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interloper among the Sd'6p levels, but is dis-
tinguished from them by intensity anomalies as
well as by its failure to fit into the theoretical
structure of the latter group. This term has
therefore been assigned to Sd'6s6p, as this
configuration should be the only other group of
odd levels in the neighborhood. None of the
other states of Sd'6s6p has yet been identified.

In the spectrum of Au II, twelve new terms
have been found, and four previously suggested

terms have been eliminated (not including the
states proposed by Rao). This brings the total
number of known terms in Au II to twenty-six
even and nineteen odd, and it brings the total
number of lines assigned in Au to 203, of which
120 had been previously classified.

Some 1500 of the lines measured in this work
remain unclassified. It is hoped that it will be
possible in the near future, by use of these lines,
to extend further the analysis of Au I and Au II.
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The earth's internal magnetic field consists of the field
of a large dipole and an irregular part which is of the order
of a few percent of the main dipole field. The field may be
represented by a series of spherical harmonics and 42 coef-
ficients are numerically known. The coefficients which
characterize the irregular part of the field are here statisti-
cally compared with a simple model for this field. It is
assumed that an arbitrary number of dipoles are thrown
at random inside a spherical shell and mean values are
calculated for the probabilities with which the various

spherical harmonics appear in the field produced. It is
shown that a statistical agreement between the observed
and calculated coefficients can be obtained only if the
outer radius of the spherical shell is approximately 0.50R
and is definitely not in excess of the radius of the earth' s
core, O.SSR (R, earth's radius). The result is independent
of the number of dipoles producing the field. It seems that
if the latter number is not very large, the result does not
depend too critically upon the assumption of completely
random distribution of the dipoles.

'HE gradually increasing evidence' for the
existence inside the earth, of a liquid core,

(radius 3500 km=0. SSR), presumably made up
of molten metals, mainly iron, gives a new
stimulus to investigations into the origin and
causes of the earth's magnetic field. On the basis
of this evidence one may gain a better under-
standing of the secular variations of the field.
These variations, when considered from the point
of view of a geological time scale, are exceedingly
rapid, so rapid indeed that in the course of a few
centuries the non-dipole part of the field will have
completely changed its aspect. Changes of this
magnitude are hardly conceivable inside a solid
body. Now it is found that if the electric con-
ductivity of the core is of an order comparable

~ Part of this investigation was carried out at the
California Institute of Technology.'B. Gutenberg, ed. Internal Constitution of the 5:arth,
(McGraw-Hill Company, 1939).

to that of ordinary metals, the interaction
between the field and any fluid masses moving in

the core must be intense. Induction currents
must be set up and their field will superpose
itself upon any field originally present. For
various reasons we are inclined to think that the
entire field originates inside the core, while the
relative importance of the currents set up by
the dynamo action of moving masses and of the
primary currents caused by electromotive forces
of a still unidentified nature is perhaps difficult
to estimate.

In the present paper we shall not deal with
these dynamical problems of a rather intricate
nature, but shall confine ourselves to a question
of a much more simple character. It is well known

that by a potential analysis of the earth's mag-

netic field one can divide it into an internal and
an external field, the former of which has its
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source regions entirely inside and the latter
entirely outside the earth's boundary. The inter-
nal field makes up about 98 percent of the total
field. The application of the rigorous machinery
of potential theory does not lead to any further
information about the sources of the field; it
seems interesting, however, to see whether, under
reasonably simple assumptions, additional infor-
mation may be gained regarding the seat of the
n&agnetic source regions. It will be shown here
that if very simple assumptions of a statistical
character are made, it follows from the observa-
tional evidence that the source regions of the
field must be located inside the boundary of the
core.

We shall make use of the very complete har-
nsonic analysis carried out by Ad. Schmidt' in
1895 and referring to the epoch 1885. The coef-
ficients of the development of the internal field
in a series of spherical harmonics are given in
Table I. The spherical harmonics are normalized,
the figures given in Table I are relative values
putting the main term (1,0) equal to 10,000. The
first line for each m represents the cos terms, the
second the sin terms. The signs indicated are the
opposite of those given by Schmidt who, in
agreement with the ordinary electromagnetic
convention, counts the main dipole negative. The
coeAicients of development as given in Table I
were obtained by Schmidt through the use of
values of the magnetic field strength read from
magnetic charts at 1800 points which are the
intersections of a series of meridians with a
series of circles of latitudes. Both series progress
in steps of 5', the circles of latitudes going from
the equator to lat. ~60'.

The major part of this field may be repre-
sented by a dipole whose axis is inclined by about
11-,' with respect to the earth's axis. The mag-
nitude and inclination of the dipole is determined
by the three first-order harmonics. One can
moreover reduce the magnitude of the second-
order harmonics by shifting this dipole to a
position about 340 km off the center of the
earth while leaving its direction unchanged. ' This
operation, introducing 3 additional parameters,
does not completely eliminate the 5 quadrupole
components and seems to have little physical

' Ad. Schmidt, Munich Akad. Abh. 19, 1—66 (1895).' H. Bartels, Terr. Ma@. 41, 225 (1936).

TABLE I.

0 10000

2 3 4

128 —193 —145 28

742 —690

—1886 175

254

61 44 —14

—165 —295 —94 —47

31

—141 41 10

13 13

4A. G. McNish, Trans. Am. Geophys. Union 2, 287
(1940).

meaning, especially since Table I does not show

any discontinuity between the quadrupole and
the higher order moments. On the other hand,
there is a certain discontinuity between the
dipole and quadrupole terms, as we shall see
later on. In this paper, if we speak of the main
dipole, we mean a centered dipole, either the (1,0)
component alone or the inclined dipole deter-
mined by the three first-order harmonics.

Recently McNish4 has shown by a method of
empirical trials that the field which remains after
the subtraction of the excentric dipole may be
approximated by the combined fields of 14 small

dipoles located somewhat arbitrarily at a depth
of one-half of the earth's radius. Each of these
dipoles has a strength of about 1 percent of the
main dipole and radial direction; some of them
have positive, some negative signs.

The statistical problem'which we propose to
treat here is allied to this last method, although
more general. Let N dipoles be placed at points
which are distributed at random inside a spherical
shell; we may then ask for the probability of
finding any given value for the (t, m)th harmonic
component of the field outside the shell. We
shall later make a number of appropriate assump-
tions regarding the magnitude and direction of
these dipoles.

Before proceeding to analyze this problem we

shall introduce a few definitions of which we

shall have to make frequent use. Let x~, x2 x„
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(2)

ONE DIPOLE

Let us now consider one dipole which is thrown
at random into a spherical shell concentric with
the earth. Let x, y, s be the coordinates of the
dipole where the s axis coincides with the earth' s
axis, and let r, 8, y be the corresponding polar
coordinates. Further, let R, 0, p be the polar
coordinates of a point at the earth's surface. If,
first, a unit monopole is located at r, g, &p, we
have for the potential at the outside:

UD ——P (r'/R'+')P ( )COSA), (3)
L=O

cos A = cos g cos g+sin g sin g cos (z) —)t)).

We introduce now the addition theorem of the
spherical harmonics. .It is convenient, in this
connection, to use the normalized spherical har-
monics defined by

Y,' = (4)r) —l(2l+1)&P)(cos g),
P' mc

P 777,d

(l —m)! & cos my
P)(cos g)

(l+m)! sin my

The addition theorem reads then

2l+1
P) (cos A) = Y)o(g, z)) Y)0(g, )t )

m=l

rN) C

be N quantities; we define the linear, quadratic
and generally, the kth order mean by

[x) x.]g N——'(x) +xz+ x.),
[x) x„]~ N ——*(x)'=+xz'+ . . x.') *', (1)

[x, .x ] =N U'(x —'+x)+ .x );)

These formulae are connected with the ordinary
definition of the kth moment 3l/„. of a statistical
distribution by

[x) . .x.]).——(3I):)"'.
If x is a continuous rather than a discrete variable
and if its density distribution is p(x), we can
generalize (1) by putting

where the summation index c indicates that the
sum is to be extended over both the cos and the
sin terms. The potential of a unit dipole with its
axis parallel to the s axis is now according to (3)
and (4),

orc Y ecc(g y)
l, zn. , C

where the sum symbols have been abbreviated
in an easily understandable way, and where:

c)'"c 4——)r(2l +1) 'R ' '(g/gs)r'Y) c(gnr)))). (6)

Correspondingly we have for dipoles with axes
parallel to the x and y axis

P o ~cc Y mc(g y)
l, m, c

$ chic Y urc(g @)
L, m, c

with

a ""=4 (2)r1+1) 'R ' '(g/gx)r'Yc"()'7 q)

I))'"' ——4 )(r21 +1) 'R ' '(g/gy)r'Y&"'(g) )7)).

In order to calculate the expressions (6) and

(8), it is convenient to introduce complex
spherical harmonics which are connected with
the real harmonics introduced above by

~g Y &cc —Y vuc~z Y cm (m Q P)

while for m=0 they reduce to the Y~' given
above. The factor V2 is here necessary in order
that the F& may be normalized in the complex,
Hermitian sense if the real harmonics are nor-
malized in the ordinary sense. Now we have'

(g/gz)r'Y)"' f)'"(21+1)i——r' —'Y) ))

~m m+1
(cl/gx~icl/gy)r'Y("= ~g) (2l+1)&r' "Yq z,

where

f)'" {(l—m) (l+——m) /(2l+ 1)'(2l —1) I
&

g)"'= {(l—m)(l —m —1)/(2l+1)'(2l —1) I'.

From these relations the values of the coefficients
(6) and (8) may immediately be obtained by
passing from the complex to the component real
quantities. We need not write down the explicit
formulae.

'See for instance H. Bethe, Handbuck der Physik, Vol.
24, I, p. 558.
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We shall later on be interested in the second-
order mean, as defined by (2) of the coefficients

(6), taken over the interior of the spherical shell
inside of which our dipole is located. Let V
designate the volume of the shell and ro and ri
its outer and inner radius; we find from (6) and
(10) on carrying out the integration over the
shell:

—42» U cf mg——l 1(» 2l+1— » 2l+1)c (12)

and similar, somewhat more complex, expressions
fOr the a»mc and bl '

Now the quantity (12) has a very simple
statistical meaning. If a dipole is thrown into the
spherical shell and falls upon the point r, 8, p
then cl ' represents the amplitude with which
the (t, 2»l)th spherical harmonic appears in the
potential produced by the dipole. Hence we may
presume that [cl"']2 is the quadratic mean, (the
square root of the second moment) of the proba-
bility distribution produced by throwing the
dipole at random into the spherical shell. We
shall now justify this presumption.

Suppose we want to determine the probability
of finding a coefficient between c and c+dc.
This probability is equal to bv/ U where flv is that
part of the volume in which the dipole must be
located in order to produce a (I, 2»1)th harmonic
component of the potential with a value between
c and c+dc. Hence it may be seen that c is the
independent and bv the dependent variable of the
problem. To determine the probability distri-
bution means to find 8v as function of C. We write
6v rather than dv in order to indicate that bv is
not necessarily an exact differential. Let us
illustrate these statements by an example. If we
seek the probability of an almost vanishing
amplitude cl"' of the (l, mc)th harmonic, the
corresponding volume will consist of a number
of narrow strips which run along the nodal sur-
faces subtended in the spherical shell by the
SOlutiOnS Of the equatiOn Ylmc(8, y) =0. FOr any
other value of cl ' the corresponding bv will

consist of a number of similar strips. It is dif-
ficult to find the analytical form of this prob-
ability distribution; however, it is now evident

from (2) that
1/I

[C cm] — U 1 t (C mc)kdV

In particular, we shall obtain the means of those
(2m+1) coefficients belonging to a definite» for
which m does not exceed a given value. Using
(12) we find

Cl, ': 'Cl, Clm

4~ U ', F mg —1 1(»—2l-+—1» 11+1)', (13--)

where by means of the relation
m

P m'=m(tn+1)(2m+I)/6
1

we have from (11)

tl = [f12, 2f1' ~ 2f1m].

= {P (2m»1+1)—/3} (21l+1) '(2l —1) -'. (14)

In an entirely analogous way we find from (8),
(9), (10) and (11) after some calculations that
the quadratic mean of the 2(2m+1) coefficients
a» ', b» ' for which m does not exceed a certain
value is given by

[+0 . . .+mc +ms bo . . .bmc bms Il »
' ' '

l ) l y l y
' ' l & l g2

with
4~ U—2G mg l 1(» 2l+1—»

—21+1) (1$)c

Gm [G,—m . . .GO . . .Gmj,

X(2»+1) '(21—1) '. (16)

represents the kth mean of this distribution. We
may write here dv under the integral in place of
6v, since the way in which the elements bv are
summed up does not influence the result of the
integration.

It is readily seen that the first-order moments
of all the c, and a, b, vanish, because the integrals
over the corresponding spherical harmonics
vanish, excepting only c&, and also a&" and b&".
The quadratic means of the c are given by (12)
and similar formulae for the a and b. We shall
further use the quadratic means of several, say n,
coefficients, that is expressions of the form

1

22 1U 1 Q J
C2dV
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FP
F 4

GP
G 4

0.98FP+0.20GP
0.98F14+0.20G)4

FfQd

TABLE II.

0.192 0.163 0.169 0.157
0.192 0.163 0.143 0.128
0.272 0.231 0.181 0.157
0.272 0.231 0.202 0.181
0..242 0.206 0.202 0.185
0.242 0.206 0.180 0.161
0.192 0.179 0.162 0.148

0.145 0.135
0.130 0.126
0.142 0.131
0.156 0.140
0.170 0.158
0.158 0.151
0,137 0.128

EQER+g D/POLES

Assume now that N equal dipoles are thrown
into our shell simultaneously and independently
of each other. First, let their axes all be parallel
to the s axis. The cocfhcient e~ ' in the develop-
ment (5) will then be replaced by

~ mc(] ) +c mc(2) +. . .~ mc(+)

If our dipoles are directed radially rather than
parallel or perpendicular to the s ax1s we shall get
formulae analogous to those given above; we
merely have to replace 8/8S in (6) by 8/Br. The
formation of the quadratic means may be carried
out in exactly the same way as before and for-
mula (13) remains valid if now we put in place
of F) thc quaIltlty

If now we form the means of the corresponding
probability distribution, it is seen again that all
the linear means vanish with the exception of e1'

(the means of aI" and bIIc do not vanish, but
they are made to vanish by averaging over all
directions of the dipoles perpendicular to the
s axis) . Fol nllllg tile quadratic lileRlis we will

have in place of (12)

mc(1)+ +~ mc(+)1 4~+ c p' Nll2f mg I I

which is independent of m.
Let us hnally consider a dipole of arbitrary

direction s where

mc

)' dvI) dv'
J~

dsN[«1'I I(Alt I)

2E—2 m"

+ ' ' ' rN 1 I 1{21NPN) )—

O' —P d mc P mc(g @) (18)
I„m, c

we have for the quadratic mean of any one of
thc coef6clents: where the right-hand side refers to the case of a

slnglc dlpolc. In exactly the saITle wav onc can
generalize (13) and (15) and one finds that the
equality (20) holds not only for a single coef-
ficient like ep' but for the quadratic mean of any
number of them. Hence, in all cases, the quad-
ratic means of the probability distribution for N
dlpolcs are 1dcnt1cal with the corrcspond1ng
means for one dipole. The same will be true for
the more general coeAicients dl ' of (19).

Let us next assume that the X dipoles are- not
all allkc 1n magnitude, but have dipole 1T10ITlcnts

pz, p2, pg mhich we assume as statistically

[dI"']2 42r (2l——+1)—IR—'—I p'—l

8 8 Bp
X J~ds I & +~ +P —l«y—l-—

& as ax ay)

2 j

If we carry out the square under the integrand we
may verify from (9) and (10) that the integrals
over the cross-products vanish. Hence we are
left mith the integral over the sum of three
squares. Let us furthermore assume that o. and
p Rle 'tllelilselves statistical VRrlables, tliRt ls to
say that, while we keep the s component of the
dipole constant, we admit all directions of the
components perpendicular to the z axis and aver-
age over them. Since under these conditions

TAM.E III.

a/Bs =y 8/Os+ nil/8x+ p8/ay If the square under the integral is carried out,
the integrals over all the cross-products mill

If wc now write for the Potential of th1s d1polc vanish; the squares, of which there are X, are
equal to each other. Hence it follows that

we obtain

obs. QP
Ratio
ObS. $14
RRtlO

1433

370 196 92
0.26 0.53 0.47 0.47 0.20

370 177 73 32 11
0.26 0.48 0.41 0.44 0,34
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independent of the locations of these dipoles. As,
in virtue of the last assumption, the probability
distribution is a product of the probability for
the d& ' and of the probability for the p, we have
for the quadratic mean:

d mc(1) . . .d mc(+)]

= [pi, px]~[« ']~. (21)

COMPARISON WITH OBSERVATION

We are now ready to compare our formulae
with the results of the harmonic analysis of the
actual field as given in Table I. As the figures of
this table are ratios of the coefficients to the
main dipole, we shall divide our calculated
quadratic means by the coefficient of this dipole.
If the latter is located at the earth's center and
has the strength 3f, its potential is

MR—'P~(cos 8) = (4w/3)iMR —' FP.

Now divide (21) by the coefficient of the main

dipole and write

Q,m= (4s/3) —lM—~[/, . . .y~],[d,mc], . (22)

Assume first that the spherical shell degenerates
into a complete sphere. We have then from (13),
(15), (19), (20), (21), and (22):

Q "=3M-'[p]~(r/R) '-'

&& (7Fi"+ (I ~')'*G ") (23)

and if the spherical shell degenerates into a thin
shell of thickness Ar

Q~ ——3M '[p] (r&R)' '{(2l+1)hr/rI&

X (yK"+ (1 —y') "G&"). (24)

It is assumed in these formulae (and we shall
justify the assumption presently) that the
dipoles are directed preferentially along the z

axis, y being the mean directional cosine with
respect to the z axis. The components perpen-
dicular to the s axis are assumed to have random
directions.

The factors F& and G&", defined by (14) and
(16), and a linear combination 0 98Fp'+0 20Gp. .
are given in Table II for m = 2 and m =4.
Whenever l is smaller than the chosen value of
m, we put m=l in (14) or (16). The factor (17)
for radial dipoles is also given.

(l +1)/l

m~2
m~4
radial

2/1

0.30
0.30
0.28

3/2

0.54
0.55
0.53

4/3

0.51
0.46
0.45

s/4

0.51
0.45
0.48

6/S

0.22
0.36
0.36

ratios of successive coefficients in the preceding
lines.

There is also visible, in Table I, a decrease of
the coefficients downwards, i.e. , with increasing
m for constant 1, although this feature is not very
marked. Formula (11) shows that for dipoles
parallel to the c axis the coefficients, for fixed l,
decrease with increasing m, while for dipoles
perpendicular to the s axis they increase with
increasing m. If we form a linear combination of
both we can only permit a rather small admixture
of perpendicular components if we want to retain
a decrease of the coefficients with increasing m.
Although the statistical evidence of Table I is
hardly in itself adequate to justify any very
definite conclusion, the result seems plausible
from the physical viewpoint. The linear com-
bination which has been used in Table II involves
a mean directional cosine corresponding to a
deviation of 11-,"from the earth's axis.

Going back now to our formulae (23) and (24)
we have

m m

Q&i&/Q~ = C r/R (25)

where C is a numerical factor. In the case given
by (23), (full sphere) C is equal to the ratio of
two successive figures in one line of Table II. We
may effect a comparison of (25) with observation
by substituting, on the left-hand side of (25), the
ratios of the observed quadratic means as given
in the second and forth line of Table III. If we
use the numerical factors resulting from the last
three lines of Table II we obtain the values for
r,/R which are contained in Table IV. They are

In order to compare our formulae with the
results of the harmonic analysis of the actual
field as laid down in Table I, we give, in Table
III, the quadratic means of a number of observed
coefficients with the same l. The first line gives
the mean of the coefficients up to and including
m=2, while the third line gives the quadratic
mean of all the coefficients in one column of
Table I. The second and fourth lines give the

TABLE IV.
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rather uniform and although there is perhaps not
much sense in taking a mean of them, it appears
that the true value of r/R is near 0.5 and is
definitely smaller than r/R=0. 55 which is the
boundary of the core. In the case of a thin
spherical shell given by (24) the resulting values
of r/R are smaller by about 10 percent.

The figures in the first column of Table IV are
too small in comparison to the other figures.
They have of course a physical sense only if it is
assumed that the dipole components perpen-
dicular to the s axis are due to the superposition
of the auxiliary dipoles rather than to an inclina-
tion of the main dipole. One cannot, however,

judge these figures without a knowledge of the
absolute number of dipoles which cooperate in

creating the irregular field and this number does
not appear in Eq. (25). Later on we shall try to
determine the number of dipoles.

We might now ask whether our formulae
would be essentially modified if the dipoles were
not distributed at random, but with a certain
regularity, approximating perhaps the structure
of a lattice. Qualitative arguments might be
advanced which indicate that there is not much
difference between the two cases, that a formula
similar to (25) with a C near unity should also
hold if a certain degree of regularity prevails.
Indeed, each individual dipole produces coef-
ficients, cI, ', etc. and their magnitude is limited
to a definite interval of values. If several dipoles
are involved, a single coefficient can become large
only if the dipoles are distributed inside the shell

according to a pattern which has the same type
of symmetry as the spherical harmonic in

question. We can hardly expect this singular
condition to be fulfilled for several harmonics
simultaneously, except perhaps for a set of them

having for instance the same m and different
values of /. There is, however, no sign, in Table I,
of a preponderance of any one coefficient or of
any limited set of coefficients. We might infer
that a pronounced "resonance" of the actual
distribution with any particular spherical har-

monic of second or higher degree, improbably
already a priori, is not indicated by the empirical

findings. Excluding the case of "resonance, " we

might expect that the quadratic means produced

by a distribution of dipoles endowed with some

degree of regularity do not differ widely from the
means produced by a random distribution. This
argument will apply when the number N of
dipoles involved is moderate; its application
becomes doubtful when the number of dipoles
is very large. It is indeed clear from a purely
mathematical viewpoint that one can always
represent the observed field as produced by a
magnetically polarized spherical shell, and when

the polarization as function of 6, y is properly
chosen, the shell may be located at any depth,
outside or inside the core. The distribution of
polarization in the shell, however, will then have
very little resemblance with a random distri-
bution of dipoles.

If the number of dipoles is large, a model
involving extensive areas of magnetization seems
appropriate. It may be shown that in this case,
again, the magnetized regions are, if not below,
at least not much above the boundary of the core.

Assume for a moment that a number of ele-

mentary dipoles are located at the surface of the
earth. All the mean coefficients Q~ will then be
of the same magnitude and the hat. monic series
diverges. If there is, instead, a number of mag-
netized areas at the surface, the series will

converge slowly, the ratio of means of the suc-
cessive coeScients being of the order Q~+r/Q~

=I/(1+1) Similarly, . if the magnetized areas are
located at the surface of a sphere of radius r,
this ratio might be presumed to be of the order
Q~+&/Q&

——(r/R) I/(3+1) If on the .left-hand side of
this relation the figures of Table III are inserted,
we obtain larger values of r/R than before, the
average r/R as computed from the ratios 3/2,
4/3, and 5/4 being about 0.65. The values of r/R
obtained are however not nearly as consistent as
those in Table IV. The true model of the sources
of the irregular field is probably intermediate
between the two models considered, the purely
statistical model on the one side and a model
with relatively large magnetized areas on the
other. The evidence of Table IV points towards
the correctness, or near correctness, of the
statistical model treated in this paper. Speaking
generally we might conclude that, except for
highly artificial models, the sources of the ir-
regular part of the internal field must be either
very near the boundary of the core or below it.
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TxsLE V.

parallel z
radial

1 2 3 4 5

4.5 8.4 7.6 8.3 9.3
4.0 7.3 6.9 7.6 8.0

12.9
10.9

APPENDIX

ill = pg+ . p~ ——N[g]g. (26)

The dipole part of the field is the same as if all
the dipoles were concentrated in the center.
Indeed, from (6) and (10) we have on forming a
linear mean

N[c&0]&——(4s/3) VIA

and this is identical with the expression for the
field of the main dipole used before. Introducing
(26) into (23) we obtain

On the right-hand side we may substitute the
numerical values obtained above. Put r/R= 0.50.

One might consider the earth's main dipole
from two different viewpoints. One can assume
that it is physically a single dipole and then treat
the remaining irregular field as made up of a
number of small additional dipoles. One can also
suppose that the main dipole itself results from
the superposition of a number of dipoles aligned
mainly parallel to the earth's axis. This hypoth-
esis would seem acceptable if one could assume
that the irregular part of the field is produced by
the same dipoles. We may show that such a
picture is at least not inconsistent with our
statistical results. Let a)l dipoles be inside a
sphere of radius r. On the assumption that the
perpendicular components are small we have for
the resultant magnetic moment

For the other factor in the numerator we may
use the values contained in the last two lines of
Table II, and for the denominator we might use
the figures in the third line of Table III. We
obtain then the values for the quantity (27) given
in Table V. The ratio of the linear to the quad-
ratic means depends upon the distribution in
magnitude of the dipole moments. If the moments
show very little scatter in magnitude around a
mean, we have nearly [p]&——[p]2. As another
extreme we consider a Poisson probability dis-
tribution

We find in this case

The true ratio will almost certainly lie between
these limits and, hence, X will be somewhat
larger than the values of Table V, in the neigh-
borhood of ten, say. Again, the numbers for /= 1

are smaller than the other figures, but since they
are based on two observed components only
they can hardly be given a statistica1 significance
and are carried here merely for the sake of com-
pleteness.

The number of ten dipoles obtained in this
way is smaller than the nurse&ber of fourteen
dipoles used by McNish4 to represent the irreg-
ular field. It is noteworthy that the latter figure
has been obtained from the irregular field alone
while the values in Table V result from a com-
parison of the magnitude of the higher order
harmonics with the main dipole. Whether the
discrepancy is due to the crudeness of the
assumptions involved in all of these models or
whether it represents an argument against a
representation of the main dipole field by a
number of smaller components is dificult to
decide in view of the very limited size of the
statistical data.


