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The quadrupole moment of the deuteron indicates the
existence of non-central tensor forces in nuclei which
destroy the constancy of the total orbital angular mo-
mentum. With simple operational representations of the
wave functions, the inRuence of two-body tensor forces on
the ground state eigenfunctions of the light nuclei H' and
He' has been calculated. In H', the tensor forces directly
couple to the fundamental 'S~ state a 4D~ state, which in
turn interacts with 'P~ and 4P~. To the fundamental 'So
state of He' is admixed a 'D0 state which is coupled by the
tensor forces with 'Po. All states consistent with the total
angular rnomenturn and parity conservation rules occur in
the ground state eigenfunctions, and these nuclei therefore
constitute the simplest examples of the complete break-
down of spin and orbital angular momentum conservation
laws. Rarita and Schwinger have satisfactorily accounted
for the properties of the deuteron by including the tensor
force in a simple interaction represented by a rectangular
well potential. With this interaction to describe the forces
between all pairs of nuclear particles, the binding energies

of H3 and He4 have been estimated by a variation method
The trial functions are of the form Sf,+'Dg for H3 and
'S0+'Do for He4, with Gaussian radial functions. The
calculations yield 32 and 50 percent of the binding energy
for H' and He4, respectively, while a similar test calculation
for the deuteron gives 54 percent of the binding energy.
The probability that these nuclei are in a D state is found
to be 4 percent for all three nuclei, in agreement with the
exact deuteron computations. Improvement of the radial
dependence of the trial functions increases the estimated
binding energy of the deuteron to 76 percent of the known
value but does not materially affect either the estimated
binding energies of H' and He', or the amount of D state
admixture of the three nuclei. An analysis of the results
shows that the tensor forces, which produce all the binding
in the deuteron, are relatively ineffective in binding H' and
He'. This apparently indicates that the assumption of
ordinary and tensor forces of the same range is not adequate
to represent the properties of H' and He4.

I. INTRODUCTION

HE theory of nuclei attempts to interpret
nuclear properties in terms of two-body

forces. Current nuclear theories further postu-
late equal interactions between all pairs of
nuclear particles, and until very recently it has
been customary in the theory of light nuclei to
construct the interaction as a linear combination
of Majorana, Heisenberg, signer, and Bartlett
forces operating through similar potentials of the
same range. That this is insufhcient was, how-

ever, demonstrated by Rarita and Present, '
and their conclusions substantiated by the analy-
sis of proton-proton scattering data. ' An inter-
action of the sort described, when fitted to
represent the experimental binding energies of
H' and H', as well as the cross section for slow
neutron-proton scattering, will predict a binding
energy of He4 which is about 20 percent too
large. The existence of the quadrupole moment
of the deuteron has established that the neutron-
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proton interaction must involve tensor spin-orbit
coupling terms of the form

3(&1 ' r12) (&2 ' r12) —l71 ' EJ2

and spin dependent forces of this character are
predicted by various current mesotron field
theories of the neutron-proton interaction.
More recently Rarita and Schwinger' have ex-
amined the possibility of representing the proper-
ties of the deuteron by means of the interaction
operator

&= —I1 ——,'g+!g~i ~2+ v&2I &(ru) (1)

For the ground state of the deuteron, which is
of even parity, the omission of space exchange
operators from (1) is of no consequence, and
therefore, for this state, V is equivalent to the
most general linear combination of Majorana,
Heisenberg, signer, Bartlett, and tensor opera-
tors. Indeed, it has been shown that, with
J(r») a square well of range ro ——2.80X10 " cm
and depth V0=13.89 Mev, and g=0.0715 and

William Rarita and Julian Schwinger, Phys. Rev. 59,
436 and 556 (1941).
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y=0.775, (1) wiII account for aII the properties
of the neutron-proton system which depend only
on the neutron-proton forces.

The operator 5» couples the spin and orbital
motion of the particles, and is not invariant
under separate rotation of space or spin co-
ordinates. Its inclusion in the Hamiltonian
therefore results in leaving as constants of the
motion, available for the description of sta-
tionary states, in general only the parity, the
total angular momentum J, and the total mag-
netic quantum number m. The eigenfunction of
the ground state of a many-particle system will

consequently contain terms corresponding to
higher spins and orbital angular momenta than
predicted in the absence of spin-orbit coupling,
or, in other words, including 5» in the neutron-
proton interaction implies a breakdown of the
previously assumed nuclear Russell-Saunders
coupling. The extent of this breakdown is of
immediate interest with reference to the mag-
netic dipole moments and other multipole
moments of nuclei, as well as to the problem of
selection rules in nuclear transmutations. In
this paper we investigate the inRuence of inter-
action terms of the type 5» on the eigenfunctions
of the ground states of the light nuclei H' and
He' by first, in Section II below, determining
the types of states which may appear in these
eigenfunctions, and then, in the last section,
using the operator (1) with the constants de-
termined by Rarita and Schwinger to estimate
by a variational method the amount of admixture
and binding which may be expected. As de-
scribed in more detail below, our calculations
indicate that only the D state has an appreciable
probability of being included in the ground
states of H' and He' along with the 5 state, and
that the probability of finding either of these
nuclei in a D state is about four percent. Our
variational estimates of the binding energies of
H' and He' are rather low, and an analysis of
our results shows that, with respect to their
influence on the binding, the tensor forces are,
in H' and He', relatively ineffective when corn-

pared with the deuteron. In the deuteron the
tensor force is so effective that its introduction
in sufFicient quantity to give the known quad-
rupole moment of the deuteron reduces the
magnitude of the ordinary interaction neces-

sary to fit the binding energy with the range
2.80X10 " cm from 21.22 Mev to 13.89 Mev.
This reduction in the magnitude of the ordinary
interaction greatly diminishes the amount of 5
state binding, and since the tensor forces do
not seem to compensate for this diminution in
H' and He4, it follows that our low estimates of
the binding energies of these nuclei probably
indicate real deficiencies. In other words, the
simple introduction of the 5» coupling in a
symmetric Hamiltonian in which all the forces
are of equal range is apparently not yet adequate
to reconcile the known properties of the two-
particle system with the experimental mass
defects of H' and He4. The validity and limita-
tions of these conclusions are discussed more
fully in the last section.

II. GENERAL FORMULAE

Kith the breakdown of spin and orbital angu-
lar momentum conservation, an eigenfunction
of definite total angular momentum J is most
conveniently regarded as a mixture of many
states classified in terms of their total spin and
total orbital angular momentum. The classifica-
tions possible are just those consistent with the
rules for compounding angular momenta, limited
however by a definite maximum total spin.
Thus in H' the ground state is J=2 and the
maximum spin —,', and therefore the eigenfunction
is a mixture of 'S~, 'P~, 'Pq and 'D; states.
Similarly in He4 the ground state eigenfunction
is composed of 50, Pp and Dp states. In a
many particle system it is generally possible to
form states of either parity and any total orbital
angular momentum, so that in H' and He4 the
parity selection rule merely reduces the number
of states in the eigenfunction included in any
particular classification such as 'PI, or 'Po, but
does not completely eliminate any classiFication.
These nuclei are consequently more complicated
than the simple deuteron system, in which the
ground state, as in H' and He', is of even parity
and the odd 'P~ state is theref'ore absent from
the eigenfunction. A further simplification in
the deuteron which does not appear in H' and
He' is the conservation of total spin which, for a
two-particle system only, is a consequence of' the
symmetry of 5» in the operators e~ and e2.

The elucidation of these statements and the
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In H' y= t'o —t'y, r= fo —(1'g+ro)/2.

more detailed consideration of the states which

actually appear in the eigenfunctions necessitate
actually obtaining the wave functions of the
states in question. These can be readily written
down in an operational representation such as
developed by Rarita and Schwinger' in the
theory of the deuteron. We erst introduce the
usual relative coordinate systems for H' and
He', de6ned by:

In He' y&
——r2 —r&, {02=r4 —r3,

r4+ ra re+ r2
r=

In both nuclei the subscripts 1 and 2 refer to
neutrons, and 3 and 4 to protons. With the ab-
breviation e;;=(e,—e;)/2, the wave functions
of the states that can occur in the ground state
eigenfunctions of H' and He' are, as explained
below:

HB ~

1
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' '
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(3q & (e» r)(e34 r)'D:{—
} 3 +12 '34

I 2) r2

3 1
'&o .. {(ol„' r)(o'34 ' til) + (o12 ' gl) (o34 ' r) (r ' til) (o12 ' o84) }p,

2(5)& rpi

3
'Po. — (oixti2 r)(ei2 r)y etc

K2 r'pl p2

The symbolic representations listed above
may be derived with the aid of a systematic
procedure. Thus, in H', we wish to describe
states of even parity and J=-,'. In terms of the
spin functions y of the particles, a '5» wave
function of this character can at once be written
down, and is just P defined by Eq. (2). The
magnetic quantum number m of this state is,
as indicated, determined by the magnetic
quantum number assigned to X3. All other wave
functions of total angular momentum J=-,' and
the same m can now be obtained by operating
on P by means of scalar functions of the spin
vector operators and space vectors of the system,
for such operators commute with J. Such rota-
tion invariant functions can only be formed by
combining the scalars, vectors, and tensors
formed from the spin operators with similar
forms built from the position vectors, and be-

cause of the commutation properties of the spin
operators, the number of independent invariants
is actually quite limited. Since the total spin and
total orbital angular momentum classification
of any state are determined by its rotational
properties with respect to spin and space sep-
arately„ the representation of the wave functions
of the even J= 2 states of H3 becomes a straight-
forward and simple problem. More specifically,
as a consequence of the antisymmetry of P
in the neutron spins, (oi+e2)rp=0, so that, with

respect to operations on P, there are only two
independent linear combinations of ej, e2 and e3,
which we may choose symmetrically as e~~

and a3. Therefore, with the exception of the
identity operator, the only independent scalar
spin operator will be e~~. 6~, and since this
operator is also invariant with respect to space
rotations, the wave function (3) will have the
same transformation properties as P, that is,
it will represent a '5» state. In the same way

there are three independent spin vectors,
namely +~2, e3, and o3)&el2, which may be com-
bined with the vector r&(g to form the rota-
tion invariant operators e~~ rXy, e3 r)(y, and
elXoi2 (rXp). These operators transform like
vectors, in other words, like the spherical har-
monics of the first order, under space rotations,
and, consequently, when applied to f, produce
P wave functions which, however, in general
represent combinations of 'P» and 4P» states.
To determine then the representations of the
pure 'P» and 4P» states we employ the device of
operating on the two 'Si wave functions, (2)
and (3), with the operator (oi+o2+o~) rX j
which commutes with (ei+o2+ea)'. We obtain
in this way the two wave functions (4) which
must have the same total spin as (2) and (3)
and can therefore only describe pure 'P» states.
The wave function (5) of the 'I' i state is the linear
combination of e» rXy and eaXoi2 (rXy)
which is orthogonal to (4). That (5) really
represents a quartet stage may be verified by
demonstrating that e~ e3 has the eigenvalue 1

when operating on (5). The 'Di wave functions
can be derived by combining the spin tensor
cJ$2EF3 with the various tensors formed from the
space vectors and applying the resultant rota-
tion invariant operators to P. As before, this
will in general furnish a mixture of the J=-,'
wave functions of H', but after the subtraction
of the known (2) through (5), the remainder can
only represent pure 4D» states. The necessity
for this subtraction may, however, be avoided
by making use of the principle that the com-
ponents of the symmetric traceless tensor
x;y;+x;y, —3b;;Pkx~yi„ i, j, k=1 to 3, transform
like the spherical harmonics of the second order,
if x and y are vectors. Consequently, since
(6) and (7) represent D states of J=» they are
necessarily 4D», and again it is easy to verify
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that (e~+em+es)' has the eigenvalue I5 in the
states (6) and (7) and that (6) and (7) are all
orthogonal to the wave functions (2) through (5).

Any of the wave functions (2) through (7) may
be multiplied by a scalar function of r and g
to give a new wave function of the same spectral
classification, and it is possible to obtain addi-
tional orthogonal wave functions in this fashion.
This possibility corresponds to the fact that in
H', as in all many particle systems, there are
many diFferent ways of compounding any given
value of the total orbital angular momentum out
of the orbital angular momenta of the constit-
uent particles. For example, P represents a
state in which the neutron system and the proton
are both in s states. (r. p)f is a 'Sq wave function
in which the neutrons and the proton are both in

p states. In the eigenfunction f will of course be
multiplied by a scalar function whose angular
dependence will determine the relative contribu-
tion of each diferent possible combination of
neutron and proton motions to the singlet (in
the neutron spins) 'S~ state of H'. Since in the H'
relative coordinate system there are only three
independent vectors, r, y, and r )& y, of which
only r)(y is invariant under spatial mirroring,
it is quite evident from the foregoing discussion
that, except for a multiplicative scalar factor,
we have listed all the wave functions of H' of
J=-,'and even parity. As written, the wave
functions (2) through (7) are normalized to
unity with respect to the summation over all
spin coordinates and integration over all angles
in the relative coordinate system. Considerations
very similar to the above pertain to the deriva-
tion of the wave functions of He4 of J=O and
even parity. There is only the complication that
several independent vectors of even parity are
now available, thereby greatly increasing the
number of different types of states. We have
therefore only listed examples of the kinds of
spin dependence possible, indicating by "etc."
that additional wave functions may be obtained
merely by substituting new vectors for those in
the functions listed (i.e. , by replacing p& by ym,

etc.). A further consequence of the increased
number of space vectors is the existence of a
pseudoscalar r y~ X y2 which converts wave
functions of odd parity into even and vice versa.
Thus the wave function (9) is a perfectly ac-

ceptable even 'Po state formed from the odd
(e~m r)q, and we could of course include in our
list one such wave function corresponding to every
odd state of J=O of He4. However, states of this
character, involving the pseudoscalar r yy)&y2,
in no way enter into the calculations of the
following section, so that we have deemed it
suScient to write down the single example (9)
and again indicate by "etc." that the list, for
He', is not exhaustive. As in H' the wave func-
tions are normalized to unity with respect to
spin summation and angular integration.

In the absence of spin-orbit coupling the
ground state of H' is 'S». The new term in the
Hamiltonian is P,»3(r;;)S~m(r;, ) summed over
all pairs of particles. Applying this operator
to a 'S» wave function will obviously produce
only 'D» wave functions, and it is readily calcu-
lated that in O' P;»3(r,;)S»(r,;)P or P;»3(r, ;)
XS~2(r;;)(e~m em)$ is a linear combination of
the wave functions (6). The further application
of P,»3(r, ;)S~2(r;;) to the wave functions (6)
produces a complicated mixture of terms among
which are included the P states (4) and (5),
as well as the remaining D state (7). In other
words, in the ground state of H', to the first
approximation of the perturbation theory, the
eEect of introduciag S~2 coupling in the neutron-
proton interaction is to admix the simpler 'D»
states de6ned by (6) with the fundamental
'S» states. In second approximation all possible
types of states appear. Once more very similar
statements may be made concerning the ground
state of He4. The first e8ect of the S~2 coupling
is to combine 'Do wave functions of the type (8),
bilinear in the vectors r, y~ and 02 with the
fundamental 'So wave functions. All other states
with the exception of those which, like (9),
involve the pseudoscalar r. p~)&y2, are included
in the eigenfunction through their interaction
with the 'Do states. The states involving the
pseudoscalar only appear in still higher approxi-
mation. Thus (9) is produced by the application
of the Hamiltonian to the 'Eo wave functions of
the usual type, such as (e» rXp&)q. It is in

performing the calculations implied by the state-
ments of this paragraph and Section III below
that the advantages of the operational represen-
tations we have given for the wave functions
become apparent. The evaluation of any matrix
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element of the interaction becomes merely an exercise in the combination of spin operators, and
it is never necessary to make use of the complicated reduction formulas of the rotation group.

III. VARIATION CALCULATION

As stated in the introductory section, we have employed the interaction (1) with the constants
determined by Rarita and Schwinger to estimate by a variational method the binding energies and
the amount of admixture of the ground states of H' and He'. The smallness of g in (1) and the fact
that only the states (6) are directly coupled to p by 512 then suggest that only the states (2) and (6)
have an appreciable probability of being represented in the ground state of O'. A suitable nor-
malized, antisymmetric in the neutron coordinates, trial function for the variation calculation in H
is consequently

CND
4ll — exP[ —2/4(r12 +r18 +r28 )]f+ —exP[ 2v(r12 +r13 +r23 )]

(1+C') & (1+C') *'

X (3(+1'r) (~8 tl) +3(~1 e) (488 r) —2(r e) (481 488))4

2(2/4)3 '(3/2/4) /' 2(2v)'/'(3/2v) "
&s=

1'(3/2)
'

(20)'r(5/2)

~12 +~13 +~23 2~ + gp

The energy is minimized, using (1), with respect to the parameters /4, v and C. This choice of trial
function limits the orbital angular momenta of the constituent neutron and proton motions in the
5 and D waves to as small values as possible. That is, the S wave, as stated in the previous section,
represents a state in which the neutron system and the proton are both in s states, in the D wave
the neutrons and the proton are in p states Thes.e are the states whose energies would be expected
to lie lowest in a Hartree approximation. Similarly, in He we choose the trial function

4 =— exp [——,'/4(2p '+2p '+4r')]82- exp [—-', v(2 pl'+2 p2'+4r')]
(1+C') & (1+C') &

X (3 (481 tll) (483 ' t12) +3(481 p2) (483 pl) 2 (pl ' t82) (421 ' 483)) 4p

28/2(2/4) 8/4(2/4) 3/4(4/4) 8/4 23/ (2 v) 8/4(2V) 8/4(4V) 3/4

Ng —— N~ ——

[r(3/2)]8 (20)~r(5/2)[1'(3/2)]»

2pp'-+2p2 +4r = rg'„'+~j3 +r~4'+r23'+r24'+F34 .

As demanded by the exclusion principle, 4» is antisymmetric with respect to the interchange of
neutron or proton coordinates. It is readily verified that, in both 4» and 4», with our symmetric
choice of Gaussian radiaI functions, the D wave function must be restricted to the particular form
we assumed in order that the exclusion principle be satisfied.

In order that we may have some estimate of the validity of our results, we have also performed a
similar variation calculation for the deuteron, using as a trial wave function for the ground state

exp ( —2/4p )X+ exp ( —2vp )(3(488/ p)(48p tl) —p (48// 48v))X,
(1+C')' (1+C')'*

~g(p) 8/4 V7/4

&s= ND= p = rI —r.~-.

[1'(3/2)]' 2[1'(&/2)]'
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y is the fundamental normalized 'Si state of the deuteron, defined analogously to p and y. 'I'he details
of the calculation of the binding energies of these wave functions are quite standard and it is therefore
sufhcient to write down just the expressions for the binding energies in terms of the variational
parameters:

8
(1+C')—= —3.662x2+35.654m2(x) —6.1033C y'+9.60C'm2(y) —1.632C'm&(y)

Eo
x'y' f'x'+y'q l

—5.2800C'm~(y)+737. 66C m4
((x'+y"-) 4
& 2 )

jV
He': (1+C')—= —5 4932x'+ 71.3088m'(x) —7.9346C'y'+ 32C'm&(y) —3.264C2r/i, (v)

E
(10)

x9/2yli/2 — px" +y2q $-
—3.52 C'm6 (y) +2409.16C— m

(x2+ y2) 1//2
Q 2 //

jv
H' (1+C')—= —1.8310x'+12.80m'(x) —4.2725C'y-' —7.0400C"-m (y)g Q

x"'-y"-' (x'-+y"- ) '

+245.89C m,
~(x'+y') "' 0 2

In H: x=ro(3/i)l, y=ro(3v)'. In He: x=ro(4/i)&, y=ro(4/)'*. In H'-: x=ro(2/i)&, y=ro(2v)&.

Here Eo is the binding energy of the deuteron, 2.17 Mev, and B the binding energy of the system
associated with the wave function under consideration. ' The expression on the right side of the
equation, consequently, is positive when there is binding, and must be maximalized with respect to
C, x, and y. This part of the computations must of course be performed numerically, and is greatly
facilitated by the introduction of the functions m„(u), the incomplete normal moment functions,
dehned, for n even, as'

p
gl

dvv" exp ( —-', v')
1J,

///„(u) =-
2

dvv" exp ( —-', v')

1.216
6.518
0.536

1.6
1.8
1.5

2.5
2.3
3.0

0.168
0.193
0.195

32
50
54

From (10), the best values of the binding en-

ergy, expressed for each of the nuclei in units
of the binding energy of the deuteron, and the
corresponding values of the parameters, are
given in Table I. We have included in Table I

TABLE I.

Percent
binding

the percent of actual binding to which our ex-
tremal energies correspond, assuming the binding
energies of H' and He' to be 8.3 Mev and 28
Mev, respectively. The correct value of C in
the ground state of the deuteron is, accord-
ing to the exact computations of Rarita and
Schwinger, C=0.197. The calculations were
performed by ending the best value of C for any
pair of values of x and y, which measure the
effective ranges of the 5 and D radial functions,
and it is noteworthy that in all three nuclei

' We may remark that the forms of the expressions I'10) show that with the introduction of tensor forces it is no longer
possible to use the "equivalent" two-body method to estimate the binding energy.

These functions are tabulated in the TaMes for Statisticians and Biometricians, edited by Karl Pearson, Cambridge
University Press (1914).%'ith the aid of these tables it is possible to combine, in calculations of the sort described here,
the advantages of Gaussian radial functions and square well potentials.
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this best value of C was almost independent of the
choice of x and y in the neighborhood of the
extremum, and differed surprisingly little from
the extremal value for even quite bad choices of
x and y. Thus in H' for x=2.2 and y=2. 7 the
best value of C is 0.222, although this set of
values fails to give any binding by 1.j.56 deuteron
energies. By actually evaluating the analytical
expressions for BE/Bx, BE/By and 8E/BC from

(10) and showing that these derivatives passed
through zero in the immediate neighborhood
of the extremal points given in Table I, it was
possible to establish definitely that we had
found the extremum. The variation of F with
x or y is, as might be expected, a good deal more
rapid than its variation with respect to C.

We have also attempted to estimate the effect
on the extremal value of C of improving the
radial dependence of the trial functions. That is,
in the trial functions Cj, C2, and 4~, we replace
the single Gaussian radial function of the S
terms by a sum of two Gauss functions of
the form exp( —2p(gr;P))+A exp( ——',r(gr;P)),
suitably normalized, and then, retaining the
previous values of x and y from Table I in the
trial function, varying with respect to A, 7., and
C. The new positions of the extremum, with the
values of x and y fixed as in Table I, are listed
in Table II. s is defined like x and y; s=ro(3r) l

in H', s=ro(4r)l in He4, s=ro(2r)l in H' Finally,
in the deuteron, we replaced the D radial func-
tion by the normalized form exp( ——,'r(Pr; ))
+8 exp( ——',s&(Pr;P)) and, with x, y, s, and A
as in Tables I and II, varied with respect to
8, C, and ~. The extremal values were 8=0.759,
C=0.19, 8=0.01.

The results of this section seem to indicate
that, as a result of the tensor spin-orbit forces
5~2, the probability of finding either of the
nuclei H' or He' in a D state is about four per-
cent. This conclusion is supported by the very
good agreement between the calculated and
exact value of C in the deuteron, and by the
small variation of the extremal value of C
either with improvement of the trial functions
or changes in x and y. We may note, however,
that our attempts to improve the radial func-
tions were much more effective in the deuteron
than in either of the other two nuclei. These
"radial" functions are, as we have pointed out,

TABLE I I.

H'
He'
H'

1.477
6.653
0.742

0.15
0.18
0.17

0.05
0.01
0.10

0.3
1.0
0.6

Percent
binding

39
52
74

angular dependent in H' and He', and the lack
of comparable (to the deuteron) improvement in

these nuclei is apparently due to our not having
taken this angular dependence into account.
As a matter of fact, it is actually true that in the
deuteron a sum of two Gauss functions is a very
good approximation to the S radial function,
whereas in view of its omission of angular terms,
such a form must be inadequate in H' and He'.
This inadequacy is probably more important,
in explaining the relatively low binding obtained
for these nuclei, than our failure to include in the
trial functions those states interacting only with
the D waves, and, in He', the states like (9)
involving the pseudoscalar. Because of the small-
ness of the D state probability, these other states
will appear with still smaller probabilities, and
their neglect will not be a bad approximation.
We have nevertheless quite a lot of binding to
account for, in H' and He', and it is questionable
whether improvement in the trial functions is all
that is necessary. In this connection we may list
the relative amounts of binding produced by the
various terms in C in (10). That is, we may re-
write (10) as

DC'-'E 5 IC
+ +

Eo 1+C'-1+C"- 1+C-

where, for each nucleus, 5/(1+C') =5' is the
binding of the S wave, DC'/(1+C') =D' the
binding of the D wave, and IC/(1+C') =I' the
interaction energy of the two waves. Then, for
the parameters given in Table I, with 8 as
usual in units of Eo we have the values given in
Table III.

Table III clearly shows that the D wave,
which by its interaction with the S wave, pro-
duces all the binding in the deuteron, is much
less eA'ective in binding the heavier H' and He'.
The 35 percent reduction in the depth of the
ordinary potential well which the presence of the
tensor force requires in the deuteron, reduces
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TAM.E III.

H'
He'
H~

0.166
4.976—1.022

—0.983—1.076—1.508

2.033
2.618
3.066

1.216
6.518
0.536

by an even larger percentage the 5 wave binding
in H' and He4, because this binding is the small
difference between the kinetic and potential
energies of the 5 state. Consequently, unless the
variation approximation is, in H' and He4,

very much worse for the D than for the 5 wave,
the binding energies of these nuclei predicted by
(1) must be less than the known experimental
values. All these results have of course been
obtained with the interaction in the form (1);
the justifications for its use are its success in the
deuteron system and its simplicity, which re-
duces the amount of calculation required. This
simplicity consists largely in the omission of
space exchange operators, a matter which is of
no consequence in the deuteron, but can in-
fluence the energies of the states in H' and He'.
However, the substitution of exchange forces for
the ordinary forces in (1) can only reduce the
binding. Furthermore, the neglected forces are
known to be principally of the Majorana type,
and because of the symmetry of' the 5 waves in
our trial functions, the substitution of Majorana
forces for the ordinary forces in (1) can only cause
a reduction in the D wave binding of our trial
function, i.e., a decrease in D' in Table III.
These considerations just correspond to the
mell-known fact that in the calculation of the
binding energies of H' and He4 in the absence

of spin-orbit coupling forces, the substitution of
Majorana for ordinary forces is a good approxi-
mation. In other words, while the omission of
space exchange forces in (1) may affect our
numerical value of the amount of D state ad-
mixture in H' and He, it seems to be a justi-
fiable conclusion from our calculations that a
simple linear combination of the Si2, Majorana,
Heisenberg, Wigner, and Bartlett forces operat-
ing through similar potentials of the same range
in a symmetric Hamiltonian probably cannot
account for slow neutron-proton scattering, the
properties of the deuteron, and the binding
energies of H' and He4.

We wish to stress that, because of the in-

complete character of the variation calculation,
the conclusions of this section must be considered
somewhat speculative. These conclusions could
have been made more precise by carrying the
variation to a dehnite completion, but in view of
the fundamental theoretical uncertainty in the
very form of the neutron-proton interaction, the
amount of computational labor which such a
calculation would require mould scarcely be
justihed. Our results support the view that the
successful introduction of the tensor forces into
the two-body interaction will require the as-
sumption of different ranges for the spin-orbit
coupling and conservative forces. There exist,
however, limitations on the range of the tensor
force, ' and the possibility that many-body forces
may be necessary cannot be overlooked. We
should like hnally to express our thanks to
Professor J. R. Oppenheimer for his interest in

this work.

~ J. Schwinger, Phys. Rev. 50, 164A (1941).


