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is added. The difference is'

X&+' —N& & =Z/00.

Further, Jones has shown that, if one assumes
complete circular symmetry about L111$ (actu-
ally it is trigonal) then the conductivity perpen-
dicular to the principal axis (our case) is given by

(2)

e2 ~(+)Q(+)
(+)—

m(+)

' H. Jones, Proc. Roy. Soc. A155, 653 (1936).

Here ~ is the relaxation time and m the reduced
mass.

It appears from (1) combined with (2) that the
effect of reducing the overlap would be to add an
additional term to pq over and above the linear
term due to the random atomic scattering. The
experimental results, however, indicate just the
opposite effect. It appears, therefore, that one
must suppose that the low temperature con-
ductivity is due mainly to positive holes, and
further that as the overlap is reduced the density
of such holes sharply increases.

In conclusion we should like to express our
thanks to Dr. S. H. Browne for providing some of
the crystals used in this experiment. This work
was supported, in part, by a grant from the
George Shef6eld Fund.
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This paper gives a closed formula which entirely replaces for the two-electron spectra the
previous lengthy calculations with the diagonal-sum method. Applications are also made to
some configurations with three or more electrons and to the p" configurations of the nuclei.

(1. INTRODUCTION

HE first-order perturbation energy for the terms of a given configuration was calculated at
first by Slater. ' In his classical paper he showed that the electrostatic interaction between two

electrons depends on a very few integrals Ii' and 6', and he developed the diagonal-sum procedure
for calculating the coef6cients of these integrals; with this procedure he obtained numerical tables of
coeScients for the two-electron configurations involving s, p, or d electrons. These tables were
extended by several authors' to f electrons and to some configurations with three or more electrons.

But the diagonal-sum procedure has some deficiencies. Firstly, when two terms of a kind occur
in a given configuration, this procedure will determine only the sum of their energies, and they can
be separated only by other methods. Secondly, this method does not give general formulas, but only
numerical tables; it is therefore impossible to make generalizations, and one must begin again for
each new case with new and more complex calculations. '

It is the purpose of this paper to substitute for the numerical methods of Chapters VI and VII
of TAS more general methods and more conformable to Chapter III of the same book.

' J. C. Slater, Phys. Rev. 34, 1293 (1929).
~ See E. U. Condon and G. H. Shortley, Theory Of Atomic Spectra (Cambridge 1935), (which we shall denote by TAS)

Chapters VI and UII, for dehnitions, notations and bibliographical indications.
3 G. H. Shortley and B.Fried, Phys. Rev. 54, 739 (1938}.
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)2. T%'0-ELECTRON CONFIGURATIONS

If co is the angle between the radii vectors of the two electrons, the coefficients f' of F" are' the
eigenvalues of the matrix

(/il2mim2
~
Pg(cos ra)

~
lil2mi m2);

here PI. is the Legendre polynomial of the order k. The transformation which diagonalizes this
matrix is (lil2LM~li/2mim2), and therefore

f&(/i4L) = Q (/&/ELM ~li4mim2)(/i/gmim2~Ps(cos s&) ~/i/2mi'm2')(/&/ mi.'m2'~lil2LM) „(2)
f1l $YR$7Pl1 P? 2

fp(/i/gL) = (lil2LM i Pg(cos ao)
~

lil2LM) (3)

In the same way, if +gI, are the coef6cients of G~ for the singlet and for the triplet terms, we have

g&(/i/~L) = P (lil2LM~/i/2mim2)(lil2mim2~P&(cos ~) ~l2lim'2m'i)(/i/om im'2~/i/2LM), (4)
"11+2~ 1+ 2

and ln view of'

this becomes
(/, /2m im 2~/i/9LM) =(—1)'~+'t (l2lim 2m i~/2/jLM))

gi(/i4L) = (—1) '~+'2 (lil2I. M ~Pg(cos co) ~l2liLM).

Slater calcuiated the matrix elements of Pq (cos co) in the li4mimm scheme, and then obtained the
eigenvalues of this operator by means of the diagonal-sum procedure; we will calculate the matrix
elements of cos co directly in the l&32135 scheme by the method of Guttinger and Pauli, ' and then
calculate fi and g' with the ordinary methods of matrix calculations.

If g; is the unit vector in the direction from the origin to the electron i, by comparing TAS 4 21
with TAS 9'11, we have

(l;:u;/;) =0, (l, '. u, '. /; —1) =(/; —1'.u; l;) =
[(2/, —1)(2/;+1)]&

and since
cos co=(ui i12),

introducing (7) in TAS12'2 we And that the only non-vanishing elements of (lil2LM
~
cos co

~

li'l2'LM)
are

[(li+l2+L+1)(ll+l2+L)(/i+/2 I)(ll+/g L 1)]~
(/i/2LM

l
cos ~I/i —1/~ —1L,M) =—

2[(2li —1)(2li+1) (2l2 —1)(2/i+1) ]&

[(I.+li —l, +2)(L+li —l2+1) (L+l, —/, )(L+l,—l, —1)]l
(/i/ELM

~

cos (o
~
i i+1/2 —1I.M) =

2[(2li+ 1)(2li+3)(2l2 —1)(2l2+1)]&

[(I-+li—lm) (I+li —la —1)(L+l2 —ii+2) (I.+l2 —li+ 1)]i
(/, /, LMlcos ~l/, —1l,+1LM) =

2[(2li —1)(2li+ 1)(2l2+ 1)(2l2+3)]'

[(li+lm+L+3)(li+lg+L+2) (li+l2 —L+2) (li+lg —I.+1)]t
2[(2/i+ 1)(2l i+3) (2l, +1)(2/, +3)]&

(/i4LM
~

cos "I/i+1 4+1 LM) =—

k+li+l'i ——2gi, k+l.+l'2 ——2g2
4 TAS $8'.' TAS 14' 7.
6 GQttinger and Pauli, Zeits. f. Physik 5V, 743 {1931);TAS $10' eI seg.

From these formulas it is possible to calculate the matrix elements of P" (cos ro) with the ordinary
methods of matrix calculations; in order that these elements may have a value different from zero, P

must satisfy the conditions
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(gi and g2 are integers), and the so-called triangular conditions

I/1 —l'il &~ k &~/1+/'2, I/2 —l'2! & k &/. +l'2;

if these conditions are satisfied, the final result is

(—1)'&+" "(2gl —2li)!(2g2 —2/'2)!gi!g2!
(l,/, I.M I Z, (cos ~) I

l', l',I.M) =
(gl k) ~ (gl /1) ~ (gi / 1) ~ (g2 k) ~ (g2 /2) ~ (g2 l 2) ~ (2gl+ 1) ~ (2g2+ 1) ~

(2li+ 1)(2/'1+ 1)(2l2+1) (2l'2+1) (li+l2+I. +1)!(l'1+l' ,+L+ .1)!

X (/1+/2 —L)!(/'1+/ 2
—I )!(L+ /i —/2)! (I +l .—l i)!

(L+1'1 l'2)—!(I.+l2 —li)!

(u+l'1 —l'2)!(u+l2 —li)!(0+ii+/'2 —u)!
„(—1)" (12)

(u+I.+1)!(22 —L)!(li+/2 —u)!(l'1+/'2 —u)!(k —li —l'2+u)!

where, in the summation, u takes on all integral values consistent ~vith the factorial notation, the
factorial of a negative number being meaningless.

In order to demonstrate this formula, it suffices to verify that (12) reduces to /!(/1/'1)l!(/2/'2) for

0 =0 and to (9) for k = 1 and that, introducing (12) for 0 =22 1and —k =n 2 in—the formula'

'2n —1 n —1.

P»(COS &0) = COS ldP» 1(COS (0) P» 2(COS (d) (13)

written in matrix form, we obtain again (12) for k=n. These verifications are somewhat long, but
they are not difficult and mill be omitted for brevity.

It is remarkable that (12) has an unsymmetrical aspect: it is however possible (as is shown in the

appendix) to transform this formula by means of algebraic identities and to replace it with'

(l,/, L,M
I
Z, (cos ~) I

l', /', LM)

( —1)'+" " i( /1+' /1 k 1)!—!(k+—/1 —l'1 —1)!!(k+l'1—ll —1)!!

X (l2+l'2 —k —1)!!(0+/, —l'. —1)!!(k+/', —l, —1)!!
(k+/1+l'1+1)!!(k+l2+l'2+ 1)!!

(2/, +1)(2/2+ 1)(2/'1+ 1)(2l', +1)(li+ l2 —I)!(/', +/'2 L)!—
X (L+ll l2) ~ (L+l 1 l 2) ~ (L+l2 /1) (L+/ 2 l 1) ~

(/1+ll+L+1)!(l', +l', +I.+1)!
(li+l2+ l'1+ l'2+ 1 —v)!

Z. (—1)"
(11+/. I. v)!(/'1+l'2 ——I.——v)!(l1+/'1 —k —v)!(12+/'. k v)!v!——

X(k+L, —/, —l'..+v)!(k+I.—/', —ll+v)!

Introducing (12') in (3) and (6), and putting

v = li+l2 —L —m,

(12')

~ Courant and Hilbert, Methodize der Ma&hematischee Pkysik {Springer, 1931},p. 73, Eq. {19}.
~~ith the symbol g!!we indicate the semifactorial of n, that is the product 1.3.5. . . n if n is odd, and the product

2.4.6. . . e if e is even.



and

(k —1)!!4(2l i —k —1)!!(2l2 —k —1)!!(2l i+ 1)(2l2+ 1)

(2li+ k+1)!!(2l2+ k+1)!!
(/i+/~+L+1+w) /'/t+/~ L)—(L+/i /2) —|'L+/2 —/i)

X2- (-1).
i
E w ) E w ) & k-w ) & k-w )

(k+li —l2 —1)!!'(k+l2—li —1)!!'(li+l2—k —1) '"(2li+1)(2l2+1)
~i(/i/. L) =(—1)'~+'~ ~—

(li+l.+k+1)!!'
(/i+/+L+1+w) r/i+/2 Li (—L+/i /2 &

—( L+4 /i—
(15)

XP,„, (—1) & w ) E w ) (k+/i —l2 —w) I k+/t —li —w)

The dependence on L of such formulas was already given by Kramers' for fq and by Brinkman"
for gh, by means of a group-theoretical procedure, but it was impossible, by such a general method,
to give the first factor.

Putting
A —s

p =/i(/i+1)/2(/2+1), s =/t(/i+1)+/g(/2+1), A = L(L+1), X =—= (li 12), q = (li+l2+1), (16)
2

wc obtain, for the most conimon and important cases:

6X'+3K —2p
n=-

(2li —1)(2l i+3) (2/g —1)(2l2+3)

7~,4+350!t3—10(6p —5s —39)/t"- —10(17p—6s —9)7 y3p(2p —4s —27)
4=9

4(2l, —3)(2li —1)(2/, +3) (2/, +5) (2/t —3) (2/ p
—1)(2/g+3) (2l2+5)

(—1) ' "-'/2k~ ~(X—2)(X—6) [~—(k —1)k]
(/, /.,L) =——

2~" ( k ) (2/&+1)(2/2+3) (21 +5)-"(2/i —1)2(2/i+1)

(—1) '~+'--~
t

2k —2)
g (/i/iL) =

~
~&(&—2) (& —6) [&—(k —3) (k —2)].

'~-'~+'- 2"-' ( k —1 )
k (2k —1)i1' —2 (k —1)(2k —1)(g —k) A+ (k —1)[(2k —3)g' —(4k' —6k —1)g+ (k —1)k"-]

e

(2/2 1)2(2/ +1)(2/~+3)2(2/~+5)2. . . (2/I 1) (2li+1)(2/i+3)2

(17)

By means of these formulas all results of TAS and of Shortley and Fried' were checked, and a sole
mistake was found: the coefficient of F2 and of G2 in the F terms of the configuration ff is not +10,
as reported in TAS (p. 207), but —10, as given in the original paper of Condon and Shortley. "

f3. CONFIGURATIONS WITH THREE OR MORE ELECTRONS

The expression of the electrostatic interaction of two electrons as function of X is not only important
for a more rapid calculation of the two-electron terms: in the case of three or more electrons the
methods of Chapter III of TAS give us the possibility of calculating the matrix elements of

' Kra.mers, Proc. Amst. Aced. 34, 965 I;1931).
'0 Brinkman, Zeits. f. Physik 7'9, 753 (1932).
"Condon nnd Shortley, Phys. Rev. N, 10M (1931)
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g;;=(1; 1;) in every complex case of vector coupling; and it is therefore possible to calculate the

terms of more complex configurations, even if two or more terms of the same kind occur.
XVe will at first pay attention to some particular applications to atomic and nuclear spectra, that

can be treated without matrix calculations; then we shall treat in detail the p'p configuration, and give
the results for the p'1 configuration. For other important configurations and for the cases of (jj)
coupling the calculations are more complex, and a new general procedure for this purpose will there-

fore be developed in a later paper.
The first application was already made to the P" configurations by Van Vleck, i"- who found em-

pirically the formula of f2 for p electrons, and expressed X';; as a linear function of X,; and of (s;s;)
by means of Dirac's vector model; but, as Van Vleck himself pointed out, such a procedure is not
generally sufficient for d" configurations.

This procedure suSces however f'or the terms of d" with higher multiplicity. In these states all

spins are parallel, and it follows therefore from the principle of antisymmetry that the possible
values of each X are 0 or —5 (F or F resultant); from this we have that

V+5X=O; (19)

introducing this relation into the expressions

we obtain

and therefore

7938147

f.= —(3K+8)/49, f,= (15&—9)/441,

2) 2+X —24 35K'+175K' —585K' —2t555) —162
f.(dd) = —, f4(dd) =——

since for a d" term

Fo( 3);,+8 15);)—9
P+ F4 ).

49 441

I.(I.+1)=6n+2 Q ),„ (22)

we obtain that for all d" configurations with 5= n/'2

n(r4 —1) ~2'I, (I.+1)+n(4n —13) ' &~&I.(I + 1)—,'~&ii(n+9)
Fo -F2+- @4

2 49 441
(23)

$4. THE NUCLEAR CONFIGURATIONS P"

The calculation of the energy levels of a nuclear configuration p" with symmetrical forces was made

by Hund" with the diagonal-sum procedure. After very long calculations he obtained a numerical
table for the energies of such configurations, and from this table he deduced empirical formulas for
the interactions of signer and of Majorana. The direct calculation of such formulas is a remarkable
application of the above developed methods.

Putting, as customary in order to avoid fractional coefficients,

Fo= F', F2= F'/25, (24)

we obtain from (17) that the normal (Kigner) interaction between two particles is

V, ;= Fo+ (6X4P+3X;4—8)F„.; (25)

"J.H. Van Vleck, Phys. Rev. 45, 412 t,'1934).
"Hund, Zeit~, f. Physik 105, 202 (1937).
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hence the signer interaction between all particles of the configuration is

n(N —1)
Vg —— Fo+ Q (6X;/+3';; —8) F2. (26)

In order to calculate this sum, we cannot use Dirac's vector model, because the exclusion principle
does not hold for a proton and a neutron; but we can observe that for p particles the operator

(2'7)

is Majorana's operator of position exchange, since it has the eigenvalue 1 for the symmetrical states
5 and D, and the eigenvalue —1 for the antisymmetrical state P: from (26) and (27) we obtain

n(n —1)
Fp+ Q (63~I;; 3X;;——2) F2. (28)

T}le SuI11
OR=+ 3I,, (29)

is Hund's (n —P) and depends only from the symmetry character of the positional eigenfunction of
the level: it is the di6erence between the number of symmetrically connected couples and the number
of antisymmetrically connected couples. From (29) and from

p )...= ~2L(L+1) n, - (30)

we obtcl. ln
n(n 1)—

Fo+ [6OR —2I.(L,+1)—n(n —4)]F.. (31)

The Klajorana interaction is

V &r = Q 3I;;V;; = ORFD+ Q (X; -+X;;—1)(6X;/+ 3';;—8)F2 (32)

and reduces to
V„=ORF,+P (iV;;—3X;;+3)F,

in virtue of
+2k .' —X;;—2=0 (34)

(35)V v = ORFo+ [OR —
2 L(L3+1)+-',n(n+1) jF2.

Putting

(which expresses the fact that X;; has only the eigenvalues 1, —1, and —2) and of (27). In view of
(29) and (30), (33) becomes

J o=~ —,"-z& and F2 —~ gB

in (31) and (35), we obtain Hund's formulas.
XVhen two terms with the same I., R, S and M occur, Hund could only calculate their sum, and

said that his formulas hold for their mean values; since our method gives the energies of all terms
separately, we can say that in the later case the first-order energies are the same, and that Hund. 's
formulas hold for each term separately.

$5. THE CONFIGURATION P'p

It follows from (2 that the interaction between two non-equivalent p electrons is

25

6A, ~+3K—8 6X'+3K —8
W»»= F'(np, n'p)+ F'(np, n'p) a( —1)~ G'(np, n, 'p)+ C'(np, n'p) „(36),

25



GI UL IO RACAH

where the upper sign holds when the spins are antiparallel, and the lower sign when the spins are
parallel.

Following Dirac's vector model" we can substitute the operator

1+4(s s') 1+p

for the double sign. For (—1)~ we can substitute the operator (27).
Considering that ) satisfies the Eq. (34), we have that

Q'-+3K —8
1V,„=F'(np, r~'p)+ F'(np, n'p)

25
1 p——(X'-+X—1)G'(np n'p)+

2

X"-—2) +2
G'(np, n'p) . (38)

25

Putting

Fo F(lp, —n—p)+2F (np, s'p), F.= &:5F"(np, np-), F'2= ',25F (np, n'p),

G, = G'(np, n'p), G, = i;,-G-"(np, n'p),

and marking by 1 and 2 the two np electrons, and by 3 the n'p electron, we obtain for the electro-
static interaction of the np "n'p co-nfiguration:

F.= Fo+ (6Xg "'+3Xg.„—8) F2+ Q;(6X;3-'+3K;g —8)F'.

1+@~3
L(X 3'+X 3

—1)GO+(X;g"-—2X, 3+2)G.]. ('39)

The most convenient scheme for calculating this energy operator is the Ls scheme of the parent
ion np"". In this scheme X~2 is diagonal, and the coefficient of F2 is therefore the diagonal matrix

D P

D 1 0

S

0
I

(40)

In order to calculate the coeAicients of J» Go and g2 we ITlust at erst calculate the &natrices of ~,z.

I ron& TAS 10'2 we have

1

2v3

~
(L I; L')'.

I
=P

2&3

s 0

1

2
2)''

"Dirae, Proc. Roy. Soc, A123, 714 (1929) and Qlantuw Mechanics (Oxford, 1930), Chapter 11.
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the upper sign holding for i = 1 and the lower for i = 2; from this table and from TAS 12'2 we obtain

D

P

[A(12—h.)]l

[A(6—A)]i
(4'-)

A having the meaning of (16); and this matrix gives us easily the coefficient of I"~.

it[(12 —A.) (6—A) ]'-

—3A'+214 —20
(43)

A[(12 —4) (6—A) ]& —5A. '+42k —64

In order to calculate the coefficients of Go and G~ we must also calculate the matrices of p;3 ——4(s; s~).
From TAS 10'2 and 12'2 we obtain in the same way

ll(s5[ p;3i s 5)[l

s=1
5(5+1)—i~;

s=o ~[[5(5+1)+& ][»'—5(5+1)]]'

8=0
~ [[~(~+1)+N]L '"—~P'+1)]]'

S($+1)—~i
(44)

'L 'L

1 43
3L

2 2

v3 1
1I„

2 2

(45)
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Atom

Theory
NI
NI
O II
S II

TABLE I.
Configuration

nP'O'P
2p'3p
2p 4p
2P'3P
3P'4P

('p -4D) I(4& —'%

0.667
0.521
0.504
0.520
0.604

From (42) and (45) we get

A' —12A.+24

24

(A —4) [A(12 —A) ]'-

3P

(A —4) [A(12 —A)]» A[(12—A) (6—A)]»

(A —1)[A(6 —A) ]-'

2v2

A[(12—A) (6—A) ]' (A —1)[A(6 —A) ]» —SA'+48A. —60

f 1 +@i3

i
-L "I. p; . (X p —2X;3+2) -'L''I.

I

».
i* 2

X~-30A+ 240

3P

(A —10)[A(12—A)]» AL(12 —A)(6 —A.)]'
8 1242

(A —10)[A(12 —A) ]' A~ —2A —40 (A —7) [A(6—A) ]-:
(47)

2v2

A[(12 —A) (6—A) ]'* (A —7) [A(6—A) ]'* —SA"-+12A+156
1$

12&2

From (42) and (45') we get

1+Qt'3

~

~P 'I. P; — -(X,'+X;,—1) 3P 'I.
~

=—
A'- —8A.+8

(46')

1+» '3
"P 'I Q; (X„'—2X;,+2) 'P I

2
*' ' )

introducing our results into (39) we obtain

A~ —2X —40
(47')

4D = Fo —5Fg —F'g —Go —4Gg

'P' = Fo —5Fg+5F'g —Go —10Gg,

4S= F,—5F,—10F,+2G.—10G&,
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'5= Fo —5Fo —10F'.—Go+5Go,

'F = Fo+ Fo+2 F'o Go—Go—

The energy matrix for the "-D terms is

3P —-', Gp+3Gg

10

1D I' p+ F..—7F'2+-', Gp —4G2

3P

—-', Gp+3G2

Fp —5 F2 —F'.+ -';Gp+2G2

and has the eigenvalues

'D=Fo 2Fo —4F'o+—,'Go Go-&3—[(FQ F o Go) + (Go —2Go) ]'.
The energy matrix for the 'I' terms is

3P (—Go+ 2Go) +5
(4F o

—i~oGo —i~oGo)+5

'»o+ Fo+ & F'o —'o Go —' ~o~oGo

3P

( —Go+ 2Go) +5
F —5Fo+5F'o+ ', G +5G.

—Go+ 5Go

(4F'.—,;Go —,'~G )y~5

—Go+ 5G2

~p+ &0~2 —r'gGo —"aG~

It follows from our results that the ratio ('P —4D)/('D —'S) has the theoretical value of -', . The
comparison with the experimental ratios" is given in Table I.

The deviations are of the same order as those of the np' configurations of the same elements. "
)6. THE CONFIGURATION P'/

The terms of the configuration np'n'l can be calculated in the same way as those of np'n'p. The
only difference is that the coef6cients of G' ' and G'+' in S'~& are polynomials of higher degree in X,

and must be reduced to the second degree by means of the equation

)i'+2K' —(l'+l 1)X —l(l+—1) =0, (48)

which corresponds to the Eq. (34) of the pp case. This reduction cannot be carried out without
specifying the value of /; it is possible however to avoid such direct reduction, by calculating at
first the single values of gi i(11L) and g&+i(liL) for the three possible values of I by means of (15),
and then determining the polynomials of the second degree which assume these values for the values
l, —1, and —(l+1) of the variable X. By this procedure we find that the electrostatic interaction
between a p and a l electron can be expressed by means of the formula

1 p,
Woi ——F'(nP, n'l)+[6K'+3K 41(l +1) Fj' o

— [P '+ll ——l)Gi i+(X' —(1+1)&+1+1)Gi~], i(49)
2

where"

F'(np, n'l)
pf Gl —1

5 (2l —1)(2l+3)

3G' '(np, n'l) 3G'+'(np, n'l)

(2l+1)(2l —1)' (2l+1)(21+3)'
(50)

From this point the calculations were carried out exactly in the same way as for P"-P, and give the
following results

"See Bacher and Goudsmit, Atormc Energy Skates (McGram-Hi11, 1932).' TAS, p. 198.
"Our definitions (50) differ in some cases by a factor 3 from the definitions of TAS, p. &77.
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Quartets:

L=/+1: Fo —SFp —l(2/ —1)F' p l(2—/ 1)G—i g
—2(l+1)G,„„

Fo 5F—p+ (2/ —1)(2/+ 3)F'p —l (2/ —1)G i-i —(/+ 1)(2l+ 3)G i+i,

I.=l —1: Fp SF,—(l+—1)(2l+3)F'p+2/G), —(l+1)(2/+3) G)+g.

Doublets:

L=/+2: Fp+Fp+2/(2/ —1)F'p —l(2/ —1)G( g
—Gi+i,

I =l —2: Fp+ Fp+2(l+ 1)(2/+3) F p
—G( y (l+ 1)(2/+3)G)yi,

I- = /+1: Fo 2Fp ——(/+3) (2/ —1)F'p+ p (2/ —l)Gi-i —Gi+i

~[[3F,—3(2l —1)F',——,'(l —1)(2/ —1)G, ,—(/+2)G(~g]'+3/(/+2)[-', (2/ —1)G( g
—Gt+gjoj*'

I.=/ 1: Fo —2—Fp —(l 2)(2l+—3)F'. G& g
—p(2/+3—)G(+g

W[[3Fp+3(2/+3)F'p+(/ —1)G( g
—-', (/+2)(2/+3)Gyp')'+3(/' —1)[G) g+-,'(2/+3)Gi+i]']''.

The energy matrix for the doublets with I =/ is of the third order and has the elements:

2/' —13/+12
( D

I
Z

I D) = Fo+F (2/ —3) (2l+ —5)F' — G
2)2+ 1Itl+ 2/t

6 I+is

( p
I
E

I P) = Fo —5Fp+ (2/ —1)(2/+ 3)F'p+ p'/(2/ —1)G ( g+!(/+1) (2/+ 3)G )+g,

(is
I
F

I
is) = Fp+10Fp ——,'l(2/ —1)G I,——',(l+1)(2/+3)G(+g,

('&
I
&

I
'P) =

p [(2—/) G~-~+ (/+3) G~+~) [(2/ —I) (2/+3) 3'.

( P I& I s) = ll —(2/ —1)G~- +(2/+3)G~+~3[2/(/+1) j'
('&

I
&

I
's) = (2F' —pG ~-~ —pG ~+~)[2/(/+1) (2/ —1)(2/+3) 3'.

APPENDIX

From the addition theorem for binomial coefhcients

(xl f y l (x+y't
as) Es —s) ! z

putting x=c—b, y=b, a=a —c, we have

g'I (a —b)!(a—c)!

b!c! ' (a b s)!(a——c——s)!(b+c a+s)!s!—
If y is negative, we can transform (51) by means of

/'y & (s —s —y —1&

&s —s) 4 s —s
a11d obtain

(x) f's —s —y —1p )x+y)
Es) & z —s ) ( s

Ol

/xy f's —s —y —1q )s—x —y —1~
Z (-1)

I II
&s) & z —s ) E s )

(51)

(52)

(53)

(54')
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putting y=z t —1w—e have from (54)

(t—s) l (t —z)!(x+z t —1)—!
~ (—1)' = (—1)* if x&t& z& 0,

s!(x—s)!(z —s)! x!z!(x —t —1)!
and from (54')

(t —s)! (t —x)!(t —z)!
~ (—1)* if t&x&0, t&z&0.

s!(x —s)!(z —s)! x!z!(t x z—)!—
Using repeatedly (52), and also (55) and (55 ), we can transform the sum in (12) as follows:

(u+l'1 —1'2)! (u+l. —11)! (0+l1+l',—u)!
( 1)a

(u+I.+1)! (u —L)!(k—ll —l'2+u) ' (ll+l2 —u)!(ll'+l'2 —u)!

(u+ l'1 —l'2)! (I.+12—l 1)!(l2+ l'2 —k) !
Z (—1)"

(u+I.+1)! (I.+l2 —11—n)!(l2+12' —k —n)!(k 12 —1'2 —L+—u+ n)!n!

(k+l'2 —l2)!(0+ll —l'1)!
a

(4+1'2 —l2 —p)!(0+ll —l'1 —p)!(l'1+l2 —k —u+ p)!p!

(L+1.—l1)!(l2+l'2 —k)!(0+l'2 —l2)!(k+ l 1—l'1)!
( l )1 le l'g —I+—a-

ag (L+12 ll —a)!(l2—+1 .—k —n)!(k+l 2
—12 —p)!(k+ l1 1 1

—p)!—
(l'1+l2+L k n)!— — (a+p)!

(1'1+4+L+1 k+p) —' (1'1 l'2 L—+a+—p) '(L+l'2 —1'1) 'n'p'

(55)

(55')

(L+12 11) ~ (4+1 2 k) ~ (k+1 2 12) ~ (k+11 l 1) ~ (l 1+12+L k n) ~

1)1 l 2 l '1 I—+a- —

aPy (I.+l2 —l, —a)!(12+1'2—k —a)!(0+l'2 —l2 —p)!

X (k+ll —l'1 —P)!(l'1+l2+L+1—k+P)!

(L+1'2 l'1 v)!—(n —v)!(l'1 —l'2 L+—p+—v) b!
(L+4 11) (4+1 2 k) (k+1 2 12) (k+11 1 1) ~

( 1) lgkl'2 I+y— —

(L+1'2 1'1 V)!V!——

(11+1 1 —k)!(L+1 1—l 2)

(L+l: 1, y)!(l2+l'.——k ——y)!(ll+l', —l, —1,'.+y)!
(k+11+1'1+1+V)!

(l'1+1'2+I.+1)!(l,+1,+I.+1)!(0+l1—l'2 —L, +~)!(k+l'1 l, L+y)!——

Putting y =l, +1'2—k —v, this expression becomes

(L+l2 —11)!(l2+ l'2 —k)!(0+l'2 —l2)!(0+l1—l'1)!

X (l1+l'1 —k)!(L+l'1 —l'2)!(l,+l, +l'1+l'2+ 1—v)!
( 1)v I—

(k+L —1'1—4+v)!(l.+l'2 —k —v)!(k+L, —1,—l'2+ v)!v!(l1+l'1 —k —v)!

X (ll+12 L v) ~ (1 1+1 2 L v) ~ (l 1+12+L+1) ~ (ll+12+L+ 1) ~

introducing this result into (12) we obtain l 12').


