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On the Distribution of Lattice Vibrations of the KC1 Crystal
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The distribution of characteristic vibrations of the KC1 crystal has been calculated following

Horn, v. Karman and Hlackman under the assumption of both electrostatic and repulsive forces
between the ions, the latter calculated for the 18 nearest neighbors from the elastic constants
and the residual ray frequency. Application of this distribution has been made to the evaluation

of the specific heat at low temperatures.

INTRQDUcTIGN

0 give detailed explanation of many proper-
ties of crystals, e.g. , temperature de-

pendence of the specific heat and the diffuse
scattering of x-rays, it is desirable to know the
equation of motion and the distribution of
characteristic vibrations. These can be calculated
from the lattice configuration and the forces
between the atoms. The latter have often been
calculated by means of the elastic constants, but
this method allows the determination of only
a few force constants and is therefore only useful
as long as short range forces are considered. This
method is hence applicable to atomic crystals,
such as the tungsten crystal, which has been
treated in detail by Fine. ' In the case of ion
crystals it is necessary to notice that the electro-
static forces act also between ions of greater
separation and have to be considered in a dif-
ferent way. The method of considering the elec-
trostatic forces separately has been used by
Lyddane and Herzfeld' for calculation on NaC1,
more recently by Kellermann' for the same
crystal. Ljungquist' and Foldy' use this method
on the KCI crystal. Lyddane, Herzfeld and Foldy
use theo''etical statements for the short range
forces. Kellermann calculated the force constants
between 6, Ljungquist between 18 nearest
neighbors using the experimental values of the
elastic constants.

* Now at the University of Chicago.
~ P. C. Fine, Phys. Rev. 56, 355 (1939}.
~ R. H. Lyddane and K. F. Herzfeld, Phys. Rev. 5&,

846 {1938}.
3E. %'. Kellermann, Phil. Trans. Roy. Soc. 238, 513

(1940}.
4 S. Ljungquist, Uppsala. To be published.'L. L, Foldy, Phys. Rev. 60, 64 (1941}.

THE FREouENcv SPEcTRUMf

To calculate the distribution function for the
simplest cubic crystal, the KC1 crystal, the
masses of the ions may be assumed to be equal
and, under the assumption of equal forces
(except for the difference in sign of the charge)
between the ions, the crystal may be considered
as a simple cubic lattice. In order to find the
number of characteristic vibrations in given
frequency intervals it is necessary to consider
the equation of motion of the ions, which may be
taken to be oscillating as a whole. One obtains
these equations from the general equation of
motion in the following way: the gradient of the
potential energy of the ions, expanded in a power
series of the displacement of the particles, is
substituted for the force and the motion is taken
to be oscillatory. If one assumes a plane wave
solution, the displacement of the ions, whose
rest position is characterized by the vector /

with integral components, may be described as
follows. '

& l = « "' expLf(df) 3

U indicates the amplitude of the oscillations with
frequency s&=2m', P is a vector in the direction
of wave propagation of the magnitude 2sa/), g
is the distance between nearest lattice points and

the wave-length. The vector P, whose com-

ponents y, are usually called phase components,
characterizes thus both wave-length and direc-
tion of the waves. To be free from the boundary
conditions of the crystal it is convenient, follow-

ing Born, to consider a "cyclic lattice;" that is
an infinite lattice which repeats the finite lattice
inclusive of its motion periodically in each direc-

f. For the formulae used see reference 11.
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dn =3 (n/2x. ) '(d y) (2)

since to each point of the phase cube three
characteristic vibrations correspond. The inte-
gration of expression (2) gives 3n', the number of
degrees of freedom. In order to find from the
number of vibrations in the volume element of
the phase cube the distribution of lattice vibra-
tions along the frequency scale the relation
between frequency and phase components must
be found. One obtains this relation from the

tion. If the considered finite lattice has n ele-
mentary cells in each direction, each cell con-
taining one particle, the condition of periodicity
of motion makes np; an integral multiple of 2x.
Since the wave function has physical significance
only at the lattice points the q; may be restricted
to —s.—y;—~. The values y; (q, =2sp;/n) build
a cubic lattice with the lattice constant 27r/n

and the edge length 2~; this is the so-called phase
cube. The number of lattice points in a volume
element (dy), or the number of characteristic
vibrations which is proportional to this number
is given by

condition that the equations of motion give the
ratios between the amplitude components, so
that the determinant of the equations of motion
vanish'es.

With the assumed oscillation (I) the equations
of motion turn out to be:

(A 11+m% ) Ul+ A 12 U2+ A 13 U3

A2gU, +(A,g+m~') U2+AgaUg ——0, (3)

A gg Up+A 32 U2+ (A33+m~') Ug ——0.

The coefficients Ag, (P) are given from the
derivatives of the potential energy of the ions in

direction of the i and k coordinates by

A,k(4) = 2' 4,'Lexp( —i(~P)) —&1=A'.+A" (4)
l

These coefficients can be divided into two parts,
e

one due to the electrostatic forces (A;~) and the
r

other to the repulsive forces (A;I,).
The method given by Ewald' allows the cal-

culation of the electrostatic parts. Following
%aller'* one obtains:

4 e' (X;+p,)(X,+„„)
A*~(4) =—

8 N ~ 3

2(& +~ )'
m=1

7r2 3

exp — P (X„+p„)'—
4g' m=& 3

m=1

7r2 3
exp-

4q' m= i

g2 /3i;4 & ( G"(nl)&
+—2' ( —&)"+"+"

I exp(i(df)) —&j—(
—&'. I i

~ G(nI) —
i

n'i*I.G"(n—l) (3)
g3 El')k2

In these equations Pv is a sum over all triplets
of odd numbers, and P'i a sum over all triplets
of integral numbers except (0, 0, 0), G(x) is the
error function

2
G(x) = exp( —a')dn

and G"(x) its second derivative. The length of
the vector 1 is i and p„= p~/s. . By assuming a
proper value for the constant g it is possible to
find suSciently convergent series of both types.
The calculations have been carried out with q = 1.

which give the higher number of terms in the
more convenient second sum. The coefficients
have been checked by means of the Laplace
equation or by using diA'erent values for g. To

check the method the electrostatic parts of the
elastic constants have been calculated and com-

pared with the sums given by Born.
r

The coefficients A;I, have been calculated by
following the method of Born, v. KArman, ' and
Blackman. ' For this purpose the force constants
P a,nd Q have been used which Ljungquist' ob-

tained from the experimental values of the

6 P. Ewald, Ann. d. Physik 64, 253 (1921).
~ I am much indebted to Professor I. Wailer for giving

me these unpublished formulae.
*At the same time Kellermann calculated in England

the coefficients for the NaC1 crystal. The coefficients
given above may be obtained from his formulae as the
special case for equal ion masses.

'8 M. Born, Th. v. Karman, Physik. Zeits. 13, 297
(1912);14, 15, 65 (1913).' M. Blackman, Proc. Roy. Soc. A148, 365, 384 (1935);
A159, 416 (1937).
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An
X1Q '
—2.82
—9.78
—16.97
—2Q.Q1

—6.12
—14.34
—22.97
—26.66
—25.95
—38.51
—44.Q8
—55.88
—63.59
—72.44

Q

—7.7Q
—15.89
—19.45
—19.Q?
—81.86
—87.66
—5Q.95
—6Q.Q?
—71.Q3

Q

—11.97
—17.98
—34.49
—47.87
—67.58

Q

—16.36
—64.Q9 .
—62.66
—15.67

Q

As2
X1Q 3

—2.82
—9.78
—16,97
—2Q.Q1

+ 8.Q6
—8.35
—9.98
—12.88
+12.98
+ S.Q3

+ 5.8&

+27.92
+26.81
+36.22

Q

—7.7Q

—15.89
—19.45

+ 9.54

+ 8.Q6

+ 0.16
+25.48
+28.98
+85.52

Q

—11.97
-17.98
+17.25

+18.46
+83.79

Q

-16.36
+32.Q5

+31.38
—15.6?

Q

As3
X1Q '

+ 5.63
+19.55
+38.98
+4Q.Q8

+ 8.Q6

+17.68
+82.95
+39.48

.+12.98
+3Q.49
+38.14

+27.92

+36.79
+36.22

Q

+15.4Q

+31.78
+38.9Q

+ 9.54

+2&.8Q

+37.5Q

+25.48
+36.Q9

+35.52

0
+23.96
+35.96
+17.25

+84.42

+33.79
Q

+82.74
+32.Q5

+81.88

+81.88
Q

A12
X1Q '

Q

Q

Q

Q

Q

Q

0
Q

Q

Q

Q

Q

Q

Q

—3.85
—5.1Q

—7.17
—8.14
—8.11
—11.9Q

—18.76
—9.78
—11.84

Q

—13.52
—21.54
—25.88
—2Q.64
—26.42

Q

—25.82
—41.28

Q

Q

—46.99
—31.83

A13
X1Q 3

0
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Q

0
Q

Q

Q

Q

Q

Q

Q

Q

Q

—8.85
—5.Q8
—8.87

Q

—8.11
—6.49

Q

—9.78
Q

Q

—13.52
—11.53

Q

—2Q.64
0
0

—25.82
0
Q

Q

Q

—81.88

A23
X1Q '

Q

Q

Q

Q

—2.69
—4.Q2

—2.99
Q

—6.QQ

—4.52

Q

—3.43
Q

Q

—3.85
—5.Q8
—3.87

Q

—7.88
—6.14

Q

—4.94
Q

Q

—18.52
—11.53

Q

—1Q.89
Q

Q

—25,82

Q

Q

Q (x,1,1)*
Q (x,x, i)

-31.38(x,x,x)

~ Indicates the direction in which this point is approached.

"K. Forsterling, Zeits. f. Physik 2, 172 (1920)."M. Born and M. Goppert-Mayer, IIandbuck der
Physik Vol. 24—2 (1934); M. Born, Enzyklopadhe d. Math.
Wiss. Vol. 5—3 (1923).

elastic constants (cz| and „)given by Forsterling, "
from the residual ray frequency (AD=70.7X10 '
cm) and from the equilibrium condition after
splitting these values in electrostatic parts" and
the parts due to the repulsive forces.

A;;(P) = —2(Qi2a'+Pi~)(1 —cosy, )
—2Pge(2 —cosyy —cosyi)
—4(Qyyn +Pgg) (2 —cosy; cosyA,

cosyg cosyl)
—4Pyg(1 —cosyy cosy(), (6)

A,p(P) = —4Qgga' siny; sinyp. igk$lQi.
The numerical values of the constants are:

F11=—0.0469 X10', F12———1.992 X10'
Qii= —0.0315X10" Qu=2 5218X10".

TABLE I. Values of electrostatic parts of coefficients A;7,.

The coefficients A;I, are uniquely determined
at all points of the phase cube except at the
point (s., s., s). Terms of the magnitude of the
reciprocal vacuum wave-length have been ne-
glected in comparison to terms of at least the
magnitude of the reciprocal lattice constant,
which means we have neglected the retardation.
At the point (s., s.

,
s.) these latter terms vanish

and the coefficients A;A, depend on the direction
from which this point is approached. At this
point only the retardation cannot be disregarded
but the distribution of vibrations is not changed
by the value at this cornerpoint. Even at this
point the solution of the secular equation gives
a distinct set of frequencies. f.

Because the cock.cients depend only on the
magnitude of the phase components it is sufficient
to carry out the calculations for the positive
octant of the phase cube. As a permutation of
the y; gives ithe same frequency triplets it is suf-
ficient to calculate the frequencies at. 35 points
in order to know them at all points differing by

in the phase coordinates. Because of the
symmetry of the coeAicients all but one of the
secular equations split up into equations of lower
degree.

The numerical values of the coefficients and
the frequencies are collected in Tables I—III.
Table I gives the electrostatic parts of the coef-
ficients calculated with the factor e'/a'=7. 479

X10'. Table II contains the coefficients A;I, and
Table III gives the frequencies.

Born, v. Karmhn, and Blackman obtain with
coefficients analogous to (6) at the point (n, s, s.)
of the phase cube three equal frequencies cor-
responding to the residual ray frequency. Con-
sidering the long range Coulomb forces one
obtains two vibrations with residual ray fre-

quency and one of almost double this frequency
(AD=39.9X10 4 cm).

The three frequencies at each point of the
phase cube have been arranged in three branches
of vibrations, one containing the highest, one the
medium and one the lowest frequencies at each
point. It was possible in this way to combine all

frequencies by three smooth surfaces of the

f. For more detailed discussion of the effect of retardation
see reference 3, and J. H. 'Thompson, Proc. Roy. Soc.
A149, 487 (1935).
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TABLE II. Values of repulsive parts of coegcients A;q. TABLE III. Values of the frequencies.

W P& P3

0 0
0 0
0 0
0 0 1

Q

0
0
0 $ 1

0 1

0 ~ 1
Q

3

0 ~ 1

0 1 1

k

1 1
4 3 2

1 3
4 4 4

1 1

1 3 3

1 1
3 3 3

1

1 1

1 1 1

Au
X10 3

+ 1.64

+ 5.60
+ 9.56
+11.20

+ 3.26

+ 7.18
+11.10
+12.73

+11.01
+14.84

+16.42

+18.57
' +20.11

+21.64
—9.51
—5.88
—2.26
—0.76
—2.35
+ 1.18

+ 2.64

+ 4.62

+ 6.03

+ 7.45
—34.61
—31.79
—30.62
—29.07
-27.94
—26.83
—62.75
—61.92
—61.10
—75.30

A22
X10 '

+ 1.64

+ 5.60

+ 9.56
+11.20
—11.01
—7.34
—3.68
—2.16
—38.59
—35.64
—34.42
—67.60
—66.68
—80.04
—9.51
—5.88
—2.26
—0.76
—37.43
—34.52
—33.31
—66.77
—65.86
—79.35
—34.61
—31.79
—30.62
—64.?6
—63.89
—77.67
—62.75
—61.92
—75.99
-75.30

A33
X10 '
—12.53
—42.76
—73.00
—85.53
—11.01
—41.54
—72.08
—84.72.
—38.59
—69.84
—82.78
—67.60
—80.84
—80.04
—9.51
—40.34
—71.16
—83.94
—37.43
—68.97
—82.03
-66.77
—80.13
—79.35
—34.61
—66.86
—80.23
—64.76
—?8.42
—77.67
—62.75
—?6.70
—75.99
—75.30

A»
X10 3

0
0
0
0
0
0
0
0
0
0
0
0
0
0

+0.62

+0.62

+0.62

+0,62

+0.88
+0.88
+0.88

+0.62

+0.62
0

+1.24

+1.24

+1.24

+0.88
+0.88

0
+0.62

+0.62
0
0

A»
X10 3

0
0
0
0
0
0
0
0
0
0
0
0
0
0

+0.62

+0.88

+0.62

0
+0.88
+0.62

0
+0.62

0
0

+1.24

+0.88
0

+0.88
0
0

+0.62

0
0
0

Ag3
X10 '

0
0
0
0

+0.62

+0.88
+0.62

0
+1.24

+0.88
0

+0.62
0
0

+0.62

+0.88

+0.62

0
+1.24

+0.88
0

+0.62

0
0

+1.24

+0.88
0

+0.62

0
0

+0.62

0
0
0

q»q»q»~ space. At points where two frequencies
are equal the frequency branches change from
one smooth surface to the other. The branch of
highest frequency contains mainly longitudinal,
the two other'mainly transverse vibrations.

This combination of vibrations enables one to
interpolate frequency values at other points of
the phase cube. The frequencies have been inter-
polated at points in the center between each pair
of points of distance 4m. To find, following
Blackman, the number of vibrations in frequency
intervals the whole frequency range has been
divided into 24 intervals and three sets of curves
of constant frequency, corresponding to the
three frequency branches, have been determined
in the 9 planes pz ——0, -', x, 4x, ~ m. By means of
graphical integration the areas between curves
of constant frequency have been evaluated and
from these the volumes between surfaces of
constant frequency for all three branches have
been determined by repeated graphical integra-
tion. These volumes are proportional to the

&i X10» eu2X10» &3X10»

1.06
1.94
2.51
2,71
1.27
1.99
2.52
2.70
2.21
2.55
2.69
2.62
2.67
2.86
1.55
2.14
2.56
2.70
2.55
2.82
2.76
3.08
3.13
3.20
3.10
3.41
3.44
3.79
3.85
3.90
4.27
4.38
4.50
4.72

0.44
0.82
1.09
1.19
0.97
1.27
1.47
1..56
1.84
2.07
2.15
2.45
2.65
2.66
1.05
1.54
1.94
2.12
1.85
2.32
2.68
2.44
2.67
2.66
1.90
2.38
2.67
2.45
2.67
2.66
2.46
2.66
2.66
2.67

0.44
0.82
1.09
1 ~ 19
0.68
1.08
1.39
1.50
1.55
1.96
2.11
2.44
2.54
2.66
1.05
1.21
1.36
1.43
1.60
1.80
1.85
2.31
2.38
2.66
1.90
1.95
1.97
2.29
2.36
2.66
2.46
2.47
2.66
2.67

number of characteristic vibrations. The smooth
curve in each frequency interval containing the
number of vibrations which has been calculated
in this way was assumed to be the distribution
function.

The two branches of lower frequency show
maxima of vibration density near the residual
ray frequency. The lowest branch has this fre-
quency as maximum frequency, the medium
branch has a small number of vibrations with
frequencies higher than the residual ray fre-
quency. Both have second density maxima at
lower frequencies, thus causing a second maxi-
mum of the distribution of all three branches
together. The branch of highest frequency has
its maximum also near the residual ray frequency
but has a high number of vibrations between this
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and almost the double frequency. Figure 1 gives
the sum of the distribution functions of a11 three
branches.

SPEcIFIc HEAT

240

230

The specific heat of a system of N oscillators
of frequency v is given by

t
"-*(hv/kT) exp(kv/kT) dn

dv.
(exp[kv/kT] —1)' dv

220

210
e

10

~ e ~ ~

20 30 T 40 50 60

In the case of a quadratic distribution function
dn/dv =const. X v', with a maximum frequency,
which is determined by the total number of
degrees of freedom, a characteristic temperature
0 can be defined, which is related to the maximum
frequency by H=kv, /k.

For the lower frequencies the distribution
function of the KC1 crystal is in agreement with
the Debye quadratic distribution of the con-
tinuum with the characteristic temperature
8=230'. This 8 value is in agreement with the
value obtained from specific heat measurements
because this parabola is a good approximation for
the distribution function even at higher fre-
quencies because it continues to frequencies
higher than the residual ray frequency. However,
in temperature intervals where the first maximum
of the distribution function gives the main
contribution one may expect a minimum of the
corresponding 0 values of the continuum which
would give the same specific heat at this tem-
perature. Blackman's qualitative considerations

20-

15-

j0

O
X

, 5.

0
0 I 2 3 4 5 6 7 x 10 SEC.

'

Frt-. 1. Density distribution of the lattice vibrations of
the KC1 crystal.

Fj:e. 2. Specific heat. —Keesom and Clark. +-
Nernst and Linde mann. ~—Southard and Nelson.

calculated.

and Kellermann's" calculation of the NaC1 crys-
tal show the same feature. It is hardly possible to
give a quantitative discussion of this feature
without calculating the distribution with elastic
constants at lower temperatures. But under the
assumption that the distribution function does
not change with temperature, although the
elastic constants do," the dependence of the
characteristic temperature on the absolute tem-
perature can be calculated. This leads to the
function given in Fig. 2. In this diagram the
experimental values given by different authors
are also plotted. Keesom and Clark'4 find a
probable increase of 0 in a range between 2'K
and O'K but it is not possible to make any de-
cision about the reality of such an increase from
the present calculations because the frequency
intervals used are too large and the number of
calculated frequencies too small. Above these
temperatures they find a decrease to about 17'K,
but the given values may be interpreted as a
slight increase for 8 at the end of this interval.
The measurements are extended to higher tem-
peratures by Nernst and Lindem ann, " and
Southard and Nelson. " The combined values
seem to indicate a minimum near 15'K.

I am much indebted to Professor I. Wailer for
suggesting this subject and for much advice
during the work and to Internationella Student-
hjalpen (I.S.S.) Uppsala for making it possible for
me to do this work.

'~ E. W. Kellerrnann, Proc. Roy. Soc. A178, 17 (1941).
~3 M. A. Durand, Phys. Rev. 50, 449 (1936).
'4 W. H. Keesom and W. Clark, Physica 2, 698 (1935).
"W. Nernst and T. Lindemann, Zeits. f. elec. Chemic

17, 817 (1911).
~6 J. C. Southard and R. A. Nelson, J. Am. Chem. Soc.

55, 4865 (1933).


