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A criticism has been directed against the plausibility of the alpha-model, based on the con-
tention that the first-order interaction between alphas is a repulsion. If this were true, the
second-order attraction would have to be more than strong enough to overcome it and would be
expected to distort and mix the alphas, making the alpha-model implausible even as a fair ap-
proximation. The contention is based on the conventional assumption of nuclear forces with
several exchange terms and a single range parameter, and is here controverted by means of a
calculation based on a more nearly satisfactory assumption of nuclear forces with fewer terms
and two range parameters. This sample interaction has more “‘tail” than has the conventional
interaction (a non-exchange tail), and leads to an adequate first-order attraction between
alphas. The alpha-model facilitates a qualitative understanding of several well-known regu-
larities among observed nuclear moments. The low degree of degeneracy of neutron states in an
alpha-framework may be associated with the existence of surprisingly many cases in which the
addition of two neutrons to a nucleus does not appreciably alter its magnetic moment. This, and
the expectation that the lack of complete rigidity of an alpha-framework inhibits its rotation,
may bring it about that the orbital moment of the odd-proton nuclei is essentially due to
protons, in keeping with the observed trend of the magnetic moments. The occurrence of large
positive electric quadrupole moments only in the neighborhood of the rare earths has been
related to the shape of an alpha-framework, and to the participation of only one or very few

particles in the orbital motion.

F the various proposed methods of approxi-
mating the problem of nuclear structure,
the alpha-model is perhaps the most plausible.}~*

1E. Wigner, (a) Proc. Nat. Acad. Sci. 22, 662 (1936);
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The only serious objections which have appeared
against its plausibility have been based on a very
specialized assumption about nuclear forces.®?
This form of the forces—the familiar ‘“Majorana-
Heisenberg-Wigner-Bartlett” scheme with a
single range parameter—has enjoyed such a
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vogue, because of its alleged simplicity, that it
was mentioned only parenthetically in reference
6(a), though essential to the conclusions thereof.
This form of the forces has always been subject
to serious doubt as more than a very rough
approximation, the more so in the light of the
possibility of meson forces. The objections to
the alpha-model are raised directly against the
use of the alpha-model in calculating relative
binding energies, and only by implication against
the association of the alpha-model with a nuclear
structure important to nuclear moments and the
like. The implication is, however, rather strong,
and its denial is the principal purpose of this
paper. The objections are based on the tenet
that the first-order interaction of two alphas is
repulsive.7 In this case, the binding of alphas
into nuclei must arise from second-order forces
(of no greater range) strong enough to overcome
the repulsion. The direction objection is then
that such forces would not exhibit the simple
additivity employed in reference 4. The implica-
tion arises from the circumstance that second-
order interactions are accompanied by a distor-
tion of the unperturbed state of the system. If
the second-order forces must be more than
strong enough to provide the binding, it seems
likely that the distortion would be so great that
the alphas in a heavy nucleus would not retain
even a nebulous identity. In the next four
sections we shall show that a different sample
force assumption, which is more closely com-
patible with proton scattering and with the
meson theory, gives an attraction between alphas
in first order.

I. HEAVY-PARTICLE INTERACTIONS

The suggestions of the meson and other field
theories of nuclear forces still leave us in the
midst of an empirical search for a formulation of
nuclear forces which is satisfactory for as many
purposes as possible. One incentive for the search
is the hope that its result may provide either a
suggestion of the direction in which field theory
should develop, or a criterion to distinguish the
correct field theory of the forces from the rest.
Short of this aim, it may still be very useful as
a guide toward crucial experimentation. A very
important step in the empirical selection of the
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F1G. 1. Possible heavy-particle interactions in the 1S
state: a meson potential V.= —(89.65mc%)e "/*a/r with
a=0.42¢2/mc>=0.131%(m Mc?)~}; the exponential potential
Va=—(137.6mc?)e 2" with 5=0.1934(mMc?)~}; the
Gauss error potential  Vy= —(51.44mc?)e~*™  with
a=21.59mMc?/h?; and the double-range potential V, given
by Eq. (1).

most satisfactory forces is the analysis of proton-
proton scattering data. This has been carried
out by Breit and his successive co-workers,?®
using the data of Tuve, Heydenberg and
Hafstad, and of Herb, Kerst, Parkinson and
Plain.? Three of the assumed forces on the basis
of which they carried out their analysis are

8 (a) G. Breit, E. U. Condon, and R. D. Present, Phys.
Rev. 50, 842 (1936); (b) G. Breit, H. M. Thaxton, and L.
Eisenbud, Phys. Rev. 55, 1018 (1939); (c) L. E. Hoisington,
S. S. Share, and G. Breit, Phys. Rev. 56, 884 (1939).

9 (a) M. A. Tuve, N. P. Heydenberg, and L. R. Hafstad,
Phys. Rev. 49, 402 (1936); 50, 806 (1936); 51, 1023 (1937);
53, 239 (1938); (b) R. G. Herb, D. W. Kerst, D. B.
Parkinson, and G. J. Plain, Phys. Rev. 55, 998 (1939).



ALPHA-MODEL OF NUCLEAR STRUCTURE

shown as V,, V4, and V, of Fig. 1. The deviations
of the phase shifts in the case of V,; and V5 are
rather definitely outside the range of plausible
error, and it may be considered that the analysis,
as carried out by Hoisington, Share, and
Breit,%® leads to agreement in the case of V,
only, according to an opinion expressed by
Professor Breit.!® This arises from the fact that
the nature of the radial dependence (such
features as the ratio of ‘“‘tail” to ‘“body’’)
determines essentially the curvature of the phase
shift as a function of energy, so that a fit cannot
be brought about for V; and V, by a mere
alteration of the parameters.!?

For the purpose of calculating other nuclear
properties, the meson potential V, is rather
awkward, since its use would at best lead to a
great deal of numerical integration. Yet we
would like, in what follows, to adopt a potential
which is in agreement with the scattering data,
and which may, in spite of drastic simplifications
for the sake of practicability, retain some of the
qualitative characteristics of the meson force.
In particular we wish to retain the ‘‘tail,” which
seems to be the most important feature in what
follows, while attaining saturation entirely by
exchange, without tensor forces. We retain the
tail, without losing the possibility of analytic
integration, by means of the device of approxi-
mating the radial dependence V, which was
successful in the scattering problem by a
superposition of two Gauss error curves, one for
the “body” and one for the ‘‘tail.”” This double
Gauss error curve, with the parameters chosen
to fit V, reasonably closely through almost all
of its range, is

Vo= —T70mc? exp (—ar?) —6mc? exp (—a'r?) (1)
with

a=45mMc*/h* and o =9mMc2/h.

It is compared with V., as well as with V; and
Va4, in Fig. 1. The part of the potential at very
small » (where the function F?E—} plotted in
Fig. 4 of reference 8(c) is both small and almost
independent of E) is relatively unimportant in
the scattering. Furthermore, the meson theory

10 G. Breit, Washington Physics Colloquium, February
26, 1941,
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is most ambiguous about the forces in this
region of small »—no cut-off is required, and
none has been introduced, in the scattering
analysis, although a cut-off is required in other
problems.! It is seen that V, differs from V, more
than does V only in this presumably less impor-
tant region. Through the main part of the range of
r, V, differs from the meson potential IV, much less
than do the others, and it wavers on both sides
so that the differences could be expected partially
to annul one another. Since the other potentials
Vi and V, can only be excluded after considering
the last refinements of accuracy of the scattering
data, it seems almost certain, without repetition
of the rather lengthy analysis, that the scattering
data would not exclude V,.

V, in (1) is our assumed LS interaction. The
more general interaction between two particles,
from which (1) follows, which we assume for
the purposes of calculation is

V=—(4,P14+A4,P°) exp (—ar?)
— A’ exp (—a'r?)
= — (105mc?P 14 35mc2P°) exp (—ar?)
—6mcet exp (—a'r?), (2)

with a=45mMc?/h? and o =9mMc?/h? as before.
Here P is the space-exchange operator (‘‘Ma-
jorana’’) and Pc is the spin-exchange operator
(“Bartlett’). It will be appreciated that (2), in
spite of having two ranges, is somewhat simpler
than the four-operator interaction which has
often been assumed. As stated above, we intro-
duce the exchange operators principally for the
sake of saturation, expecting that this will in
some way correspond to the saturation properties
of the actual (perhaps partly tensor) interaction.
The saturation conditions are derived from
consideration of collapsed nuclei, in which the
range plays no role, so they apply to (2) as well
as to a single-range interaction. The principal
saturation conditions!? are in our case

A1 240444, 3)
Ae>240424".

They are satisfied by (2) as inequalities with a

1L H, A. Bethe, Phys. Rev. 57, 260, 390 (1940) et al.

2 (a) G. Breit and E. Feenberg, Phys. Rev. 50, 850
(1936); (b) N. Kemmer, Nature 140, 192 (1937); (c) Cf.
also G. Breit and E. Wigner, Phys. Rev. 53, 998 (1938).
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TABLE 1. Deuteron and alpha-energies.
DEUTERON ALPHA
Energy due to V — 3.2 mc? —51 mc?
Discrepancy with observed energy
(allowed for admixture) —mc? — 3.7 mc?

considerable margin. It has been customary to
assume that the saturation conditions should be
satisfied as equalities or near-equalities, following
a suggestion®® based on the desirability of obtain-
ing as much Li¢ binding as possible with the usual
single-range interaction. There is thus no reason
why the double-range interaction (2) should be
made to satisfy the conditions (3) as near-
equalities. The greater freedom of choice of
parameters thus afforded seems desirable, and is
perhaps an advantage of the form (2) over the
usual form of interaction—it seems unlikely that
the actual interactions, which we hope to
approximate, would happen to correspond to
such stringent conditions as (3) as equalities, or
even as near-equalities. Something corresponding
to this greater freedom of choice is probably also
afforded by the tensor nature of the forces, which
is expected to depress the Li® energy more than
the alpha-energy by intermixing states. With
most interactions which, like (2), are more than
saturated, the alpha-model appears to be almost
essential in interpreting the linear trend of
nuclear binding energies.

The choice of the parameters in V has been
further limited by the requirement that it shall
give a satisfactory value of the deuteron binding
and of the alpha-binding. Though the interaction
which V is intended to approximate is probably
tensorial, V can reproduce only its direct
contributions to the energy of these simple
systems, not the indirect contributions arising
from admixture of states of differing L. We
therefore make an arbitrary, or very roughly
estimated, allowance for the indirect contribu-
tions. Since the energies are quite sensitive to
the choice of parameters, we need not demand
great accuracy. The energies derived from 7,
and the allowances to be made for admixture of
states in order to give the observed binding, are

13 D, R. Inglis, Phys. Rev. 51, 531 (1937).
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listed in Table I. The allowances for admixture
are, in order of magnitude at least, compatible
with indications from the deuteron quadrupole
moment.!!

The energy due to V is in each case estimated
by means of perturbation theory. In the case of
the deuteron, the convergence question is more
serious** (because of the greater penetration of
the barrier), and attainment of a significant
result in the double-range calculation depends
on comparison between perturbation and exact
results in the single-range case. Warren and
Margenau!® have carried out the second-order
Schroedinger perturbation theory of the deuteron
for a single-range interaction equivalent to (2)
with 4’=0. Using a rather long-range interaction
with a=20mMc/k?, they found that the differ-
ence between —E, the binding energy obtained
from the assumed interaction by a correct
computation, and —E®+?  the binding energy
in second order, is about mc? The difference is
to be attributed to the higher orders of the
perturbation calculation. Its magnitude depends
on how poorly the zero-order functions fit the
actual functions. The fit is worse when there is
much penetration of the barrier, so one may
expect the higher-order contribution to be larger
for shorter range of interaction and for smaller
binding energy — E. The extent of these varia-
tions of the higher-order contributions may be
judged by the three cases' listed in Table IIL.
One sees that the dependence on E is less
important than the range dependence, and that
we should attribute about 2mc? of the deuteron
binding to higher orders of the perturbation
theory when using the interaction (2), of which
the dominant term is quite short-ranged. A
second-order perturbation calculation similar to
that sketched in the appendix of reference 15,
but generalized to accommodate the double-
range interaction (2), leads to the energy of

14 For this reason we disagree with the remarks, toward
the end of p. 1028 of the otherwise admirable paper quoted
below (reference 15), criticizing alpha-results on the basis of
deuteron behavior.

15 D, T. Warren and H. Margenau, Phys. Rev. 52, 1027
(1937).

16 The values of E are taken from E. Feenberg and J. K.
Knipp, Phys. Rev. 48, 906 (1935), Table I, and from E.
Feeriberg and S. S. Share, Phys. Rev. 50, 253 (1936),
Table II.



ALPHA-MODEL OF NUCLEAR STRUCTURE

the deuteron in second order:

EO4+E®=(9h2/8M)oa
—A{1-3/[4(c+1)N[e/(c+1) ]
—A"{1=3/[4(s+ DL/ s+1) T
— (M /2Rac) {A o/(c+1)]?
X[a—log(1+1/a)+log2—1]
+244'[o/(e+1)PLs/(s+1) ]
X[b—log(1+1/b)+log2—17]
+A4"”[s/(s+1) ]*[a’ —log(1+1/a’)

where a=(c+1)/[(e+1)2—17]F, a'=(s+1)/
[(s4+1)2—17, s=oa/d/, and b= {(c+1)(s+1)/
[(e4+1)(s+1)—17]}% The second-order contribu-
tions of the term in A’ are here, of course,
relatively small, with an interaction such as (2)
which has the term in A’ considerably weaker
and longer-ranged than that in A. Indeed, in
the limit of very long range of the term in 4'—
that is, very large s—the second-order and
higher-order contributions of this term vanish,
since the addition of a constant potential merely
depresses the energy-level scheme by a constant
amount (4') without altering the wave functions.
Because of the weakness and long range of the
term in A’ we may expect its effect on the rate
of convergence to be slight. Evaluation of (4)
with the values of the parameters given in (2)
leads to the minimum value E0+2 = —1.24m?,
the minimizing value of ¢ being 0.26. This and
—2mc? just attributed to higher orders give the
value in Table I.

The alpha is a much more compact nucleus,
with comparatively little penetration of the
barrier, and for it a perturbation theory!? based
on Hermite functions is very suitable.!® The
second-order contribution is only about 2mc?
out of a total 55mc? of alpha-binding.!?

The first-order energy of the low 1S state
(“‘ground state”) of the alpha with the double-
range interaction (5) is

Eo= 0 /4M)ac—6A4,[0/(c+2) ]
—6A4'[s/(s+2) P+1(ack?/mMc2)imet.  (5)

With the parameters given in (2), this has a

minimum E,= —48.3mc? at ¢=1.6. A complete

calculation of the alpha-binding with this
interaction might then be expected to give about

17 W. Heisenberg, Zeits. f. Physik 96, 473 (1935).
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S1mc3. The allowance for admixture (Table I)
is then relatively small, as seems compatible
with the high excitation of other states of the
alpha.!®* Even if this allowance might turn out
to be considerably too small,'® the result indicates
that the simple interaction (2) is reasonably
adequate for our purposes.

II. INTERACTION OF Two ALPHAS

The analysis, along molecular lines, of the
problem of two interacting alphas, each treated
by use of oscillator functions as above, has been
carried out by Margenau,” in part following an
earlier treatment of Heisenberg.!” A single-range
interaction was used, of course, and the result
obtained was a repulsion at all distances, as has
already been mentioned. We shall now generalize
the analysis to encompass the double-range
interaction (2). The generalization is entirely
straightforward. We still have the relation
V=12V3+16V4, where V is the average
potential energy of the system. In our case,
the typical average like-particle interaction (in
first order) is

Vie=(4,—A4,) S exp(—arsd) Pydr
—A' Sy exp(—d'rsd)ydr (6)

and an average unlike-particle interaction is

17432 —A qf\l/ eXp(—“a1’4s2)qul/dT
— 34 SV exp(—arsst)ydr
—A' Sy exp(—a'ry)¥dr. (7)

The wave function ¢ of the system is the same as
before, a determinant of single-particle functions
u(r) of position relative to one center and »(r — R)
of position relative to a second center, with a
normalization factor 4!/(1—6%2 The single-
particle function u(r) is (ca/7)! exp(—oar?/2),
an' s wave function with an oscillator po-

TaBLE II. Rapidity of convergence as a function of range o4
and deuteron S energy, E.

ahi/(mMc?) A/mc E/mc? EU)/me2  (E —E0+) /mc?
30 117 —4 —2.67 —1.33
30 114 —-3.5 —2.10 —1.40
44.44 162.6 —4 —2.00 -2.0

18 D, R. Inglis, Phys. Rev. 55, 988 (1939).
( 19 E). Gerjuoy and J. Schwinger, Phys. Rev. 60, 158A,
1941
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F16. 2. The interaction of two adjacent alphas, AE, and
the terms of which it is composed [in Eq. (9)] as functions
of the inter-alpha-distance R.

tential, and the ‘‘overlapping integral” § is
exp(—oaR?/4). The integrations in (6) and (7)
which involve o rather than o are carried out
by Margenau in Eqgs. (14) to (18) of reference 7,
and are stated in terms of the parameters ¢ and
p=a*R. The parameter ¢ arises in the result as
the ratio of sa from the wave function and «
from the interaction, so it is replaced by s=ca/a’
when one integrates the last terms, involving o/,
in (6) and (7). Likewise p’=a*R replaces p in
the results of these integrations. From 7V, thus
calculated, we subtract the first-order average
specific nuclear potential of two separated alphas

Vo= —12{4 ;A4 A"} (8)

with 7=¢/(¢+2) and 7' =s/(s+2), and add the
kinetic energy Eyin= (0p0%)*(a/M)/(1—6%) and
the Coulomb energy E¢=(4¢?/R) erf[ (¢a/2)*R]
from reference 7. The result for the first-order
energy of interaction of two alphas centered at
fixed points R apart, if the particles of which
they are composed interact according to (2), is

E=(opdh)*(a/M)/(1—8%
—4(1— )24 [ (48— Do+ (10— 82)A;
—1260]+24,(1— 8) (Aa—\s)
+ AT (A= )N o+ (5 — 469N 5 — 126N ])
+(4¢*/R) erf[(ca/2)'R]. (9)

The \; are defined in Eq. (15) of reference 7,
and the \’; are, similarly,
No=1"d exp(—7'p?),
Ny= 11 exp(—1s'p'?),
Ni=7texp(—1(s+3)7'p"?).

The term in A’ has longer range than the other

(10)
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exponential terms, mainly through the replace-
ment of p by p’, and thus leads to attraction at
intermediate distances if it is strong enough to
overcome the Coulomb repulsion, as we shall
see it is.

The evaluation of (9) with the parameters
indicated in (2) is shown, term by term, in Fig. 2.
The heavy curve AE represents the entire
expression (9), the energy of interaction of two
alphas at a fixed separation R as a functjon of R.
This has been obtained in a way closely analo-
gous to the Heitler-London treatment of mo-
lecular binding. The approximation involving
fixed centers is not as good here as in the mo-
lecular case, as has been emphasized by Heisen-
berg,’” but we may partially take into account
the indeterminacy of position of the centers by
considering the zero-point vibrations as in
molecules. The dotted lines in Fig. 2 represent a
typical square-well potential which would just
serve to keep two alphas together as a barely
stable Be® nucleus. The still deeper and broader
curve AE would thus suffice to make Be? quite
stable—stable by several mc*—relative to dis-
integration into alphas. This means that the
attraction between alphas provided by the
interaction (2) of the constituent particles is
even stronger, already in first order, than
required by the energy of Be?, which is probably
unstable by a small fraction of mc?. Thus we
see that a comparatively slight modification of
previously-investigated forms of interaction, and
one which is also an improvement in some other
respects, is sufficient to bring about a strong
first-order attraction between alphas. We could
take the two ranges more nearly equal than we
did explicitly in (2), or introduce some exchange
or tensor properties in the long-range term, and
still obtain enough alpha-attraction.

The curves in Fig. 2 have not been drawn for
very small values of R, as the first-order result
of perturbation theory there has very little
meaning. The trustworthiness of the result is
indicated in part by the smallness of the over-
lapping, measured by 8 relative to unity. This
quantity is 0.04 at R(mM)¥/h=0.3, but is as
large as 0.24 at 0.2, where the first-order result
is a strong repulsion. In spite of the inapplica-
bility of the first-order result at smaller separa-
tions, we may be sure that the repulsion con-
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tinues to very small values of R, because, as
already mentioned in Section I, our interaction
(2) is more than saturated. The fact that the
repulsion sets in at distances where the over-
lapping is comparatively small helps to make
the alpha-model very plausible.

We have demonstrated the possibility of
selecting a simple interaction between heavy
particles which satisfies all the usual demands
(insofar as this can be done without tensor
forces) and at the same time leads to a satis-
factory first-order attraction between alphas.
This liberates from serious criticism a valuable
tool with which we may attempt to correlate
and understand nuclear properties; the alpha-
model.

I1I. EmMpPirRICAL DEMAND FOR THE ALPHA-
MopEL. NUCLEAR MOMENTS

In this section we shall emphasize three
striking facts that have previously been pointed
out concerning correlations among the moments
of odd nuclei, facts which suggest, in a way
much too definite to be ignored, that nuclei
must have a detailed structure much more simple
than one would a prior: expect in mechanical
systems so complex. These facts are, first that
there are several cases in which the addition of
two neutrons to a nucleus makes practically no
difference to the magnetic moment,?® second,
that the magnetic moments seem to be due
mostly to a single particle ;2! and, third, that the
large electric quadrupole moments are all
positive.22 We shall also discuss other facts
related to these but concerning individual nuclei.

Of the twelve odd isotopic pairs with the same
nuclear spin of which the magnetic moments are
known, seven or eight have the magnetic
moments nearly equal in the two isotopes. All
of the known magnetic moments of isotopic
pairs, including those with different nuclear
spins, are listed in Table III. The ratios uats/p4
are listed for those elements of which the two
isotopes have the same nuclear spin, the ones
in which we are interested at present. In the

2 H. Schuler and H. Korsching, Zeits. f. Physik 105, 485
s (72) A. Landé, Phys. Rev. 46, 477 (1934); (b) Th.
Schmidt, Zeits. f. Physik 106, 358 (1937).

22 H. Schuler, J. Roig, and H. Korsching, Zeits. f. Physik
111, 173 (1938).
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case of Ag, and one might also say in K, the
magnetic moments are both very small, due
presumably to an almost complete cancellation
of spin and orbital contributions. In each of
these cases we may consider the magnetic

TaBLE 1I1. Magnetic moments of isotopic pairs.*

OpDp PROTON Opp NEUTRON
I u/en (pAs2/ra) I u/eN (n4+o/pa)

5/2 1.37 Cdit 172 —0.65 |

17CI35

WOl 572 11408 (Caw 172 —o065 (10
WK® 32 0390 e wSnW 172 —089 \ o
WK 372 0.22(% oSn 172 —089 (L
wCu®  3/2 243, ,, uXe® 1/2 —09
WCu® 372 2540 X 372 0.7
nGa® 3/2 2111y, wBa® 3/2 0837\ .
uGa® 32 26001270 [ Baw 372 0936/
wBr® 372 26110 wYb™ 1/2 045
B 372 2.61f% WYb 5/2 —0.65
RbS 572 1.34 WHg® 1/2 0.5
oRbY 372 274 WHe 3/2 —06
e 175 01019

e 072 543

wInis 972 5.43/1:002

aSbz 572 37

uSbim 772 28

wEus 572 34

wEu® 572 1.5

Re® 5/2 3.3

TeRei? 522 33 1.0108

wTi® 172 144

aTlms 172 1.45/1:0097

# The sources of the data in Table III and in Figs. 3 and 4 are as
follows: H, Li?, F19, Na2: S, Millman and P. Kusch, Phys. Rev. 60,
91 (1941). Be?®: P. Kusch, S. Millman, and I. I. Rabi, Phys. Rev. 55,
666 (1939). B11: S. Millman, P. Kusch, and I. I. Rabi, Phys. Rev. 56,
1176 (1939). Cf., however, Douglas and Herzberg, Can. J. Res. 18A,
165 (1940). Their measured intensity ratio 1.42+10% does not in-
clude the ratio 1.67 expected from I =3/2, which is indicated as
questionable in Fig. 3. C13: R. H. Hay, Phys. Rev. 60, 75 (1941).
N15; G. H. Dieke and R. W. Wood, J. Chem. Phys. 6, 908 (1938);
J. R. Zacharias and J. M. B. Kellogg, Phys. Rev. 57, 570(A) (1940).
Al?: S, Millman and P. Kusch, Phys. Rev. 56, 303 (1939). CI35.37;
Shrader, Millman and Kusch, Phys. Rev. 58, 925 (1940). K39, Cs!33;
Kusch, Millman and Rabi, Phys. Rev. 55, 1176 (1939). K4: J. H.
Manley, Phys. Rev. 49, 921 (1936). Scé: Kopferman and Wittke,
Zeits. f. Physik 105, 16 (1937). Mn“: R. A. Fisher and E. R. Peck,
Phys. Rev. 55, 270 (1939). Co%: K. R. More, Phys. Rev. 46, 470
(1934). Cus3.85; Tolanski and Forester, Proc. Phys. Soc. 50, 826 (1938).
Zn$7: Lyshede and Rasmussen, Zeits. f. Physik 104, 434 (1937). Gas$®71;
N. A. Renzetti, Phys. Rev. 57, 753 (1940). As75: (a) Crawford and
Bateman, Can. J. Res. 10, 701 (1934); (b) Schiiler and Marketu,
Zeits. f. Physnk 102, 703 (1936) The value 1.72 found in (b) disagrees
so badly with 1.1 found in (a) and with 0.78 discarded in (b) that
this perhaps discordant datum might legitimately have been omitted
from Fig. 3. Kr8s: Kopfermann and Wleth—Knudsen. Zeits. f. Physik
85, 353 (1933) H. A. Bethe and R. Bacher, Rev. Mod. Phys. 8,
82 (1936). Rb#.87: P. Kusch and S. Mlllman Phys. Rev. 56, 527
(1939). Srs7: Heyden and Kopfermann, Zeits. f. Physik 108, 232
(1938). Cb%: W. W. Meeks and R. A. Fisher, appearing soon in The
Physical Review (here by their kind permission). Agl07.209: Jackson
and Kuhn, Proc. Roy. Soc. 158, 372 (1937). Cduus; Schiiiler and
Keyston, Zeits. f. Physik 71, 413 (1931). In13: T. C. Hardy, Phys.
Rev. 60, 167A (1941). In!6: Millman, Rabi and Zacharias, Phys.
Rev. 53, 384 (1938); D. R. Hamilton, Phys. Rev. 56, 30 (1939);
T. C. Hardy, Phys. Rev. 59, 686A (1941). Sn!17.119; Schiiler and West-
meyer, Naturwiss. 21, 660 (1933). Sbi21.123; Lal39; Eulsl.iss; Ayldr:
Th. Schmidt, Zeits. f. Physik 108, 408 (1938). I27: Th. Schmidt,
Zeits. f. Physik 112, 199 (1939). Xe‘29 131; Kopfermann and Rindal,
Zeits. f. Physik 87, 460 (1934); E. Jones. Proc. Roy. Soc, 144,
587 (1934) ; Bethe and Bacher, Rev. Mod. Ph ys. 8, 82 (1936). Bal3s.137;
A. N. Benson and R. A. Sawyer, Phys. Rev. 49 867 (1936); C13 refer-
ence. Yb111433; Schiiler and Korsching, Zeits. f. Physik 111, 386 (1939).
Lu7s; H. Gollnow, Zeits. f. Physik 103, 443 (1936). Pt!95: Th. Schmidt,
Zeits. f. Physik 101, 486 (1936). Hg!99.201; Schiiler and Jones, Zeits.
f. Physik 74, 631 (1932) T1203,206; Schiiler and Schmidt, Zeits. f. Physik
104, 468 (1937) Pb207: G. Breit and L. A. Wills, Phys. Rev. 44, 470
(1933)., Bi209: A. B. McLay and M. F. Crawiord, Phys. Rev. 44,
986 (1933).
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F16. 3. Observed magnetic moments of the odd-proton nuclei. For sources of data, see footnote to Table III.

moments almost equal, although their ratio is
far from unity. In three cases, the ratios are
conservatively given as 1.0, although they are
very probably more accurately equal to unity
than so few digits imply. They are cases in which
the hyperfine splittings due to the two isotopes
have not been separately resolved, but are
almost surely superposed.

There are almost as many cases in which the
two isotopic nuclear spins are different as the
same. This does not seem at all surprising: The
addition of two neutrons may change the nuclear
spin either by changing the ‘“‘orbital”’ angular
momentum L#% (of the (LS) coupling state which
is predominant in the ground state) or the sign
of the spin-orbit coupling, or both. (Change of
the spin angular momentum SZ seems not to
occur, S remaining %.) But in the cases in which
the addition of two neutrons does not change
the nuclear spin, the two neutrons make practi-
cally no difference in the magnetic moment
either, in about seven out of twelve cases, and
this is quite astonishing.

In attempting to interpret this situation, one
might first consider that the composition of the
“orbital” angular momentum L% is so complex
that all of the particles contribute about equally
to it on the average.??* In the extreme case in

B (a) D. R. Inglis, Phys. Rev. 53, 470 (1938); (b) K.

Way, Phys. Rev. 55, 963 (1939).
2 H, Margenau and E. Wigner, Phys. Rev. 58, 103 (1940).

which this smoothing out is uniform for all
nuclei, one would in effect have a ‘‘droplet
model’’ of the “orbital”’ motion, and the “orbital”’
gyromagnetic ratio would be

gL=N./(N:.+N,) (11)

in a nucleus with N, protons and N, neutrons.
The addition of two neutrons, if they should have
no effect on the spin gyromagnetic ratio, would
then merely cause a slight algebraic decrease of
the nuclear magnetic moment, such as is observed
in the cases Ag and K. In the cases Cu, Re, and
T1, the change is of the wrong sign, but here it
is still of the order of magnitude given by (11),
and one might consider that the discrepancy in
sign is not too serious if he had other reason to
consider the ‘“‘droplet model” a fair approxima-
tion. But present ideas of nuclear composition
do not justify the opinion that nuclear matter
should behave as a vibrating liquid or solid even
in the question of magnetic moments, useful
though this concept may be in the problem of
the stability of excited states.® At least some of
the particles are considered to move past one
another relatively much more rapidly than in
liquids. In one elegant treatment of nuclear
structure, which was developed by Wigner!(
and applied to the problem of nuclear magnetic
moments by Margenau and Wigner,* the
saturation properties of the nuclear forces and
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the approximate conservation of isotopic spin
(which would be exact without strong tensor or
Coulomb forces), are taken into account in a
rather general way which, however, does not
envisage the possibility of a geometrical cluster-
ing into alphas. Their treatment would lead one
to expect an average behavior given by (11),
when the average is taken over several nuclei,
but that the individual values would deviate
rather widely from this average in an apparently
random fashion. This is incompatible with the
practically equal magnetic moments of several
isotopic pairs,? as listed in Table II.

The equality of the pairs of magnetic moments
may then be taken as an indication of the
existence of more detailed structure than was
introduced by Margenau and Wigner, a structure
of a sort to make it likely that two neutrons may
be added to a nucleus without changing the
motions of the other particles very much. Both
the ‘‘Hartree” model and the alpha-model
contain such a detailed structure—the former in
momentum space and the latter in coordinate
space. In the Hartree model one would expect to
find a few cases, such as the case of K which
has already been discussed elsewhere,? in which
the two neutrons would be added to a closed
shell and have only a rather small effect (in
second order) on the magnetic moment. But in
many more cases one would expect the two
neutrons to be added to an unfilled shell and to
change g; considerably in first order, as in the
comparatively simple cases*® Be’—Be? and
N8N, This is expected because of the high
degree of degeneracy of those individual-particle
levels which possess the larger angular momenta
1%, in the spherically symmetrical case—there
are several possible orientations of 1, all with
the same energy. In the alpha-model of most
nuclei, the degeneracy of the individual extra-
neutron states would not be so great—different
orientations of 1 relative to the body axes would
involve different energies because of the lack of
spherical symmetry (as will be discussed further
below). For this reason, the two neutrons would,
in the alpha-model, very often be added to an
individual-particle state which was previously
empty (in first order), and would affect g, only
in higher order. Thus the alpha-model does seem
to hold considerable promise of accounting for
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the observation that the addition of two neutrons
makes very little difference in the magnetic
moment in a large fraction of the cases in which
it does not alter the nuclear spin.

The second striking fact, which is closely
related to the first, may be summarized by
saying that magnetic moments of odd nuclei
seem to be largely due each to the single odd
particle.r In Fig. 3 are shown the observed
magnetic moments u of the odd-proton nuclei for
various values of the ‘“‘nuclear spin,” or total
angular momentum, I#. In Fig. 4, similarly,
are those for the odd-neutron nuclei. The limits
of error indicated by the vertical extent of the
lines are estimated very roughly, largely on the
basis of the degree of reliability which similar
measurements on other nuclei have proved to
have had, and may in many cases be too broad.
It is striking, both that the total range of the
moments is not larger than it is (that large
negative values do not occur in the odd-proton
case, for example), and that the values of the
magnetic moments in each case seem to fall into
two groups. The apparent division into two
groups is sufficiently striking that it seems very
much more likely to be significant than to be
the result of chance. It must, of course, still be
regarded as subject to cancelation by extension
and refinement of the observations, but it was
noted and discussed when the data were much
more sparse and uncertain than now, and it has
so far stood ‘“‘the test of time.” The further
testing of this division into two groups is one of
the most interesting tasks for future investigation
of the magnetic moments of intermediate and
heavy nuclei.

Of the magnetic moments which have already been
measured, that of Co%? is the most in need of further inves-
iR Baids, IZ’”
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tigation. The electron configurations of the atom are very
complex. The present measurement is based on the h.f.s.
of one level, in which a rather indefinite allowance was
made for coupling of the nucleus to other-than-s electrons
by More (see footnote to Table III) who concludes that
the value of p “probably lies somewhere between 2 and 3
nuclear magnetons,” not at 3.5, the value to be had by
considering the s electron only. The latter value is plotted
in Fig. 1 of Margenau and Wigner's paper,? and slightly
obscures the appearance of a division into two groups in
that figure, although one or two exceptions would still leave
a rather surprising degree of division.

The mere division into two groups would be
expected from such a ‘“‘structureless” model as
the “droplet model.” The predominant occur-
rence of the spin (that is, spin part of the
angular momentum, not ‘“‘nuclear spin’’) quan-
tum number S=3% is almost inevitable for any
forces leading to saturation and to vanishing
nuclear spins I of even-even nuclei. If the spin
gyromagnetic ratio gg is never very small, and
if g does not vary very much from one odd-
proton nucleus to another, one would expect a
division into two groups, one group correspond-
ing to the occurrence of the nuclear spin quantum
number I=L+% and the other to I=L—1, that
is, to the two possible orientations of the spin 1%
relative to the orbital angular momentum. The
division into two groups is also compatible with
the ‘““Hartree’” and alpha-models, and with the
treatment of Margenau and Wigner?* so long
as one sticks to supermultiplets with S=% and
to some semblance of (LS) coupling—the
deviations from the value of g, given by (10)
would not necessarily be large enough to make
the two groups merge. The division into two
groups is thus not alone a reason for preference
of one model over another, but is an indication
of a rather close approximation to (LS) coupling
in nuclei. This in itself is slightly surprising in
the light of other indications of tensor inter-
actions, which, if strong, would tend to destroy
this coupling scheme by mixing states of various
values of L and S. It is because of the division
into two groups that we are justified in attribut-
ing the nuclear magnetic moment to an “‘orbital”
part g Luy and to a spin part gsSuy, compounded
as vectors by use of the familiar ‘“‘quantum-
mechanical cosines”” (Landé formula).

The most astonishing aspect of the division
into two groups is that the two groups are so
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situated as to indicate an average value of gy, as
high as about % in the odd-proton case and as
low as § in the odd-neutron case,2® very near
the values 1 and 0 which would be caused by a
single proton and by a single neutron, respec-

‘tively. That is, the magnetic moments of the

odd-proton nuclei are in general considerably
higher, and those of the odd-neutron nuclei are
considerably lower, than they would be if the
average value of g, were given by (10), and this
can be accounted for by attributing the orbital
angular momentum almost entirely to one or
several protons in the odd-proton case and to
one or several neutrons in the odd-neutron case.

This apparent participation of predominantly
one kind of particle in the ‘“‘orbital”” motion of a
nucleus is another strong indication of the
presence of some detailed structure in nuclei.
Both the alpha-model and the ‘“Hartree’’ model
contain some structure of the sort required to
keep the orbital moments of the protons and
neutrons separated,?® but of the two the alpha-
model seems to be much the better suited to
account for the situation.

In the central-field or “Hartree’’ model, one
has some of the required structure only in nuclei
with a sufficiently large neutron excess that the
highest-energy neutrons are in a different shell
from the highest-energy protons. In these cases
one might, as a rough approximation, consider
the like-particle orbits in unfilled shells to be
coupled together somewhat more strongly than
the unlike-particle orbits, because of the effect
of orthogonality of single-particle wave functions
in. reducing the value of matrix elements con-
taining them (an effect which is extreme in the
long-range and short-range limits, but might
almost disappear in between these limits).? At
least with some types of attractive interaction,
there is a tendency of an even number of like
particles to form an S state (with their total
L equal to zero).2®™* In this rough approxima-
tion the orbital moment of only the odd particle
would remain. The roughness of the approxi-
mation used, the expectation that second-order
modifications would be important in heavy
nuclei, and the limited applicability cast grave
doubt on the plausibility of this explanation in
terms of the ‘“Hartree’” model.

In the application of the alpha-model to this
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problemy, the considerations of Teller and
Wheeler,? concerning the related problem of the
rotation of nuclei made up solely of alphas, are
of decisive importance. They have shown that a
really rigid alpha-framework is not compatible
with the apparent lack of rotational states of
very low excitation energy in intermediate and
heavy nuclei, but that a non-rigid assembly of
alphas would have no rotational states lying
between the zero state and about the eighth
(for heavy nuclei). In this non-rigid assembly,
the binding between alphas must be sufficiently
elastic that the interchange of alphas, from one
position to an equivalent position, by means of
a combined vibrational and small rotational
motion does not involve the penetration of a
high potential barrier. A potential trough so
broad that its breadth is comparable to its range,
such as AE in Fig. 2, acting between the pairs of
alphas, would be expected to yield a sufficiently
non-rigid framework.

The problem of the disposal of excess neutrons
in such a non-rigid framework is a complex one
which has not been adequately solved. One
may expect them to act to some extent like
conduction electrons in a metal—perhaps a
molten metal—providing an additional binding
between the alphas (as is required to oppose the
Coulomb repulsion in heavy nuclei). Any analogy
of alphas to bricks and neutrons to mortar is,
of course, meant in a non-rigid manner—the
additional binding would be expected to be even
less rigid than that provided by AE of Fig. 2,
for example. Nor is it implied that the neutrons
move only through and between the alphas—
it is quite likely that most of each single a-
particle wave function may correspond to motion
around the outside of the framework of alphas.
Judging by the binding energies and the opinion
that the inter-particle interaction is deeper than
the inter-alpha-interaction, one expects that an
excess neutron has much more kinetic energy
than is associated with the center-of-mass motion
of one alpha. One may thus consider the approxi-
mation in which the period of the ‘‘orbital”
motion of a single neutron is short compared
with the period of vibration of the alpha-
framework from one configuration of minimum
energy to another. The single-particle wave

% E. Teller and J. A. Wheeler, Phys. Rev. 53, 778 (1938).

847

functions would then be determined by a field
varying ‘“‘slowly’’ between two extreme positions
of the same symmetry but differing orientations.
The system would remain in the extreme
positions most of the time, and the disposal of
the excess particles would be similar to that in a
rigid framework.

The problem of the interacting neutrons
contains some features of the problem of the
existence of ferromagnetism in metals (competi-
tion between the effects of the Pauli antisym-
metry on the interaction of the particles with
each other and on the interaction of the particles
with the field), and some features of the problem
of the order of S, P, D, ---, states in atoms
(Hund’s rule) or of Z, I, A, ---, states in
molecules. The non-ferromagnetic state of lowest
multiplicity has lowest energy in most metals
because the tendency toward ferromagnetism
due to the repulsive interaction of the electrons
is weaker than the effect of the Pauli antisym-
metry on the interaction of the electrons with
the atoms. In nuclei the same result may be
expected for quite a different reason: the states
with S,=0 (if the number of neutrons is even,
or % if it is odd) lic lowest because the attractive
interaction of the neutrons makes a tendency
away from ferromagnetism, and this tendency
is expected to be stronger than any effect of their
interactions with the field of the alphas, because
the saturation of the forces makes the neutron-
alpha-interactions weaker than those between
neutrons. This reason is not quite adequate to
deal with all types of interactions—it is rather
general but may be modified by exchange
operators. The coupling anticipated between an
odd-proton spin and the neutron spins is weaker
because it is not governed by the Pauli antisym-
metry. Thus the spin part Sk of the angular
momentum of an odd-proton nucleus is expected
to consist primarily of proton spin, as required
empirically by the separation between the two
groups of magnetic moments. The odd-neutron
nuclei are similarly expected to have S% made up
mostly of neutron spin.

As regards orbital motion, calculations of up
to six p particles and up to four d particles lead
to the conclusion that attractive (primarily
space-exchange) interactions favor S states, but
not in configurations of many more particles,
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such as would be encountered in the “Hartree”
model of heavy nuclei.?8 Although such calcula-
tions have not been made for the alpha-model
of any heavy nucleus, the results which are
available for the ‘‘Hartree” model, together with
the expected low degree of degeneracy of the
single-particle states in the alpha-model, lead
one to expect the LS state of an even number of
excess neutrons in the alpha-model to be well
isolated below the other states, in agreement
with the observed vanishing of the moments of
even-even nuclei. If a single proton should be
added, its coupling with the neutrons would be
expected to be weak, because of the supposedly
large energy difference between the 1S and the
next higher state of the neutrons.

The great advantage of the alpha-model here
lies in the fact that it allows only a single proton
to move freely around the framework of alphas
in an odd-proton nucleus, and none in an odd-
neutron nucleus. It is much more plausible that
a single proton should move independently of
the neutrons than that the motions of several
protons should be coupled to one another but
not to the neutron motion.

We have as yet considered only those states
in which the framework of alphas does not rotate.
If the order of the rotational states were normal,
one would expect rather strong intermixture of
several rotational states to form the ground state
of the nucleus. In an odd-proton nucleus with a
body-axis component of the proton orbital mo-
mentum characterized by the quantum number
A=1, for example, we would have the states
possessing the rotational quantum numbers R=0,
1, and 2 combined to form a ground state with
total ““orbital”’ quantum number L=1. (In keep-
ing with molecular terminology, we should speak
of K, rather than L, if the states with R0 were
important. In diatomic molecules, one usually
speaks of rotational quantum number N, rather
than R, but this implies a body angular momen-
tum normal to the body axis, which is not the
case here.) The orbital gyromagnetic ratio g
would then be a weighted average of the approxi-
mate values

1 for the state with R=0,
(%_{_1)/2:% ‘e ‘e ““ ““ R=1,
(Zx%_l)/zzo 6t 113 6 “ R:2

26 Reference 23 (a), Section III.
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(If the excess neutrons were taken into account,
the rotational gyromagnetic ratio 3 here used
would be replaced by a slightly smaller value,
about as given by (10).) If these states were
weighted about equally,?® the resultant g,
would be considerably less than the empirical
value gr=~%. The extent to which the wave
function with R=2, for example, is mixed into
the ground state is expressed in perturbation
theory by a coefficient of the form

co=[S RY,ZVi) RYpd7]/(E2— Eo),

where R and ¢,” are the rotational and odd-
proton wave functions, respectively, and Ep is
the energy of the Rth rotational state. The
integral in the numerator is the matrix element
of the entire interaction, between the two states.
Exchange has been ignored in writing it. It is
of such a form that it would express the binding-
type potential energy of the odd proton, but for
the partial cancelations of various parts of the
integration due to the orthogonality of the two
wave functions involved. The cancelation might
reasonably be expected to reduce the value of
the integral by a factor of ten or twenty, but
probably not by as much as a hundred. The
integral would then probably have a value of the
order of magnitude mc?. The spacing between the
rotational levels, E,— Ey, would have the order
of magnitude mc2/10 if the spacing were normal.
The important remark of Teller and Wheeler?
leads us to expect the elevation of the first and
second rotational states to exceed that of the
eighth, so they are probably higher than mc?.
The coefficients ¢; and ¢, need be only as small
as 1 or % to suppress the states R=1 and 2
sufficiently, since they enter quadratically in
the weighted average of the magnetic moments.
It is thus plausible that the coefficients are
small enough to make gr =17, in the light of the
remark of Teller and Wheeler, though this would
hardly be plausible without their considerations.
Although the details are far from complete, we
may say that the regularities cited among the
magnetic moments of intermediate and heavy
nuclei seem reasonably plausible on the basis of
the alpha-model, and at present only on this
basis.

This interpretation of the distribution of magnetic
moments stands in extreme contrast with the interpretation
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TaBLE 1V. Nuclear quadrupole moments.*

1 u/un Q/(10724 cm?)

1H? 1 2.79 —0.003
20Cu® 3/2 2.43 —0.1
26Cu® 3/2 2.54 —-0.1
21Ga® 3/2 2.11 0.2
21Gan 3/2 2.69 0.13
331“575 3/2 1.6 0.3
36Kr53 9/2 —'1.0 015
4oInt® 9/2 5.43 0.84
531127 5/2 2.8 0.8(?)
saXeldt 3/2 0.7 0=0.1
ssEul® 5/2 3.4 1.2
ssEul® 5/2 1.5 2.5
70Y b3 5/2 —-0.7 3.9
nLul® 7/2 2.6 5.9
nLuls >7 3.8 7
Rew 32 33 26
750\€ . .

soH g?! 3/2 —0.6 0.5

33 B1208 9/2 3.6 —-0.4

* The sources of the data in Table IV are: H: Reference 17. Cu:
Schiiler and Schmidt, Zeits. f. Physik 111, 165 (1938). Ga: Schiiler
and Korsching, Zeits. f. Physik 103, 434 (1936). As: Schiiler and
Marketu, Zeits. f. Physik 102, 703 (1936). Kr; Xe: H. Korsching,
Zeits. . Physik 109, 349 (1938). In: D. R. Hamilton, Phys. Rev. 56,
30 (1939). I: S. Murakawa, Zeits. f. Physik 112, 234 (1939) ; compare
Th. Schmidt, Zeits. f. Physik 112, 199 (1939). Eu: Schiiler and Schmidt,
Zeits. f. Physik 94, 457 (1935); H. Casimir, Physica 2, 713 (1935).
Yb: Schiiler, Roig, and Korsching, Zeits. f. Physik 111, 165 (1938).
Cp: H. Gollnow, Zeits. f. Physik 103, 443 (1936) ; Schiiler and Gollnow,
Zeits. f. Physik 113, 1 (1939). Re: Schiiler and Korsching, Zeits. f.
Physik 105, 168 (1937). Hg: Schiiler and Schmidt, Zeits. f. Physik
98, 239 (1935). Bi: Schiiler and Schmidt, Zeits. f. Physik 99, 797 (1936).

proposed by Margenau and Wigner.?* They do not recog-
nize as significant the apparent division into two groups
in each of Figs. 3 and 4, but they do attempt to interpret
the fact that the observed magnetic moments extend to
higher values in Fig. 3 and to lower values in Fig. 4 than
one would expect on the basis of equation (10) and the
assumption S=3. This they attribute to the frequent
strong admixture of states with S= %, which obviously may
have much larger or smaller magnetic moments, depending
on the orientation of S relative to L, than have states with
S'=14. One would also expect on this basis the rather sym-
metrical occurrence of lower values in Fig. 3 and higher
values in Fig. 4, which are not observed. Thus the trend
of the observed magnetic moments to one side of the
‘“‘expected’’ region, as well as the apparent division into
two groups, is not explained by their formally very elegant
treatment of the problem.

Third, we come to a striking regularity among
observed nuclear electric quadrupole moments,
Q, which are listed in Table IV. As.far as they
have been observed, the large quadrupole moments
are all positive and are found in the region of the
periodic table between atomic numbers sixty and
eighty, rising to a maximum near atomic number
seventy, in the rare earths. The observed quad-
rupole moments show no distinction between
odd-proton and odd-neutron nuclei, except that
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the few negative quadrupole moments occur only
in odd-proton nuclei. The existence of a quad-
rupole moment
Q= 2 (32—
protons

indicates a deviation from a spherically sym-
metrical average charge distribution within the
nucleus. A positive value indicates a distribution
extended along the axis of the nuclear spin I
(prolate or cigar-shaped nucleus) and a negative
value implies a flattening toward the plane
normal to this axis (oblate or doorknob-shaped
nucleus). A deviation from the spherically
symmetrical shape is easily provided, for most
nuclei, by the alpha-model. The problem of the
energetically favorable packing of spherical
alphas has been discussed in this connection by
Wefelmeier,”” who has shown that the most
elongated framework of alphas is expected in the
neighborhood of atomic number 71, just where
the largest quadrupole moments are observed.
The problem of the orientation of the alpha-
framework relative to the total angular momen-
tum, I%, has been discussed by Fano,?® who
showed that it is at least plausible that the
orbital angular momentum of a single proton or
neutron should be oriented along the long axis
of an elongated nucleus.2® If S is only %, as is
strongly indicated by the regularities among
the magnetic moments discussed above, the
average direction of the orbital angular momen-
tum, L#k, is the direction of I. The natural
explanations of the magnetic-moment regular-
ities and of the quadrupole moments are thus
closely related and entirely compatible.

An alternative mechanism to provide an
elongated nucleus on the basis of the ‘“‘droplet
model”’ has been proposed by Weizsicker,
treating the competition between the deforming
tendency of the Coulomb force and the restoring

‘tendency of the surface tension.?® Considering

only ellipsoidal deformations, he found a small
range of stability, but Bohr and Wheelers®
have shown that the charged droplet is unstable
in this range relative to deformations of the form

%' W. Wefelmeier, Naturwiss. 25, 525 (1937); Zeits. f.
Physik 107, 332 (1937).

8 . Fano, Naturwiss. 25, 602 (1937).

2 C. F. v. Weizsiacker, Naturwiss. 27, 133, 277 (1939).
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r(6) =c(3 cos?’6—1), and the droplet is only
stable in the spherical form.

The principal assumption involved in this
treatment is that the body energy is proportional
simply to the volume of the nucleus, and
otherwise independent of the shape (which
affects the surface-tension term and the Coulomb
term only). One might profitably modify the
body term in the droplet model to favor those
shapes which allow the compact packing of
alphas. But the existence of large positive
quadrupole moments in the region of the rare
earths suggests that the alpha-model, rather than
the droplet model, should be taken as the
first approximation, leaving the less important
surface-tension and Coulomb effects to be
introduced possibly as corrections.

The fact that negative quadrupole moments
occur only in the odd-proton nuclei is also in
nice accord with the assumption that one
particle is chiefly responsible for the orbital
angular momentum. A single proton moving in
any state but an s state has a negative quadru-
pole moment, and this may determine the sign
of the nuclear quadrupole moment, if the
framework of alphas is nearly spherically sym-
metrical. The nucleus of 2Fe is most favorably
made up of an essentially spherical structure of
thirteen alphas,?® and the two isotopes of 5Cu
possessing negative quadrupole moments follow
this closely in the periodic table.

The extra alpha in 3yCu beyond the thirteen which make
up a spherical structure presents a difficulty of detail. It
would be interesting to know whether the element which
is simpler in this respect, 2;Co, has a larger negative quad-
rupole moment than Cu, as the simplest picture leads one
to expect, but this is difficult to observe because of the
complex atomic configurations involved. The other nucleus
having negative quadrupole moment, 53Bi%%¢, follows mass
number 76 (38 alphas again form a spherical structure?®’)
rather remotely, with the positive moment of gsHg2"
appearing in between. This presents further difficulty of
detail, and makes doubtful the expectation that the quad-
rupole moment of Co should be negative. It has been
suggested that the stability of a framework of alphas
might require one or several alphas to be dissolved in the
“mortar”’ which helps to bind the remaining alphas
together.2?

It would also be interesting to determine whether the
quadrupole moments of T1, Cd, Sn, and Xe®? are actually
very small. According to our interpretation of the magnetic
moments, they possess, in first approximation, an odd
particle in an s state. The nuclear spin would then not be
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coupled to the asymmetry of the alpha-framework in the
same way as has been supposed for other nuclei, and the
quadrupole moment would vanish in this approximation.
A higher-order coupling, perhaps by tensor forces, could,
however, easily introduce a quadrupole moment.

Among the lighter nuclei, a number of indi-
vidual magnetic moments have been calculated
in first order both by the alpha-model and by
the “Hartree” model.2(®:3% Agide from the case
of Li’, the two models have been about equally
successful in accounting very roughly for the
magnetic moments (or equally unsuccessful,
according to one'’s point of view). The observed
magnetic moments are in general smaller in
magnitude than the theoretical results. This is
in agreement with the expectation that higher-
order admixture of excited states would tend to
reduce the magnetic moment, toward the average
magnetic moment of all the possible excited
states. An example of such admixture has been
discussed in greater detail®! in the case of Li".
The extent of the division of nuclear magnetic
moments into two groups, in Figs. 3 and 4,
suggests the particular type of admixture which
may be described as diluting the spin angular
momentum S% with neutron spin in the odd-
proton case, or with proton spin in the odd-
neutron case, still preserving the meaning of the
quantum numbers L and S. This type of devia-
tion from the first-order result also suffices to
reconcile the experimental and theoretical results
(with either model) for the individual light
nuclei (still excepting Li’). The magnetic mo-
ment of Li? definitely favors the alpha-model of
that nucleus,?" % although even with this model
the experimental value slightly exceeds the
theoretical—a discrepancy in the sense not
anticipated by the above discussion of admix-
ture.3°® In this and similar light nuclei, the
alpha-model involves exchange between an
alpha and a triton.%3° The model involving this
concept is expected to apply to Li” better than
to the other appropriate light nuclei, because
the binding of the triton to the rest of the
nucleus is considerably less than the internal
binding energy of the triton in the case of Li’

# (2) D. R. Inglis, Phys. Rev. 55, 329 (1939); (b) 56, 1175
(1939); (c) R. G. Sachs, Phys. Rev. 55, 825 (1939).

3t D, R. Inglis, Phys. Rev. 53, 880 (1938).

32 H. A. Bethe, Phys. Rev. 53, 842 (1938).
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only—in other cases the triton would be greatly
distorted.?*® The alpha-model with a triton is
more sensitive to higher-order corrections and
less apt to be successful than is the ordinary
alpha-model, and the fairly satisfactory success
in Li” helps to make plausible the application
of the ordinary alpha-model to intermediate and
heavy nuclei.

The data which we have discussed, though
evasive in detail, present an impression of
coherence in broad outline, which is shattered
only by the astounding nuclear spin and mag-
netic moment of K* recently announced by
Zacharias:* I =4, u= —1.29uy. Whether or not
L and S are good quantum numbers, the ground
state may be described in terms of one or several
(LS) coupling states, which must have pre-
ponderantly negative magnetic moment. We
consider the states !G4, 3FGH,, SDFGHI,, etc.,
as possibilities. The orbital gyromagnetic ratio
¢1 is practically always positive (or zero for pure
neutron motion) so !G4 is unsatisfactory. In a
triplet state, the spin gyromagnetic ratio gg
would, if we judge by the lighter odd-odd nuclei,
be positive and not greater than the deuteron
value, 0.85. Of the triplet states, only 3H, has
the spin “pointing backwards’ to give a negative
contribution, and for it

w(*H ) = (%) (62— gs)un,

which is positive for any reasonable value of g;.
In a quintet state it is much more likely that the
spin gyromagnetic ratio should be strongly
negative, making a negative magnetic moment
with the spin ‘‘pointing forward,” as in the

3 J. R. Zacharias, Phys. Rev. 60, 168 (1941).
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state 5Dy, for which we have

w(3Dy) =2(gr+gs)px-

In either the alpha-model or the ‘“‘Hartree”
model of K%, there are three neutrons and one
proton left over to contribute to the magnetic
moment in first order, and one expects that .S,
if it is as large as 2, would be made up of three
neutron spins and one proton spin, making
g5=(2.718—3X1.92)/2=—1.49 in first order. If
g1, were about %, as one would expect from the
numbers of particles participating, u(D,) would
be about —2.5uy, a sufficiently large negative
value to give rise, with admixture of other
states, to the negative value observed. The
state ®F,; would have the magnetic moment
(13g.+7gs)un/5 = —1.5un, which is also negative
and sufficiently large. Those of the other quintet
states are not. We conclude that the ground
state of K* is preponderantly 5D, and perhaps
5Fy. If the ground state is thus essentially a
quintet state, three neutron spins are parallel to
one another (and to one proton spin). All other
nuclear moments, especially the vanishing nu-
clear spins of even-even nuclei, demand the
assumption that like-particle spins tend to
orient themselves anti-parallel to one another.
This result is also expected of simple attractive
forces and the Pauli principle. The reason for
an exception in the case of K*° is not at present
apparent. The heavier odd-odd nucleus 7 Luv®
listed in Table III presents no such problem:
it may well be preponderantly a triplet, as are
the lighter odd-odd nuclei, and probably 3I,
having two odd particles each with the orbital
quantum number 3, like the one in the neigh-
boring nucleus 7, Lu'?,



