
Using repeatedly (52), and also (55) and (55’), we can transform the sum in (12) as follows:
(w1l —=Vy)! (u+ls—11)! (B+141—u)!
(u+L+1)! .(u—L)!(k—ll—l’ﬁ—u)!'(ll+l2—u)!(l1’+l'2—u)!
s (_l)u(u+1'1-l'2)!_ (LAl =) \(la -l s—F)!
b (WAL4+1)! LAla—l—a) (latly —k—a) (—la—Vs— L+ u+a) la!
(402 —1o) (k41 —1"1)!
2= B) (k= V= B) (s o= k=) 18!
(LAle—1) o+ o —R) WV a— 1) V(B +11—1'1)!
(Ltl—li— ) (Vs — k—a) (k+1s—Lo—B) (k11— V' — )
U1+ +L—k—a)! (a+p)!
Ut A LA 1—k4B)! ('—Vs— Lt atB) (L4Vs—1'1) lalB!
S ()it LAL—1) Qo+ o= B) N4V s — 1) (41— V) (V14 s+ L—k—a) !
By (LHl—lh—a) o+ —k—a) l(k+V—1,—B)!
X+ —=U1=B) (14 le+L+1—k+p)!

Zu (_ 1)u

=Y (—1)kbtrLta
af

1
(L=l =) am ) =V s LB +) !
(LAl 1) (-t a— ) b+ a— 1) k1 — 1)
R
(Al =R (LA~ 1)
(LAla— =) sV s k) s i — Lo V)
(kth++147)!
VAl LA D Gl L) el — Vo L) eV —la— L) !
Putting y=1,41"»—k —v, this expression becomes
(LAla=1) o+ o —R) Wk +1 2 —1o) (k411 —1'1) !
XAV =) LAV 1=V ) (a1 1+ 2+ 1 —0) !
(Bt L—V'1—la40) o+l s— k—0) (k- L— Iy — V' 340) 01 (la -V — b —1) !
X (Fla— L—0) (14 s — L= o) s Vet LA D) s+ L 1) !

introducing this result into (12) we obtain (12').

=3, (= 1)kl Lty

2. (—1)E




