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Self-Consistent Field, with Exchange, for Si IV and Si V
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Results of solutions of Fock's equations for the normal state of Si V and for 3s, 4s, Ss, 3p, 4p,
SP, 3d, 4d, Sd, 4f, and Sg states of Si IV are reported. Computed term values for the series
electron are in satisfactory agreement with experimental values, although the agreement is no
better than that obtained by McDougall who used a less elaborate method. Spin-orbit separa-
tions have been calculated from these wave functions. The agreement with observed value is

satisfactory for the p states but not for the d and f states.

INTRoDUcTIQN

'N ordinary self-consistent field calculations,
- - the wave function for a many-electron atom
is expressed as a product of one-electron wave
functions. Starting with this assumption it is
possible to set up the Schrodinger equation which
each type of wave function must satisfy. A
satisfactory technique of numerical solution of
these equations has been developed and results
for a number of atoms and ions have been
obtained. The wave functions so obtained are
satisfactory for many purposes but they do not
satisfy the Pauli exclusion principle. Further-
more, the energy parameters for optical electrons
obtained by this method correspond only very
roughly with observed term values.

Slater' and Fock' have shown that by using
determinantal wave functions the Pauli principle
can be satisfied. Energy values calculated from
the determinantal wave functions are usually in
much better agreement with observed term
values than the eigenvalues of self-consistent
field calculations. When the determinantal wave
functions are used, there occur additional terms
in the expression for the energy of a given state.
These additional contributions to the energy are
known as exchange energies and can be expressed

* Most of the calculations reported in this paper were
carried out by Mr. W. Hartree in consultation with Pro-
fessor D. R. Hartree. Circumstances have made it im-
possible for Professor Hartree to prepare the material for
publication. The undersigned has supplied the textual
material and made a few supplementary calculations.
Professor Hartree has read the manuscript but not the
proof. Correspondence about this paper should be ad-
dressed to Millard F. Manning. —M.F.M.

' J. C. Slater, Phys. Rev. 34, 1293 (1929).
2 V. Fock, Zeits. f. Physik 61, 126 (1930).

in terms of integrals over certain products of one-
electron wave functions. McDougall' has calcu-
lated a number of term values in the spectrum of
Si IV by substituting in these interaction inte-
grals the one-electron wave functions found by
standard self-consistent field methods. Similar
calculations have been carried out by Hartree
and Black' for 0, 0+, 0++. In all cases the agree-
ment with observed values was satisfactory,
although the results for the more highly charged
ions were in better agreement with experiment.

There is, however, an approximation involved
in this method because the wave functions as well

as the energies are affected by the exchange
terms. Fock' was able to take this effect into
account by applying the variational method to
the complete expression for the energy. Nu-

merical solutions of the equations were obtained
by Fock and Petrashen for Na, ' Li, ' and Be.'
Two of the present authors have developed a
somewhat different method of calculation and

applied to a number of atoms and ions. ' "
' J. McDougall, Proc. Roy. Soc. A138, 550 (1932).' D. R. Hartree and M. M. Black, Proc. Roy. Soc. A139,

311 (1933).' V. Fock, Zeits. f. Physik 62, 795 (1930).' Na: V. Fock and M. Petrashen, Phys. Zeits. Sowjet. 6,
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"Be:D. R. and W. Hartree, Proc. Roy. Soc. A154, 588
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(1938).

57



HA RTREE, HARTREE, AN D MA1VNI NG

I'artial solutions for Ne, F, and F have been obtained by Brown. "Solutions for neutral and
ionized carbon have been obtained by Jucys" and solutions for Mg III have been obtained by Yost. 20

FQRMUI-ATIQN oF FocK s EQUATIoNs

The general method of formulation of Fock's equations is to set up the complete expression for the
energy of an atomic system in terms of interaction integrals involving the different wave functions
and to obtain the differential equation which each type of wave function must satisfy by application
of the variational principle. The notation used in this paper is the same as that used in previous
papers, but for convenience the defining equations for a number of functions which appear in the
formulation and solution of Fock's equations are repeated here.

Zx(nPI r) =
I
t P~(n

I
r~)Pq(PI r~)(r~/r) dr~,

0

Yx(nil
I
r) =Zrr(nP

I r)+ " P&'(n
I
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I
r~) (r/r~) "+'dr),
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0 dy2 y y

Fx(nfllr) =~" P~'(nlr) I'x(nplr)r '«
0

(4)

Pn'(Pl r) I'x(nn lr)r '«
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r)P&'(&

I r) I &(nP
I
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0

(1/r)P&(nI r) is the normalized radial portion of the wave function, having quantum numbers
represented by 0,.

The general expression for the energy of a configuration of closed shells in terms of these is (see
reference 11, page 49)

E~ = P„, [2(21+1)I.~+ (21+1)(4l+1)Fo(nl, nl) —Pk A ~~ Fx(nl, nl) ]
+ g' 4(2l+1)(2l'+1)FO(nl, n'l') P' —B~~ ~GIr(nl, n'l'). (6)

nl, n'l' nl, n'l'

The primes on the summations indicate that the term nl =n'l' is to be omitted from the sum. Tables
of the constants A ~1. and B~t I,

. are published in reference 11 (page 48). Some of the values are repeated
here in Table I. Discussions of the method of obtaining the constants are given in references 1, 3, and
11 and in chapter 6, Sec. 9 of Condon and Shortley. "

The differential equation which a particular nl type of wave function satisfies is found by formal
differentiation of the expression

E,' =F+ P X„~,„~
~

Pv(ni
I
r)P~(n'l

I
r) dr.

"K and A: D. R. and W. Hartree, Proc. Roy. Soc. A166, 450 (1938)."Na and K:D. R. and W. Hartree, Camb. Phil. Soc. 34, 550 (1938)."0:D. R. and W. Hartree, and B.Swirles, Roy. Soc. Phil. Trans. 238, 229 (1939)."N and N: D. R. and W. Hartree (to be submitted to Phys. Rev.)."F, F, N: F. W. Brown, Phys. Rev. 44, 214 (1933)."C, C++, C++++: A. Jucys, Proc. Roy. Soc. A173, 59 (1939).
'- W. Jacque Yost, Phys. Rev. 58, 557 (1940)."E.U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge, 1935).



SELF —CONSISTENT F I ELD FOR Sr I V AN D Sr V

The X's are Lagrangian multipliers introduced because the variations are subject to the conditions

that the 6nal wave functions be normalized and orthogonal. The method of carrying out the differ-

entiations is described in reference 10 and the results are quoted both there and in reference 11 and

will not be repeated here. When the differentiations are carried out, the resulting differential equations
can be expressed in the standard form

Q FI'„l „ l.P~(n'l'
1 r) =0.

n'l'
(8)

For the diagonal terms the operator IZ'„l „~ can be written in the form

d2 2
IE„l,„l—— +—X—Q 2(2l'+1) Yp(n'1', n'l'

~
r)+ Yp(nl, nl

~
r)

y n'l. '

1
+ g A,„&x(nl, nl

~
r)

2l+1 p

l(l+1)
(9)

r2

The non-diagonal elements can be grouped into those for which l'=l and those for which l'/l.

For l'=l
Bll l, Yx(nl, n'l)

FI'nl, n l &nl, n'l, &

I- 2l+1 r
(io)

Bll nlYyg(nl, n'1
. )

FI'nl, n l
& 2l+1 r

p„l, l ———lI. l, l/(2l+1),

p„ll= , X„l„—l/2 (2,1+1), n' = n.

To apply these equations to the (is)'(2s)'(2p)p configuration of Si V, it is necessary to know the

appropriate values of the A «'s and the 8«.&„.
's. The only A«needed is A» which is given in reference

11 as 6/S. The necessary values of B«.p are given in Table I. These values, except those involving g

functions, are taken from reference 11.The values for the g functions can be obtained from McDougall's

paper" (Table V) by simple arithmetic.
By substituting the numerical values for the A's and B's and then combining Eqs. (9), (10) and (11)

with Eq. (8) the differential equations for the (is) and (2p) functions are found to be

2 2 Yp(is, 2s
~
r)

+-I T(r)+ Vp(is, 1s jr) I
—pl, , l, P~(is ~r)+

dr' r r
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d2 2 2
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"'"
r2

where T(r) stands for

2 3
+Q —Yl(ns, 2p~r) Pv(ns~r) =0, (13)

~=1 2r

IlI 2V (is,p1s
~
r) —2 Yp(2s, 2—s

~
r) —6 Yp(2P, 2P

~
r)

The differential equation for the 2s electron is the same as that for the 1s except that 1s and 2s are

interchanged wherever they occur.
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The method of setting up the differential equations when there is a single electron outside of closed
shells is discussed in reference 13 (page 69). goshen the series electron is added there are additional
terms in the energy. %hen there is only one electron outside of dosed shells, there are no terms in the
energy involving interactions within incomplete shells. It has been shown previously that. each term
in the interaction between a series electron and a closed shell is 1/(2l+1) times the interaction be-
tween closed shells. Hence the additional contribution to the energy due to the addition of an el
series electron is

E4(nl) =I„)+Q 2( 2l' +1)F 0( nl, n' 'I) — Q B,4 gGr&(nh, n'I') .
n'l, ' 2(21+1) 4

Since these extra terms in the energy involve the core wave functions, the strict application of the
variational principle would yield additional terms in the diR'erentia1 equations for each of the core
functions. However, previous experience indicates that these additional terms will have a very small

effect on the wave functions of the inner electrons. The effect is particularly small when, as in this
case, the net nuclear charge is large. If this effect is neglected, the only equations that need to be
considered are those for the series electron. The general expressions given in Eqs. (8), (9), (10), and

(11) can be applied to the series electron wave functions; the necessary values of B~~ 4 are listed in

Table I. In the present computations, wave functions for 3s, 4s, Ss, 3p, 4p, Sp, 3d, 4d, Sd, 4f and Sg were
obtained. The differential equations which ns(n) 2), np(n) 2}, nd, nf, and ng functions satisfy are:

2 2

+ T(r) ——4„, „, P&(nslr)+Z —&o(as, nslr) —4-,- P~(aslr)
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2
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TABLE I, Values of Bl~ I, (interactions between complete
grouPs).

TABLE III. Values of P/r'+' near origin for series electrons
in Si IV.

GROUPS L L' &=0 0=1 A=2 1~=3 k=4 A=5

(ns)'(n's)'
(ns)'(n'P)'
(ns)'(n'd)"
(ns)'(n'f)"
( )'( 'g)"

(np)6(n d)M
(np)6(n f)~4
(nP) 6(n'g)2o

0 0 2
0 1
0 2
0 3
0 4
1 1 6
1 2
1 3
1 4

12/15

18/5
18/7

24/7
8/3

30/11

0.00
0.01
0.02
0.03
0.04

10.00
8.68
7.50
6.44
5.50

100.0
93.3
87.0
81.3
76.0

100.0
95.5
91.3
87.3
83.6

10.00
9.66
9.34
9.04
8.75

10.00
9.73
9.47
9.22
8.99

TABLE IV. Values of P/r'+' between 0.06 and O.ZO for
d, f, and g series electrons in Si IV.

TABLE II. Values of P„/r'+' near origin for Si V. r 3d 4d Sd ood 4f ~f Sa

1s
2$
2P

0.00

101.8
27.1
85.8

0.01

88.4
23.5
80.1

0.02

76.8
20.3
74.8

0.03

66.9
17.4
69.9

0.04

58.2
14.9
65.4

0.06 76.7 76.7 76.7 76.7
0.08 70.7 70.7 70.7 70.6
0.10 65.3 65.3 65.3 65.2
0.12 60.4 60.4 60.4 60.3
0.14 56.1 56.1 56.0 55.9
0.16 52.1 52.1 52.0 52.0
0.18 48.6 48.5 48.4 48.4
0.20 45.3 45.2 45.2 45.1

8.22
7.74
7.31
6.91
6.55
6.21
5.91
5.63

8.22 8.56
7.74 8.16
7.30 7.80
6.90 7.46
6.54 7.15
6.20 6.87
5.90 6.60
5.61 6.36

M ETHQD oF SQLUTIoN

The process of solution of Fock's equations is
similar to that used in self-consistent field calcu-
lations in that it is necessary to start by making
some initial estimates and use these estimates to
calculate other values of the functions considered.
New estimates are then made and the procedure
repeated until initial and final values of the
function show satisfactory agreement. In ordi-
nary self-consistent field calculations and in the
earlier solutions of Fock's equations, the initial
estimates have usually been made in terms of the
Z&'s. For Fock's equations there are such a large
number of Zp..'s to estimate and make consistent
that it has proved more satisfactory to estimate
the various P&(nP ~r)'s directly and make the
initial and final values consistent.

For the present calculations, the self-consistent
field calculations of McDougall' were available as
initial estimates. It was, however, possible to do
somewhat better than these. By comparison of
results with and without exchange for Be, Na, K,
and Ca, it was possible to make an estimate of
the changes in charge distribution which would
be produced by introduction of the exchange
terms. In general the effect of exchange terms is
to make the whole structure more compact—
shifting the maximum of the wave function
toward the nucleus somewhat as an increased
nuclear charge would. This effect was very small
for the 1s functions and more pronounced for the
2s and 2p functions.

TABLE V. Values of P„for Si V.

(1s)2 (»)' (2P)' r (1&)'

0.00
0.01
0.02
0.03
0.04

0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

0.25
0.30
0.35
0.40
0.45
0.50

0.000
0.883
1.537
2.006
2.329

2.652
2.689
2.559
2.341
2.085
1.820
1.566
1.333

0.859
0.535
0.327
0.197
0.118
0.070

0.000
0.235
0.406
0.523
0.597

0.639
0.582
0.461
0.301

+0.121—0.065—0.250—0.426

—0.806—1.084—1.263—1.359—1.390—1.372

0.0000
0.008
0.030
0.063
0.105

0.206
0.322
0.443
0.564
0.679
0.787
0.886
0.974

1.146
1.255
1.309
1.320
1.298
1.252

0.6 0.025
0.7 0.0085
0.8 0.003
0.9 0.001
1.0 0.0005
1.1
1.2

1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6

—1.245 1.118—1.062 0.960
—0.870 0.801—0.693 0.656—0.540 0.529—0.414 0.421
—0.314 0.332

—0.174—0,094—0.050—0.026
—0.0135—0.007—0.0035—0.002—0,001
—0.0005

0.201
0.119
0.069
0.040
0.023
0.013
0.0075
0.0045
0.0025
0.0015
0.001
0.0005

For the series electron wave functions the nt

wave function itself occurs only in exchange
terms. In this case McDougall's results provided
satisfactory initial estimates. These were then
improved by a series of successive approximations
until a satisfactory agreement was obtained.

In carrying out the integrations for the core
wave functions, it was found to be practicable to
start with values of P's at small values of r found

by series expansion and integrate outward.
Different values of the parameters e„~,

and the arbitrary multiplicative constant in



To@LE VI. Values of P for s and p valence electrons in Si IV (not normaLized).

0.00
0.01
0.02
0.03
0.04

0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

0.25
0.30
0.35
0.40
0.45
0.50

0.6
0.7
0.8
0.9
1.0
1.1
1.2

1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

45
5.0
5.5
6.0
6.5
7.0

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

3$

0.000
0.087
0.150
0.193
0.220

0.234
0.211
0.164
0.102

+0.033—0.038—0.107—0.173

—0.309—0.399—0.444—0.448—0.419—0.366

—0.209—0.018
+0.178

0.363
0.527
0.666
0.777

0.920
0.972
0.956
0.896
0.809
0.710
0.610
0.513
0.426
0.349
0.282
0.226
0.180
0.142

0.077
0.039
0.020
0.010
0.005
0.0025

0.0005

0.234
0.210
0.163
0.101

+0.031—0.040—0.109—0.175

—0.311—0.399—0.440—0.439—0.404—0.344

—0.173
+0.030

0.232
0.414
0.566
0.680
0.753

0.787
0.689
0.494

+0.241—0.036—0.311—0.564—0.782—0.960—1.095—1.187
1.241—1.261—1.253

—1.142
—0.962—0.764—0.581
—0.427—0.305

—0.146—0,065—0.028
—0.012—0.005—0.002—0.001—0.0005

Ss

0.234
0.210
0.163
0.101

+0.031—0.041—0.111—0.176

—0.311—0.399—0.438—0.435—0.398—0.335

—0.159
+0.047

0.251
0.432
0.578
0.681
0.740

0.732
0.581
0.336

+0.041—0.260—0.532—0.754—0.911—0.997—1.013—0.964—0.859
—0.708—0.523

+0.014
0.552
0.998
1.306
1.473
1.517

1.352
1.036
0.717
0.462
0.281
0.164
0.092
0.050
0.027
0.014
0.0075
0.004
0.002
0.001

0.234
0.210
0.162
0.100

+0.030—0.042—0.112—0.177

—0.312—0.398—0.435—0.429—0.389—0.323

—0.139
+0.072

0.278
0.456
0.592
0.680
0.718

0.654
0.440

+0.138—0.189—0.488—0.717—0.851—0.882—0.813—0.658—0.437—0.175
+0.102

0.372

0.881
1.014
0.754

+0.225
—0.379—0.871

—1.079
—0.286
+0.760

1.247
+0.881—0.047—0.954—1.346—1.051

o.ooon
0.0093
0.0348
0.0732
0.1215

0.239
0.373
0.512
0.648
0.777
0.894
0.999
1.088

1.245
1.31
1.295
1.21
1.08
0.90

+0.475—0.01—0.50—0.97—1.40—1.79
2 ~ 12

—2.61—2.88—2.98—2.93
2.78—2.56—2.31—2.04—1.78—1.53—1.30—1.09—0.91

—0.75

—0.455—0.265—0.15
—0.085—0.045—0.025

—0.005

0.239
0.373
0.511
0.647
0.775
0.892
0.995
1.082

1.23
1.29
1.265
1.17
1.02
0.825

+0.365—0.14—0.65
1 ~ 12—1.53—1.86
2.11

2.37—2.30—1.97—1.44—0.78—0.06
+0;66

1.34
1.96
2.49
2.92
3.25
3.49
3.63

3,66
3.37
2.90
2.37
1.87
1.43

0.78
0.39
0.19
0.085
0.04
0.015
0.005

1.08

1.225
1.28
1.245
1.145
0.99
0.79

+0.32—0.19—0.70—1.16—1.56—1.87—2.09

—2.25—2.05—1.58—0.91—0.15
+0.63

1.36
1.98
2.46
2.78
2.93
2.92
2.76
2.47

+1.33—0.10—1.53—2.74—3.62—4.16

—4.33—3.75—2.88—2.04—1.35—0.86—0.52—0.31
—0.175—0.09
—0.055
—0.03
—0.015
—0.010
—0.005

1.075

1.22
1.265
1.225
1.12
0.955
0.75

+0.265—0.26—0.77—1.225—1.60—1.87
—.2.04

—2.05—1;67—1.02—0.21
+0.63

1.39
1.99
2.36
2.51
2.40
2.07
1.56
0.93

+0.22

—1.51—2.64—2.80—2.01
—0.59
+1'.Oi

3.08
+2.41—0.22
—2.73—3.42—1.99
+0.59

2.88
3.73
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' TABLE VII. Values of P for d, f, and g series electrons in Si IV (not normalized).

0.20
0.25
0.30
0.35
0.40
0.45
0.50

0.6
0.7
0.8
0.9
1.0
1.1
1.2

1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

4.5.
5.0
5.5
6.0
6.5
7.0

8
9

10
11
12
13
14
15
16

18
20

3d

0.36
0.60
0.885
1.21
1.57
1.96
2.37

3.24
4.15
5.08
6.01
6.91
7.78
8.59

10.0
11.05
11.75
12.1
12.1
11.85
11.4
10.75
10.0
9.2
8.35
7.5
6.7
5.95

4.25
2.95
2.0
1.3
0.8
0.5

0.2
0.05

0.36
0.60
0.88
1.205
1.555
1.935
2.33

3.16
4.01
4.85
5.64
6.38
7.02
7.55

8.25
8.4
8.0
7.1
5.75
4.1
2.25

+ 0.3
1.65—3.55—5.35—6.95—8.35—9.55

—11.55—12.25—12.0—11.05—9.7—8.25

5.45—3.35
1.9
1.05—0.55—0.3—0.15—0.1
0.05

0.36
0.595
0.88
1.20
1.55
1.925
2.315

3.13
3.95
4.74
5.48
6.13
6.68
7.09

7.5
7.3
6.5
5.2
3.5

+1.6—0.45—2.45
—4.3—5.95

743—8.3—8.95—9.2

—8.35—5.85
2 03

+1.6
5.3
8.5

12.45
13.45
12.3
10.15
7.75
5.6
3.85
2.55
1.6

0.6
0.2

0.36
0.595
0.875
1.19
1.53
1.90
2.28

3.05
.3.82
4.53
5.16
5.68
6.07
6.30

6.25
5.5
4.2,
2.5

+0.5—1.55—3.5—5 ~ 1—6.3

4f

0.0090
0.0195
0.0364
0.0609
0.0945
0.1387
0.1946

0.347
0.560
0.842
1.20
1.63
2.14
2.72

4 1
5.7
7.4
9.25

11.1
12.8
14.5
15.9
17.2
18.2
19.0
19.5
19.8
19.9

19.4
17.9
15.9
13.6
11.4
9,3

5.8
3.45
1.95
1.05
0.55
0.3
0.15
0.1
0.05

0.9909
0.0195
0.0362
0.0605
0.0938
0.1372
0.1919

0.340
0.544
0.810
1.14
1.52
1.97
2.46

3.55
4.7
5.8
6,7
7.35
7.65
7.6
7.1
6.3

0.0020
0.0057
0.0130
0.0260
0.0472
0.0796
0.1266

0.281
0.548
0.972
1.60
2.48
3.68
5.23

9.6
15.9
24.4
35.2
48.3
63.6
80.9

100
120
141
163
185
207
228

275
312
337
349
349
339

297
240
183
132
92
62
40
25
16

P(nl ~r) were tried until the proper behavior at
large values of r was obtained simultaneously
with the fulfillment of the normalization and
orthogonality conditions. The wave function so
found was compared with that initially assumed

and a new wave function estimated. The process
of successive approximations was continued until
initial and final values of each P~ checked to
within 0.003.

The integrations for the outer wave functions
are best carried out to some convenient radius

(usually near the outer inflection point). For the

same e„~ „~ an inward integration is started from

some large radius where an asymptotic expansion

can be found. The values of E ), ) are then

adjusted until the values of (1/P)(dP/dr) as

found by outward and inward integration are

equal. The details of the method of inward

integration are described in reference 9. In theory

the non-diagonal multipliers should be taken into

account, but as was found" for Ca+, the wave

functions found are already orthogonal to the

core fqqctiogs,
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TABLE VIII. Values of PJo I'dr5&, 6 v and q.

Si V

Si IV

1s
2$
2p

3s
4s
Ss

Gc s

[Jp P~dr J &

1.185
2.09
3 ~ 13

141.6
16.17
12.41

3.275
1.538
0.893
0

vc(cm &)

359,400
168,800
98,000

v (J.M.)

360,400
169,200
98,500

364,098
170,116
98,677

0.79
0.775
0.765
0.765

0.804
0.787
0.782

3p
4p
5p

oG p

3d
4d
Sd

aod

4f
f

3.91
6.49
9.45

18.45
23.9
31.3

37.7

782

2.639
1.319
0.793
0

1.839
1.033
0.658
0

1.0004
0

0.6401

'289,600
144,100
87,000

201,800
113,400
72,200

109,800

70,240

289,600
145,100
87,300

202,200
113,500
72,300

109,800

292,655
145,774
87,566

203,721
114,087
72,599

109,968

70,258

0.535
0.515
0.505
0.500

0.05 '

0.065
0.07
0.071

0.550
0.529
0.521

0.064
0.077
0.082

0.004

0.001

RESULTS

The wave functions for the core electrons are
listed in Tables II and V. The greatest dis-
crepancy in the P&'s between these results and
those obtained by McDougall is 0.006 for the
1s, 0.05 for the 2s, and 0.03 for the 2P functions.
In all cases the effect of exchange is to contract
the wave functions toward the nucleus. As
tabulated, the 1s, 2s and 2p functions are
normalized and orthogonal.

The wave functions for the series electron in

Si IV are listed in Tables III, IV, VI, VII. The
columns headed ~s, ~p, etc. , give the wave
functions for e„~ „~——0. As tabulated, these func-
tions are orthogonal to the core functions, but are
not normalized. The normalization integrals are
given in the first column of Table VIII. In the
second column of this table are listed the ~ ~,

values for the series electron in the different
states. It has been proved previously" that when
the perturbation of the core is neglected the
energy parameters for a single electron outside of
filled shells are the same as the term values. In
the next column the corresponding values of the
energy expressed in cm ' instead of Rydbergs
are listed. In the fourth column are the corre-

.sponding values calculated by McDougall' using
the wave functions found by self-consistent field

methods neglecting exchange but including ex-

change terms in the expression for the energy.
The fifth column lists the observed values as
given by Edlen and Soderquist. "The discrepancy
between observed and calculated values is not
more than two percent and is smaller for the
higher n and l values. It is perhaps surprising to
note that the more elaborate calculations reported
here do not agree as well with experiment as
those obtained by McDougall. ' The reason for
this would be difficult to assign without a detailed
comparison of all of the terms appearing in the
expression for the energy. The neglect of exchange
in calculating the wave functions has two oppo-
site effects which might well counteract each
other. The neglect of exchange decreases the
charge density due to the series electron in the
regions near the nucleus, but on the other hand,
it causes an expansion of the core wave functions.
The expansion of the core functions decreases the
screening action at a particular radius and hence
increases the computed term value of the series
electron.

A fairer estimate of the correctness of a set of
wave functions is obtained by comparing not the
energy values but the departures from the
hydrogenic values which are measured by the
constant g in the formula:

.r = C'/(n , q) ', — (20)
"" B.Edlen and J.Soderquist, Zeits. f.Physik87, 217 (1933).
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where e„&, & is the term value in Rydbergs, C is
the net charge of the core, and n is the principal
quantum number. The values of q as computed
by the present method and the q, as found from
experimental values of e are listed in columns six
and seven of Table VIII. It is interesting to note
that the discrepancies in energy vary in both
absolute and relative values from one state to
another, but that the discrepancies in the q's are
nearly the same for all levels although slightly
less for the higher / values.

The spontaneous transition probabilities be-

tween two states can be found from formulas
given in reference 13 and by Cond on and

Shortley. "Since the experimental data on Si IV
are meager, the spontaneous transition proba-
bilities have not been calculated. However, the
integrals fo"rPN(n

~
r)Pn (p ~

r)dr for s —p and

p —d transitions are listed in Table IX.

t" Z(r)
AW„, =En'(l+ ', ) -Pp (nl

~
r)dr, (21)

~j f3

where R is the Rydberg constant, 0. is the fine

structure constant, Z is the effective nuclear
charge at radius r, and P~'(nl~r) is the radial
charge density for the type of wave function
under consideration. If energies are measured in

rABLE IX. Ualues of tkeintegrals fp"rPN(a)P+(p)dr.

3$ 4s Ss 3d 4d Sd

3p —1.944 0.975 —2.176 0.108 0.134
4p 0.223 —4.015 2.090 1.451 —4.36 —0.055
5p 0.133 0.321 0.293 3.08 —7.13

fp rP(3s)P( &+ p)dr = 1.123. fp rP(4s)P( ooP)dr =3.975.
f'o"rP(4P)P( s)dr =6.395.

"See reference 21, Chapter V, Sec. 9.
24 See reference 21, Chapter V, Sec. 4.

SPIN-ORBIT INTERACTION

The energy levels in a one-electron spectrum
are known to be double with the two levels

corresponding to j=l+—,
' and j=l—-', . Normally

the level with the smaller value ofj has the larger
term value. The formula for the difference in

wave number is'4

TABLE X. Spin-orbit separation.

Observed 460
Calculated 430

162
149

75
70

1.57
19

4d 4f

0.08 1.3
9 2.3

"I. Bowen and R. A. 1VIillikan, Phys. Rev. 25, 301
(1925).

'6The spin-orbit separations for Ca+ 3d and 4P states
have been computed from the wave functions reported in
reference 13. The computed values were 85 cm ' and
159 cm ' for the 3d and 4p levels, respectively, compared
with 60.8 and 222.8 as given by R. F. Bacher and S.
Goudsmit, Atomic Energy States (McGraw-Hill, 1932).

"H. E. White, Phys. Rev. 40, 316 (1932).
28 Melba Phillips, Phys. Rev. 44, 644 (1933).The authors

wish to thank Dr. E. U. Condon for calling references 27
and 28 to their attention."G.H. Shortley, Phys. Rev. 40, 185 (1932).

cm ', the constant Rn' has the numerical value
of 5.822.

The integral occurring in Eq. (21) has been
evaluated numerically, from the values tabulated
in Tables V, VI, and VII. In Table X the
computed and observed values are given. The
experimental values are due to Edlen and
Soderquist, "except the d levels which are taken
from Bowen and Millikan. "For the p states the
agreement between observed and computed
separations is quite satisfactory but for the d
and f levels the agreement is not even quali-

tative. " The cause of the small values of the
separations in Si IV is presumably the same as
the cause of the inverted doublets in the spectra
of Na I, Mg II and Al III which are iso-electronic
with Si IV. White" and Phillips" have suggested
that the inverted doublets in these spectra can be
accounted for by configuration interaction. Be-
cause of the effect of the valence electron, the
core will not be spherically symmetric and besides
the wave functions for the 2p' configuration, a
linear combination, including 2p'3p, 2p~4p, etc.
must be used. Because the energies of these
excited states are so high, their coeScients in the
linear combination will be small. The important
point for the present discussion is that the spin-
orbit interaction for these states is large and

negative, " so that even a small admixture of
these states can give a comparatively large nega-
tive contribution to the spin-orbit interaction.


