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stants yields the angle Po
——28'40' and thus

wouM predict that as the hydrogens approach
the equatorial plane,

' the distance r increases.
This result would have destroyed the agreement
between the calculated and observed separation
of the double minimum levels. One further
point may be noted. If the potential of the
arnrnonia molecule was of the valence type and
contained no cross product term between the
change in the valence angles and the change in
valence distance, the angle pp may be computed
readily and is 22' 1'. This also predicts an. in-
crease of r, although only a slight one, as the
hydrogens approach the plane and consequently

would not lead to the very satisfactory agreement
which we have obtained.

The change in the splitting of the ground level

may be calculated in a similar fashion. It will

be considerably smaller, partly because the
integral is smaller but principally because the
splitting itself 60/he=0. 66 is so small. We find

A —A '= —00011
Cp —Cp' =0.0005.

The first of these values was determined experi-
mentally and found to be Ap' —Ap'= —0.00~.
The agreement is satisfactory although not very
significant.
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The quantum-mechanical Hamiltonian function, II, for the general vibrating-rotating poly-
atomic molecule of N atoms has been expanded by the method of Wilson and Howard to second
order of approximation. It has been practicable to obtain solutions of the Schrodinger equation
(II—B)&=0 for asymmetric molecules, axially symmetric molecules and linear molecules.
Expressions for the anharmonic terms occurring in the vibration energy, the effective moments
of inertia, the amplitudes of the internal angular momentum of oscillation and the centrifugal
distortion coefficients are derived so that when the normal coordinates are known the vibration-
rotation energies of a polyatomic molecule may be calculated from the results given. Tetra-
hedrally symmetric rnolecules and models in which internal rotation occurs are regarded as
anomalous cases and a.re not treated.

I. INTRoDUcTIoN

ECENTLY a number of papers have appeared in which the form of the vibration-rotation
energies of certain polyatomic molecular models' have been derived to a second order of

approximation. The method followed has in each instance been equivalent to that delineated by
Kilson and Howard, although the details have varied slightly from case to case. The method consists
essentially in approximating by the method of the perturbation theory to three items, namely: the
energy of the atomic nuclei oscillating anharmonically about their positions of equilibrium in a set
of body-fixed coordinates; the eA'ective moments of inertia of the molecule regarded as a semi-rigid
rotator and the distortion of the molecular energies due to the centrifugal forces.

An inspection of the final results in these papers reveals that they are nearly always of the same
form. Thus, for example, the oscillational energy always consists of a set of terms linear in the

' A. Adel and D. M. Dennison, Phys. Rev. 43, 716 (1933);W. H. Shaffer and H. .H. Nielsen, Phys. Rev. 56, 188 (1939);
W. H. Shaffer, H. H. Nielsen, and L. H. Thomas, Phys. Rev. 56, 895 (1939); W. H. Shaffer, H. H. Nielsen, and L. H.
Thomas, Phys. Rev. 56, 1051 {1939);B. T. Darling and D. M. Dennison, Phys. Rev. SV, 128 (1940); Ta-You Wu, J,
Chem. Phys. 8, 489 (1940); S. Silver and W. H. Sha6er, J. Chem. Phys. 9, 599 (1941); W. H. Shaffer, J. Chem. Phys.
9, 607 (1941);W. H. Shaffer and A. H. Nielsen, J. Chem. Phys. 9, 847 (1941}.

2 E. B. Wilson, Jr., and J. B. Howard, J, Chem. Phys. 4, 262 (1936).
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vibration quantum numbers, the coefficients of which are the normal frequencies; a set of terms
quadratic in the vibration quantum numbers, the coefficients of which depend in a complicated
fashion on the normal frequencies, the non-vanishing constants occurring in the cubic and quartic
parts of the potential energy function and upon the dimensions of the molecule. Also the effective
moments of inertia are in each case linear functions of the vibration quantum numbers and depend
in an involved manner upon the size and the shape of the molecule, the normal frequencies and the
coefficients of the anharmonic part of the potential energy which is cubic in the coordinates. The
coefficients of the centrifugal distortion are to second order of approximation always independent of
the quantum numbers and depend only upon the normal frequencies and the dimensions of the
model. One may summarize this by stating that to a second order of approximation the vibration-
rotation energies of a molecule depend always only upon the following items: the normal frequencies,
the size and shape of the molecule and the non-vanishing coefficients of the anharmonic terms in the
potential energy cubic and quartic in the normal coordinates.

This suggests that it should be practicable to set up and solve the problem of the vibration-
rotation energies of a perfectly general molecule of N atoms oscillating and rotating in space.
Precisely as before the final formulation should consist of three parts; the vibration energy, the
energy of a semi-rigid rotator and the energy due to the distortion of the molecule by the centrifugal
forces. To obtain the energies in a particular case it would then be necessary only to solve the
problem of the normal frequencies and determine from the symmetry of the model which of the
coefficients of the anharmonic terms in the potential energy function are non-vanishing and then
insert these results into the general formulation.

We have undertaken to do this and have found that the problem of determining the vibration-
rotation energies of the general molecule is in reality much simpler to carry out in detail than that
of the special cases. In the following sections we shall set down the results of this investigation. It
will be found that it is far less time consuming to arrive at the vibration-rotation energies of a par-
ticular molecule by the general method than it is to derive them independently for a particular model.

II. I HE QUANTUM-1VIE'CHANICAL HAMILTONIAN

The problem of determining the vibration-rotation energies of a polyatomic molecule reduces to
that of finding the solutions and the eigenvalues of the quantum-mechanical equation

(II F)P =0, —
characteristic of the motion in space of the molecule.

In discussing the motion of a molecule it is convenient to make use of a set of coordinates x, y
and s fixed in the molecule and a set of space fixed coordinates x', y' and s'. The origin of the two
sets of coordinates shall be the same and they shall be related to each other by the Eulerian angles
ll, p and It, defined as follows: 0 is the angle between the fixed s' axis and the axis s; p, the angle
between the x axis and the nodal line and P the angle between the nodal line and the x' axis. The
general polyatomic molecule will contain N atomic nuclei all of which may have different masses.
The kinetic energy of these nuclei when expressed in terms of the coordinates x', y' and s' fixed in
space will be

i=N

M;s;=0
and

i=N
T=-', Q M, (i; +j, +s, ). (2)

i=1
The molecule is so oriented in the coordinates x, y, and s that the equilibrium position of the ith

0 0 0
particle will be x;, yi and si subject to the restrictions:

i=N i=N

P Mx;=0, P My;=0, (3a)

P M,x,y;=0,
0 0

Q M;x,s;=0,
i=N

P M;y;s, =0.
i=1

(3b)
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The first condition states that the center of gravity of the molecule coincides with the origin of the
coordinates x, y, s when the atomic nuclei are in their equilibrium positions. The second conditio~
states that the axes x, y, and s coincide with the principal axes of inertia of the molecule. The actual
positions in the body fixed axes of the ith particle will be designated by x;, yi and si where

0 0
x;=xi+ bx;, y, =yi+ 8y;, etc. , bx;, byi and 8s; being the displacements of the ith nucleus from its
position of equilibrium. Expressed in these coordinates the kinetic energy may be written:

2T= P M, (x;+j;+z;)+ P hI ~ Z I c&d Ms)+2 2 0 & (4)
CL=X& g& Z P=s, y, Z

i=N
2 2

where I are the instantaneous moments of inertia. ' g M;(p;+y, ) and I s are the instantaneous
i=1 i=N

products of inertia which by virtue of Eq. (3b) become equal to g M, (p,bn;+n, bp, +bn„8p;). In Eq.
i=1

(4) co are the components of the angular velocity along the x, y and s axes' and 0 take the form:
i=N

Q. = Q M;(j', f&P; P, f&y;). —

The first set of terms in (4) represents the kinetic energy of the atomic nuclei oscillating about their
positions of equilibrium in the force field of the electrons. The form of this force field will depend
upon the nature of the assumptions made concerning it. For our purpose we shall take for the
quadratic part of the potential energy a function which may be regarded as perfectly general in the
coordinates:

Vo ——-', P K;;, „5s,;8s„„,

where X;;, „may be regarded as force constants and the bs;; is the variation of the distance between
the atomic nuclei i and j. The displacements bs;; can be expressed in terms of the coordinates xi,
y, and s; so that (5) becomes:

Vo(bs;;) = Uo(x;, y, , s;).

The coordinates x;, y; and s; which occur in (4) and (6) are not all independent of each other, but
are subject to the restrictions:

i=N

P M,n;=0 (a taking the values x, y and s),
i=1

(7)

0 0

Q M, (n, f&P; P;f&0.;) =0 (n a—nd P taking the values x, y and s but nWP), (8)
i=1

the first of which states that the center of gravity of the molecule remains at rest in these coor-
dinates and the second of which stipulates that to zero order of approximation the internal angular
momentum is equal to zero. With the aid of (7) and (8) it is possible to determine the normal coor-

dinates of the system. 6 Of these there will be 3N 6, one normal —coordinate, Q„ for each normal

frequency co,. Not infrequently, however, a molecule will have so high a degree of symmetry that
in certain of its modes it will be oscillating in force fields which are isotropic in two or three dimen-

sions. In such cases two- and threefold vibrational degeneracies will arise, i.e., there will be
' Certain molecular spectroscopists Lsee for example R. S. Mulliken, Phys. Rev. 59, 873 (1941)g have found it con-

venient to designate the moments of inertia of the molecule in ascending order of magnitude by I, I& and I,. In a dis-
cussion of the vibration-rotation energies of a general polyatomic molecule it is inconvenient to assign definitely any one
of the moments of inertia as the largest or the smallest. In this work the s axis will be taken as the approximately unique
axis of the rotator. In some cases (for example, the methyl halide molecules or the formaldehyde molecule) I„will
therefore be the smallest moment of inertia, i.e., I, ; in other cases (for example, the BF3 molecule or the HgSe molecule)
I„will be the largest moment of inertia, i.e., I,. It is probably always convenient to identify the moment of inertia I»
with Iq.

Explicit expressions for ce may be found in books dealing with classical mechanics.
See, for example, E. T. Whittaker, Analytical Dynamics, fourth edition, p. 177.
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respectively, two and three coordinates Q associated with the same frequency cp. It is convenient,

for this reason, to denote a normal coordinate by Q„rather than simply by Q„where s will denote
the particular frequency to be associated with the coordinate and 0. will take the values 1; 1, 2 and
1, 2, 3 depending upon whether the frequency is non-degenerate, two- or threefold degenerate,
respectively. Thus, for example, the non-degenerate frequency of a harmonic oscillator oscillating

with a frequency cp, will have associated with it the coordinate Q, , i, while the twofold degenerate
frequency of a two-dimensionally isotropic oscillator oscillating with a frequency ~& will have

associated with it the two coordinates Qp, i and Qp, p, etc.

It is always possible to express the iix;, 8y; and bs; in terms of the normal coordinates Q„as follows:

I I tP lissQss& ~yi P mis&Q&s& &lsi E nissQss& (9)

so that when these are substituted into the first term of (4) and into (6) we obtain for the kinetic
and potential energies of the oscillational motion the following relations:

2T=Q l&,.Q... 2Up ——Q k.Q... (1o)

where the p„are the reduced masses and k, are the generalized forces constants, equal, respectively,
2 2 2

to 4x c p.oo„which will be complicated relations of the X;;, „. It is convenient to replace the coor-

dinates Q„by (l&„) 'Q„so that instead of (10) we shall have:

2T= P Q., and 2 Up
——P X,Q„(A,= (2&lcpp, )'). (10')

Evidently then
S, 0'

~&i= P lissQ&s& &yi= P Mis&Qss& 8s;=Q n;„Q„
S, 0 S, 0 8& iT

where l;„=(l&,.) V,„,etc.
In terms of the coordinates Q„ the expressions for the cubic and the quartic terms in the poten-

tial energy expansion may conveniently be taken to be:

U, =g Z P u„..-Q,.Q, ...Q,",", (s&s'&s"),
S0S'0'S'l (11)

Up ——. P P P P li„.s., Q,.Q. .Q, ... Q, ".. .. (s&s'&~s" &~s"').
Sl 0l Sll 0ll Sill 0 lit

/

The appropriate Hamiltonian form for the kinetic energy of the general molecule in the quantum
mechanics will, according to Wilson and Howard, be the following:

2 2 papIaI p P liaI a+ p P p Pagapj& 'Pp+ p Q p Psst Ps. s&, (12)
a, P a a, P S, 0'

where h =-,' pp {2&t& ppp+(&pl& p)+l& pl&i(ppl& i) I and u, p are summed over x, y and s. In Eq. (12),
I p f2 I I

l&aa = (IppI» Ip„)/6 and pa—p =@pa = (I»Iap Ia~Ip&)/5&

where I p are respectively defined in the following manner:

(13)

in which

I 2
Isa Isa 2 Xs's'&

S' 0'
I

Is&& Ig&&+ g X a'sQ as'

S10l

2I„=I„2

Iss I„„——
S'0'

I**=I.,+ Q X. .$".,
S/01

S'0'

I'.=I.*+2 8""8""
S' 0'

Q M;(ni;„n;, , —np. . .n;„)Q„,
S, 0

P M;(n;„l;... n„. .l;,.)Q...—
S, 0

Q M, (l;.,ni;, ; l;. .m;, .)Q.—..
S, 0'

(14)

' Darling and Dennison have given a form which is slightly different from that derived by Wilson and Howard. To
second order of approximation, however, they are entirely equivalent.
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and where

Explicitly the quantities I„,I„„,etc. , will become:

(e)I..=I, +P a,.Q,.+Q Q 3 ...-.-Q,.Q,".",
St 6 S6 Stl6II

(e)I.u=I.w +Z &-Q-+E 2 &-.""Q-Q"",
S, 6 Sl I 6t I

p (e)I„=I„+gc,.Q„+P P C...", Q„Q, ..
S, 6

Isa =Q dsaQsa+ 2 Q Dsas''a''QsaQs" a" )

S6 Sl I 6I I

S6 S

Iv*=2 f-Q"+2 2 I"-"""Q"Q*""
S6 S"6"

a,.=2 g M;(y,m...+s;n...); b,.=2 Q M;(s;n;..+x,l...),
0 0 0 0

c,.=2 P M, (x,l;, +y,m;„); d„=P M;(x;m;, .+y;l;. ),

0 0 0 0
e,.= P M, (y;n;„+s,m;..); f„=g M, (s;l...+x,n;,.),

& sas" a'' = {g Mi (missmis''a" +ni sanis" a") P' [P Mi(misanis'a' mis'a'nasa)
S 6

X Mj~ (mp~s»al ni'~s'a mi'~ ~ sa ins' a~'~)] } s

2ll

8,.„,.„={PM, (n...n, „,.„+l...l,„..-) —Q [P M, (n...l,... n...,.l-...)
2' S'6I i

XQ M;"(n;",";l;";, n;-, ;l,';—.;.)]},

C..."."= {g M;(l;„l;,","+m;,.m;,".")—P [P M;(l;,.m;. .—l;. .m;,.)
2 S'6I i

XQ M; (l;"s".-m,'. .—l,', .m,', .")7},
2tt

D...".~ = {Q M;/;, .m;."."+Q [Q M;(m,;,.n;, .—m;. n;,.)
S'6' i

st I

&sas"s"= {2 Mimisanis" a"+ P [P Mi(nisalis's' nis's'liss)
S 6

XQ M,"(l,'..-.-m,'. ..-l;-. ..m,'..-.")]},

I'„:."= {P M;n. ..l;,";+ P [P M, (l;„m;, .—l...m;..)
'2 S'6'

XP M,' (m;":..-n;-. . m;-...n;-.—".-)]}.
ill



The quantities I' are the operators for the three components of the angular momentum referred
to the moving coordinate system and they are de6ned as follows:

—cosy(8 B & B
P,= (—j$) (sin8) &

~

——cos8—( +siny —(sin 8)
sin8 (Bf Byi 88

siny(B B ) B
P„=(—ih)(sin8)l

(
——cos8—~+cosy—(sin8) —i,

sin8 &BP Byi 88

P.= ( ik—)B/By,

8, y and f being the Eulerian angles referred to above. The operators P„P„and P, which occur in
(12) are the operators corresponding to the internal angular momentum due to oscillation and their
definition will be given at a later point.

It is convenient here to replace the Q„by (5 /X.)&g„. After considers, ble algebraic manipulation
it is possible to set down in orders of magnitude the quantum-mechanical Hamiltonian for the general
polyatomic molecule. It will be:

(&/2) 2 ~ (0"/& +I ) + 2 (P*/I** +Pw/I ~ +P./I*. )

—(p.P,/I..)+P Q g (k'/X, X, X.")~k.. ."g,.g,'. g."."——', P (5'/X, )' {(a,.P,/(I„) )
eo 8'a' s"rr"

+(b-P./(I-) )+( -P*/(I** ) ) (d-(P*P.—+P.P*)/(I**)(I-))

(f-(P*P—*+P*P.)/(I-)(I*. )) (&-(P.P—+P P.)/-.(I-)(I*.)) Ig... (&&b)

II2= ( —+/2) 2 2 (&"/&.)'[(~-""/I**)+(&.- "/I- )+(~-""/I.* ) —(3a"~""/4(I..) )

—(3b„b;, /4(I„„) ) —(3c,.c, , /4(I„) ) —((a.,b, , +2d.,d, , )/2(I„)(I(„„))

—(g„q,...+2f„f, , )/2(I„)(I„))—((b„c...+2e„e,...)/2(I„„)(I., ))]q„P...
2 (e) 2 (e) 2 (e)

+r(p./I-+p. /I-+t. /I** )+2 2 2 2 (& /~ &"l "~"")'&-"""V-a"-g"."g.-."
f~t ellg1I etIlellt

(e) (e) (e)—l 2 2 (&'/~.~" )'a-V"" ((I*.) '[~-""—(a-a" " /I**) (d*-d" "/I )—

(e) 2 (e) —2 Ce) (e)(f-f" " /I. *—)]P.+(I- ) L&-" " (d-d" " /I*. ) ——(b-b"" /I- )

(e) 2 (e) —2 (e) ,(e)—(e„e, , /I„)]P,+(I.. ) [C„, , —(f„f, , /I„) —(e„e, , /I'»)

(e) 2 (e) (e) (e) (e)—(c,.r, . /I„)]P,+[(I„)(I„„)][D,.. . —(a..d. ;/I, ) —(b,.d, , /I, „)

(s-f*-"/I- —)](P.P.+P.P.)+L(I.* ) (I*. )T LF-" " (~-f" "/I*.)—
(e) (e) (e) (e) —1—(d-s" "/I. , ) —(~-s" "/I. ; )](P*P.+P P*)+L(I- ) (I**.)T [&-""

(e) (e) (e)+(d-f" "/I* ) (&-f" "/I.—) —&&-&" "/I- )](PP'+P*P,) I. (&Pc)
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In terms of the coordinates q„and their conjugate momenta p„=—ik(B/Bq„) the operators p
will be the following:

p.=p p p u;m;. .n, ,..D.x,./x, )-:q,.p„., p—„/),„)*'q„.,p, .], (18)

p„and p, being obtained from (18) by permuting I.. . m;„and ri;, in cyclic rotation.

III. THE ENERGY VALUEs QF THE MGLEcULE

In this section we shall endeavor to obtain the eigenfunctions of the Hamiltonian, Il, which was
arrived at in Section II. We shall approximate these by resorting to the methods of the perturbation
theory of quantum mechanics proceeding after the manner of Shaffer, Nielsen and Thomas' in
dealing with the vibration-rotation energy levels of the tetrahedrally symmetric XY4 type of
molecule.

This method, recognizing that all terms in II& save the Coriolis terms arising from the degenerate
oscillations can contribute first in second order of approximation, depends upon the effectiveness

of carrying out a contact transformation on H, THT '=Ho+H~+H~+ such that H~ will to
second order contain only the above Coriolis terms. It is possible always to 6nd a linear combination

of the zero order wave functions such that the matrix Hi. will contain elements only along the
principal diagonal. In effect this reduces the problem of obtaining the second order energies to a
first order perturbation calculation where the wave functions required are the stabilized wave

functions of Ho, i.e. , the linear combinations of the zero-order wave functions which will diagonalize

IIo+III.
We shall denote the transformation function s'"' by T(X) which to second order of approximation

may be written:

T= 1+iXS—-', X'S'—

Transformation of the Hamiltonian H=Ho+Hi+H~+ in the manner indicated above leads to

=II =1&o+Ih+II2+ -
~ After equating like powers of $ we obtain

IIO= HO, Hi=H, z(HoS SH,)—, — (2O)

The portions of IIi which it is desired to remove consist of terms each of which is a function of the
normal coordinates q.. (or the con]ugate momenta p, ) multiplied by a coefficient which either is a

2

constant or a function of the operators I', for example gg, or g„I' . Such coefficients as occur in
the latter example may also be treated as constants for to second order of approximation the error
incurred because of the non-commutability of functions Qf P. with Ilo will not contribute to the
energy. The complete 5 function will consist of a sum of terms, each element being so chosen that
it will remove a single term in XII. In orders of magnitude the transformed Hamiltonian II may be
written:

Ho ——Ho,

(~)
Zi Z& (~i/Izs ) (Iirliriir2 Iir2wirl) (qrypr2 gp2pg y)pz

where r assumes those values of s for which the frequencies co, are twofold degenerate;

(21a)

(21b)
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H2 ——H2 —(ik/32) P X,Da„/Igg )+(b„/I„„)+(c,./I„)] —(1/8) P Xs }(a„/(I„))P,

+(b-/(I- ) )P.+(c-/(I** ) )P*+Ua-b-+d-)/(I*. ) (I-) ](P*P.+P.P*)

+L(a-c*.+f-)/(I**) (I- ) ](P*P.+P*P*)+L(&-c-+c-)/(I-) (I.* ) ](P.P*+P*P.) }

+-', P P' (k/X, (I„)) L(3a„k„,/X,)+(a, , k, „/X, )+P M;(m;„n.. .—m..., n;„)
sa s'a'

2 2 (e) 2
XP cV,'(m; „n,'...—m,', , n; „)(3X.+X.)/(X, —X.~)]q„P,+2 P Q' (k/X. (I„„))

sa s'a'

X L(3bgs'kssg/Xg) + (bg 8 kg 88/Xg ) +p M (n8glggssITI nggIs l gg)sp Mg (ngIgslgIgITI n 'IgI Il I)'
1

X (3X.+X. )/(X. —X. )]g„P„+-', P P' (k/X, (I„))L(3c..k.../X, ) + (c, .k, „/X, )
sa s'a'

2 2+g M;(l;„m...—l;, , m;, ) P M; (l„„m...—l,'. , m;, .)(3X,+X,.)/(X, —X, )]q,.P,

—g (k/X, ) (3p„g,./k +1+3g,./2) —3 p Q (k'/X, X, )k...k...,.g,.g, .
s~ s'a'

2 2 I 2 2--; P P' P" (k /X, Z;X,")k....k;,-;.q,".-q,. ,'P—P-' (k /X, X,.)k„..
sa slat st/alt sa s'a'

1

X }(2XS—XS )g"+4XSXS g"g. ~ +2K.q"p"/k }/(4X,—X, ) —(i/2) p Q' Q" (k'/X, X,4,. )'*
sa s'r' s"o'~

2
/E 2X I wXkg 8 8 {(DESKS XS /Fg )(P ITggSP SIF SgS g PS IT gg 8 gSTPSSg6 IT P8 8 gg IT Pg IT ]

2 2 s 2 2 2 2
+(ik)P„(X,—X, —X, )q, .g, . +X, (X, —X, ~ —X.)q,.g, . +X. (X."—X,—X,.)g,.q, .]}

s 4 k s k —X

Xk }(X,+X. +X, )(X,+X. —X, )(X,—X. +X,")(X,—X. —X,")} +H,
where B contains terms which can contribute in higher approximations only. A prime after a sum-
mation sign indicates that the indices can here not assume the same values as those which precede
them; a double prime following a summation sign preceded by a summation sign with a single prime
indicates that the third set of indices do not take the same values as the first two sets and that the
second set do not take the values of the first set.

Since the Hamiltonian is entirely general it is possible in principle to proceed to find the eigen-
values for any model in which there may be non-degenerate, twofold degenerate and even threefold
degenerate oscillations. In practice, however, it seems advisable to exclude the latter class of molecules
from this discussion because the stabilized wave functions in such cases are quite complicated to
work with. Such molecules together with molecules in which internal rotation takes place or where
other anomalies occur had better be treated as special cases.

In the case of molecules where there are oscillations isotropic only in two dimensions there will
be two coordinates g & and q, 2 associated with a normal frequency co,. It has proved convenient when
dealing with such oscillations to introduce the cylindrical polar coordinates p and x so that
q &

——p, sinx, and q,2= p cosx, . When this is done the zero- and first-order Hamiltonian operators
become:

Ho=(k/2) r. ~ (p /k +g )+2 ~ L( ~ /sp) P(~/sP—) P(s—/sx)+—P ]
+ l L(P*/I**)+(P./I- )+(P*/I** )], (2»)
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H =& Z. (f./I**)(~ /~x. ~~)

where i t P~ 3II~(lz'r1m6. 2 l~ r2m'~ „1).'

The solution to the zero-order Schrodinger equation is known' to be:

, exp( —g, /2)H, ,(q.) g, exp( —p,/2)R, „&„(p,) exp(Ail, x„)+s,

(22b)

(23)

where H„,(q,) are the Hermite polynomials and R„„~„(p„)= p„F(p,), F(p,) being the associated
Laguerre polynomial. In the latter case /„may be regarded as a quantum number of internal angular

momentum. It takes the values v„, v„—2, 0, or 1. 4's in (23) is the characteristic function of the

last part of (22a). The function 4's is most conveniently expressed as an expansion

X +J
( ) 0

AgxMQ (J, Z, M)
Z=—J

where P(J, Z, M) are the known solutions to the problem of the symmetric rotator which forms a
complete orthogonal set of functions. In the above functions J, E and M are, respectively, the
quantum numbers of total angular momentum, the quantum number of angular momentum about a
body fixed axis and the so-called magnetic quantum number. r is an index number running from —J

(~)
to +J and A J,~, M are constants.

(&)
To find the eigenvalues of Ho and the values of A J,+,~ it is easiest to follow Wang' and set up the

matrix Ho in terms of the basic wave functions P(v)P(J, E, M) where, of course, P(J, E, M) will

not in general be a solution to the rotation problem. The resulting matrix will in general not be a
diagonal matrix, but will have the elements:

(v, l, J', M, E~Ho~v, l, J; M, Z) =5 Q, X,(u, +g,/2)+ J(J+1)(k /4)[(1/I„)+(1/I„„)j
+(E & /2) I (1/I*. ) —k[(1/I*. )+(1/IIu )j I, (24)

(v, f, J', M, Z ~ HO) v, l,, J, M, Z&2) = (II /8) [(1/I„)—(1/I„„)][f—E(Z&1)]&[f—(Z&1)(Z&2) j&,

where e and l are taken to embrace all the vibration quantum numbers and g, is the order of the
degeneracy of the vibration frequency co,. An inspection of the elements (24) will reveal that for
each value of the quantum number v and l the matrix will consist of steps, one step for each value of
J. Since the elements (24) are independent of the quantum number M which may take all values
from —J to +J it is evident that each step will be repeated 2J+1 times The en. ergies Zo(v, l, J, r)
for the molecule may now be had simply by diagonalizing Ho, or which is the equivalent, by setting
equal to zero the secular determinant of this matrix

~
(Z

~
Ho

~

Z') —Zb« ~, 8«being the Kronecker

symbol, and determining the roots. The function +& is now uniquely determined also, for the coef-
(~)

ficients A J,~, M are simply the first minors of the above determinant.
Using the same basic wave functions we may arrive at the first-order corrections to the energy

matrix. The only non-vanishing elements are the following:

(s, f, J, cV, Z~H, ~s, f, J, Id, Z) =P„~f.,f,Za'/I.".
,

'
(23)

which lie along the principal diagonal. Since H& has elements only along the principal diagonal the
second-order corrections can be determined by a first-order perturbation calculation using the wave
functions (23). The function P(J, E, M), as we have seen is really not a solution to the rotation

problem; hence H& will contribute also to the elements of H which do not lie along the principal

7 D. M. Dennison, Phys. Rev. 41, 304 (1932).
8 S. C. Wang, Phys. Rev. 34, 243 (1929).
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diagonal. II2 is, however, diagonal in all the quantum numbers except the quantum number X and
the only non-vanishing elements are the elements (X~X), (X~X&2) and (X~X+4).When the zero-,
hrst- and second-order contributions are combined one obtains for the elements of the entire energy
matrix accurate to second order of approximation the following:

(XIIIIX)= {Rp~RA+R.X'+RpX'},
(XIII

I
X+2)= {[f—X(X+1)][f—(X+1)(X+2)7 } ' {Ri+Rp[X'+(X+2)']}, (26)

(X }II~ X+4)= {[f—X(X&1)][f—(X&1)(X&2)][f—(X&2)(X&3)][f—(X&3)(X&4)7 }'Rp,

where

R =p(E„/hc)+-', (X + 7'„)J(J+1) DgJ'(J—+1)P, Ri,=2Z. Q, f',l„
Rp ——Z„——',(X„+F„) Dgx J(J—+1), Rp Dxs—R4 ——(1/4) (X.—F,) —8gJ(J+1),
Rp ——( h/512 prsc) P (1/8ps, ) {(a„/(I„)) —(b„/(I„„)) 2(a„—c„2f.,)—/(I„) (I„)

+2(b,.c„2e,—.)/(I„„) (I„) },

(27)

Rp=( —h' /102 4prPc)PP (1/8ip. ) {(a„/(I„)+b„/(I„„)) 4d,./(I—„)(I„„)}.

The quantities occurring in (27) are defined in the following manner:

X„=X,—xp —P x (v +g /2), Y„=Y yp —P y ('v +g /2) Z =Z —zp P z (5 +g /2),

where

X.=h/8pi cI„, F,=h/8 pcrI„„, Z, =h/Spr cI„,
and where

x,=(—hP/236~PcP) 2 (1/8~ )L(a-l(I**) b-l(I-) )—+4d*./(I**) (I-)

12f-/(I--) (I-) +8e-l(I-) (I*.) ]
yo=( —h'/236 'c') 2 (1/8 )L(a-/(I**) —b-/(I ) ) +4d-l(I**) (I )

+8f-l(I*.) (I**) 12 -l(I--) (I.*) ]
zo = (h'/25«'c') 2 (1/».)L(3/2) (a-/(I*. ) —b-/(II. ) ) +6d-/(I** ) (I-)

—16(f,./(I, ) (I„)+e,./(I„„) (I„))],
(28)

x,.=X, P' (h/4s cg,I..ip.) {[A ....—(a../I..) —(d„/I„„)—(f,./I. .)] 3a,.k„,/4pi c—ip,
s' a'

2 2 2
as's'ks'ss/4& c pps' Z ~i(npissnis's' npis's'niss) Q W'(npi'ssni's's' i' n'p' sis' n)ss

2 2 2 2
&&(».+~")/(~.—~. ) }

y,.= 7, Q' (h/4s cg,I„„ip, ) {[8,... (d,./I„) —(b,./I—„„)—(e,./I. , )]—3b.,k.../4pr c ip,
s'z'

2 2 2—b, ...k, .„/4 c7irp. —P M;(n;..l.... n;, .1;,.—) P M; (n,',.l,', .. n,';.I;,—.)
2 2 2 2

X(3ip,+~, )/(~, —~. ) },
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z„=Z. P' (k/42r cg,I,. id,) {{ C„,.—(f,./I„) —(e„/I,„)—(c„/I,.)] 3—c,.k.„/4 2r c ~.
stet

2 2 2
cs a rksrssr/42r c irtsr p W'(lis m s'a' 'lis'rr'miss) g Mir(ii'sami'sr sr li's'a'miss)

2 2 2
X(3~,y~. )/(~, —~, ) },

I

D l=(k /2512 r2' c)2P (1/810,){3a,./(I„) +3b,./(I„„) +2(a,.b„+2d,.)/(I„) (I„„)],
SO

Dltc 2D——l+—(k2/642r2c2) P (1/Ss&,)L(a„c„+2f„)/(I„)(I„)+(b„c„+2e„)/(I„„)(I„)],
so

Dtc =Dl+ (k2/642r2c2) g (1/Sees) $(c„/(Iss ) (a„c—sa+2f„)/(I„) (I„)
—(b"c-+2e")/(I-) (I** ) ]

bl = (k'/256''c') 2 (1/8~.){:(a-/(I-) ) —(b-/(II2 ) )].

The quantity Z„ in (27) is the vibration energy of the molecule and may be written:

(E„/kc) =(Z2/kc)+g a&, (v, +g,/2)+g P x„(v,+g,/2)(v, +g, /2)+Q P xi,i„,l„l, (29)
S 4' 8

in which

x„=(k/322r cu,c ) {3k„„—(15k„,/82r c &l,) —p (k„, /42r c a&, )+Q (k„, /82r c (410,—co. )) },
st

4 3 222 I 2 2 2
x,. = (k/322r u.i0, c ) {k„., —(6k„.k.. . /42r c cu,) —g' (k„. k. . . /42r c c0,")

2 2 2 2 2 2 2 2 2 2 2
(ksssr/tr C (4ids 10sr)+Q kss s (irisr» r—ridsr isis)/42r C (Ms+irisr+Msrr)(ids+irisr Msrr)

2 2 2 (e)
X (iris &sr+irisrr) (isis iosr ios)rr+ 42rC Q (ios'/gsgsrIsa ) g Mi( misani sarr mss'a'nisa)

2 2 2 (e)XP 3I;"(m,'.„n,', .—m;". ..n,'.„)+42r c P (a&. /g, g, I») P M, ( .n..l,.;—n;. .l;..)
tr 0'

(30)

2 2 2 (e)
X Q M; (n;"„l;,, —n,'...l; „)+4 c Q (;/g, g, I„)P M;(1;,.m;. ;—l;, , m;„)

XQ 3II, .(l;,.m; . , —l; ..m. ..) },
4 2 3 2 2 2 2 2 2 2 2 (e)

xi„i„=(—k/322r u&,c ) Ik„,„+p (k„„/82r c (42rco„—co, )) —(42r c &o,/I„)

XQ M'(i' 1m' 2 l 2m' 1) Q M (l 1m' 2 l' 2m' '„1)},

2 (e)
l„ x1(k/8 I*2*r) Q M'(i ' 1m 2 l ' 2m ' 1) Q M' (l lm ' ' '2 l'" '2m " '1) ~

(E2/kc) is a constant term depending in a very complicated manner on the potential energy constants
and since in practice one is only interested in differences between energies and not in their absolute
values this term is not set down.

As in the case of IIO, for a given value of the quantum numbers v and l the above matrix will

consist of steps, one step for each value of J. As before, the energy is independent of the quantum
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number M so that each step will be repeated 2J+1 times. For a given value of J the actual energy
values may now be obtained as in the zero-order problem, i.e., by diagonalizing the matrix H. This
again is accomplished by setting the secular determinant

~
(Z~II~Z') —ESCA+') equal to zero and

solving for the roots. This determinant will resemble the Wang-Klein determinant for the asymmetric
rotator, but will be considerably more complicated in general. The determinant can at once be
factored into sub-steps corresponding to given values of the quantity P,l, and. each step will be
repeated twice, once for the positive value and once for the negative value of P„l„.Each of these
sub-steps can further be factored simply by arranging the rows and columns so that the even values
of X stand together and the odd values of X stand together. The elements of the Wang-Klein
determinant are independent of the algebraic sign of X so that a further factorization is possible.

(e)It may be seen that because of the term P„(l„l„Z/I„) in the diagonal elements this is no longer
true in the general case and no further factorization is at once possible.

Darling and Dennison have pointed out that for-a molecule like the H20 moleculate a relation
(e) (e) (e} (e} (e) (e)A=I, +I» I.. (I—„(I»(I„)exists such that 6 is independent to this approximation of the

anharmonic constants. That such a relation exists in general for all planar molecules may be verified

from the relations (28) by setting s;=0 in which case u„+b„—c„=0. Such relations will not exist in

general for non-planar molecules.

IV. THE VIBRATION-ROTATION ENERGIES IN SPECIAL TYPES OF MOLECULES

A. Asymmetric molecules

In the case of asymmetric molecules the atoms assume such geometric configurations that the three
(e) (e) (e)

moments of inertia I, I» and I„are all different from each other. In such cases, however, it is
true almost without exception that there are no degenerate frequencies. There will therefore be only
a single coordinate g, & associated with a frequency cv„ i.e., the index 0. takes only the value 0=1.
When this is so the terms which would occur in II~ will all vanish and hence the elements in the
matrix H will become entirely independent of the sign of X. Except in cases where two vibration
frequencies become accidentally degenerate the sub-steps of the secular determinant of the matrix
H can be further factored as pointed out by Shaffer and Nielsen with reference to the triatomic
non-linear molecule. When results of this kind are to be applied to experimental data it is frequently
desirable to expand the secular determinant of the energies into a set of algebraic equations. This
has been done by Nielsen' for the triatomic non-linear molecule for the values of Jup to and including
J=6. It is found that these same equations are valid in the case of the general asymmetric molecule
except that the more general definitions of the R; given in (26) must be used and that p is here equal
to (28/Ii' —Rp).

B. Axially symmetric molecules
In molecules belonging to this important classihcation the geometric arrangement of the atoms is

(e) (e) (e)
such that the two moments of inertia I„and I» are equal to each other while I„will in general
be diiferent. In the case of such molecules the (Z~Z&2) elements will always vanish except for
second-order terms. 'P The (Z~Z&4) elements are also of the same order of magnitude. It is found
that when the secular determinant for the energies is expanded that the elements oG of the principal
diagonal can contribute only in an approximation higher than the second. For our purpose they may
therefore legitimately be neglected. This is equivalent to stating that to second order of approxima-

9 H, H. Nielsen, Phys. Rev. 59, 565 (j.941).
@Shaffer and Silver have found that in the case of the planar XY3, the pyramidal XY3 type and the axially symmetric

XY3Z type molecules these elements vanish identically even to second order of approximation. Reference to the definitions
of x0, y0, x„and y, I Eq. (28)j makes it seem plausible that to second order at least this is always true.



HARALD H. NIELSEN

tion a molecule which is a symmetric rotator when the atoms are in their equilibrium positions will

effectively remain a symmetric rotator also in higher vibration-rotation states, The vibration™
rotation energies of such a molecule are then just the diagonal elements of (26) of the energy matrix.
For such molecules it is convenient to state them in the following manner:

(E/hc) = (E./hc)+(E, .i/hc) W (h/4 orcI,.)Q, &,/,K.

where (E„/hc) is the same as that given by (29) and (30) and where

(E„i/hc) =J(J+1)B, K'(B—, C,) —J'(J—+1.)'Dg I(I+—1)K'Dgx K"D—»

(31)

(32)

B.=B. cio g—(v, —+g,/2) a.,

C.= C.—vo —Z(s +g./2) v. ,

B.=(h/Sor I..c), (I..=I„„),
C.= (h/Sor I,.c),

&o =
o (xo+yo),

~ =l Z. (x-+y-) V.=Z. z-,
and where Dq, Dqx and Dx are deFined as in (28).

(33)

C. The lineat polyatomic molecule.

Linear polyatomic molecules constitute a group which may be regarded as special cases of the
axially symmetric molecules. In molecules of this type p.—P, =O, i.e. , p.=P.=(&oh) Q, l, and

from this restriction it is easily shown that all terms involving I„,c,.and f..will vanish from the
Hamiltonian function, H, and hence also from the elements of the energy matrix. The moments of

(e) (8)
inertia I„and I» will be alike so that there will also here be no elements off of the principal
diagonal. The vibration-rotation energies of linear polyatomic molecules may therefore conveniently
be written:

(E/hc} = (E„;b/hc) +(E,.i/hc),

where

(E.'b/hc) = (Eo/hc)+ Z. ~.(s.+g./2)+Z. 2"~- (s +g./2) (s"+g"/2)+ Z. ~i,i,f

in which

(35)

x.,= (h/32or c oo,) I3k„,.—15k„,/Sor c oo, —P k„./4or c i». +g k... /Sor c (4oi. —oi. ) I,

4 3 22222222
xgg (h/327I c oigMg ) Ikgga&o& 6 ghee 8ggk&g~/ 1I4c Q)g P hying»kg»g~g'/4'lr c (os kggg /or c (4Ng oog')

@II

2 2 2 2 2 2+P' k„, (oo, —oo, —oo.)/4or c (io,+io. +io.")(co.+oi, —co.")(oo,—oi, +co,")(co,—co, —oi,")
2 2 2 (~)

+4or c Q (io;/g, g:I, )$Q M;( z;,.n;, n; —m;, ,n;,.) +DE; (on;"„n;"; ~ m;-;. n;",—.)
+P M;(n;,.1;,.—n;, .l;,.}Q M;-(n;-,.f,''. n,' ..f;",.)—j I,

o"i„i„——(—h/32or ceo,) Ik„„+Pk„, /Sor c (4(o„—oi, ) I,
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and where
(&-~/hc) = I:I(~+1)—1'3B.—LJ(~+1)—P j'D,

in which

B.=B.—Z. (s.+g./2)a. ,

B.=h/8 .scI„,

n. =B.(h/4n c~,g,I„)P, ([A„„—(( a„+d„)/I, )] 3a.—k.„/4~ c co.

807

(36)

(37)

2 2 2

+g. P P (a, k. „/4' c ~, ) —P P [P M;(m;„n;, ;—m.. .n,„)
s' o' s' e' i

2 2 2 2

&& P 3/I; (m; „n;, , —m,'. , n; „)](3(o,+(o, )/((o, —a&. ) },

D=(h /128~ c ) P., , (1/8co.)(2a„+d„)/(I„),

V. CoNcLUsIQN

In the preceding sections relations have been derived for the vibration-rotation energies of a
general polyatomic molecule to second order of approximation. These relations have been used to
verify the results arrived at independently by various authors for certain molecular models and in

each case have been found to corroborate their results. Enough cases have been tested by the author
to verify the contributions from each kind of term in the Hamiltonian, H~ and this is deemed a con-
vincing check on the accuracy of the calculations here reported upon. In each of the cases tested by
the author it was found that the vibration-rotation energies could be deduced in a small fraction
of the time required to obtain them by the Howard and Wilson method starting at the beginning.

It will be seen by inspection of the relations (26—30) that two and only two types of resonances
occur in the energies to this approximation. These are of the Fermi-Dennison' type and of the
Coriolis resonance type. The first is a resonance between a fundamental frequency co„and a com-
bination frequency co, +co&, i.e. , the resonance denominator will contain (~„—co, —~&). Such terms
will shift the centers of the vibrations bands, but will leave the spacings between rotation lines essen-
tially unchanged. The second type is a resonance between two fundamental frequencies, e.g. ,

(co„—co,). This kind of term will alter the effective moments of inertia and may therefore give rise
to anomolous spacings between the rotational lines. Essentially, however, it will not alter the
positions of the band centers. Whenever the resonance denominators co„—~,—co~ and ~„—~„re-
spectively, become too small the usual methods of perturbation theory fail and other methods of
procedure must be resorted to. While to this order of approximation these are the only resonances
which can occur, resonances may, of course, also occur in higher approximations and may probably
also make themselves felt in the spectrum.

It is pertinent here to inquire into the practicability of carrying such calculations to still higher
orders of approximation. It is doubtful whether such calculations would be particularly useful since
in a higher approximation it appears that the secular determinant for the energies would contain
elements of the kind (K~X'), (%~%&1), (E~X&2), etc. This would mean that the secular deter-
minant would not factor into sub-steps and that the work involved in determining the energies
would become prohibitive.

Moreover, in another approximation interactions between the electronic motions and the motion
of vibration and rotation might be expected to set in and these certainly would be dif6cult to take
satisfactorily into account. Also the approximation used throughout these and other similar calcu-

' E. Fermi, Zeits. f. Physik 71, 250 (1931).
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lations that the oscillators are approximated by simple harmonic oscillators where the variables g„
extend from + ~ to —~ rather than from qo to + ~ would begin to become invalid in higher approxi-
mations. Finally the approximation made earlier that coefhcients multiplying functions of g„ in
H1, which themselves are functions of I', may be treated as constant coefficients becomes inadequate.
This convenient approximation is satisfactory so long as the energies are not estimated beyond the
second order, but in still higher orders of approximation the non-commutative character of Hog and
I' may become significant. It appears, therefore, that in general the work which would be required
to extend calculations of this kind to approximations higher than the second mould become pro-
hibitive.

APPENDIX

It has seemed worth while to insert an example to illustrate how the results derived in the foregoing
sections may be used to obtain the vibration-rotation energies in a particular case. The example
chosen pertains to the planar XY3 type molecule which already has been studied by Silver and
Shaffer (S. and S.). In their work the plane of the molecule is made to coincide with the xy plane
of the body fixed axes so that the s axis becomes the axis of symmetry. The configuration is so
oriented that the equilibrium positions of the Y particles and the X particle will be, respectively

(—a, 0, 0); (a/2, —3~a/2, 0); (u/2, 3&u/2, 0); (0, 0, 0).
From the foregoing work it is possible to write the displacements of the particles X and Y along

the x, y and s coordinates in terms of the normal coordinates Q„as follows:

bx, =g; l...Q... by, =P; m;,.Q... 8s;= P; n;..Q...
where the l;„,m;,.
l "=(3M)-&

and n;„are the following:

lyme = (3M) ~[(m/(3M+m)) ~y —87, ly22 =0,

ly4y= (3M) P(m~/(3M+m)) "8+F7, lt42 =0,

imp
————,'(3M)—

&, l22y = (3M) ~ (m/(3M+m))~y+ —, l222= —(M)2' 2

7 7
l24$ —(3M) & (m/(3M+m))&8 ——, l242 ——(M)2' 2

lay = —2(3M) ~, lyme = (3M) ~ (m/(3M+m)) '*y+—, l322 = ——(M)2' 2

$41=0,

7 7
l34~=(3M) ' ( m(/3 M+ m))'*b , l—34—9——(M) &,2' 2

l42& ———m —l(3M/(3M+m)) ly, /4g, =0,

l44~ ———m '(3M/(3M+m))*'5, l442=0,

~13=~23=~33=& 3=0,
(3M) ~t (m/(3M+ ))~my+ b7, my4g =0,

m„,= (3M)-~L(m/(3M+m)) ~~ —y7,

mme=-,'(M) &, m gag =—(M)
2

m22g= (3M) + (m/(3M+m))~y ~ m24y= (M)2' 2

m249 (3M) & (m/(3M+m))&8+—
7
2'

~2 I am indebted to Professor L. H. Thomas for this information.
'3 In the case of the frequencies M~ and co3 which are non-degenerate the index 0 takes only the value o =1.It is con-

venient in such cases to omit the index since no ambiguity arises out of so doing.
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m81 = 2 (M) i, m821 = ——(M) s, m822 = (3M) 4 {m/(3M+m)) 1p, m841 =—(M)
2 2' 2

m342= (3M) 4 (m /(3M+m))4+ 2'
m422= —m 4(3M/(3M+m))p, m441=0,

m442= —m 1(3Mj(3M+m)) i8,

mg3 —m23=m33= m43=0,

nt3=n28=n33= {3M) &(m/(3M+m))s, n48 ——m &—(3M—/(3M+m))&, n„=0 (sx3),

3II and m being the masses, respectively, of the Y and X particles and 5 and y being transformation
constants.

The 6rst step in evaluating the energies is to determine the values of a„,b„, etc. and A „„,J3„„,
etc. We shall evaluate only one of these, namely, @2~ and 22222. The 6rst of these is:

0 0 0 0
412t 2(Mplm121+M$2m221+M$8m321+m$4m421).

0 0
Since wq2q =m 42' =0 and p3 = —p2 we obtain:

a21 ——2(M) y2h= —(I..) B.

1Q a similar manner we find that
(e) k (e) k

lit —kl — (Iss) 3 k21= 4321& 4341 k41 (Iss) Yy 4322 k22 438 II8 4142 k42 0& Cl @I+Iltj
c„=0(s/1).The constant A2222 is defined by (15) and in our particular case it becomes:

A 2222 ——I (1/3) t (3m/(3M+m)) y2+3S2/2)+ (3M/(3M+m)) y2 I

—I(m/(3M+m))y+(3M/(3M+m))yt'=It'2/2. (A3)

Likewise 011e finds tllRt s411=811=2, Asl2l=s42222=82121=92222= 5 /2, s48888=88888 =0, 24141=24242
+4141 +4242 y /2' Cl1 1 y Cssss 0 (~0 1)~

We shall next compute the values of I'2 and &4 which occur in the first order energies. By definition

M4(l42tml22 l422m421) Wltll the VRIues Of ltss Rnd m4ss glvell ill (A1) Olle Obtains R't Ollce

I 2 ——( r —6'). In the sRIlle way olle vel lfles tllRt I'4 ———I 2

The vibration term values are given by the relations (29) where the constants x., and xi„t„depend
upon the coefficients occurring in the anharmonic part of the potential energy. We shall evaluate
only two of these, namely, x3, 4 and x4, 3. Inspection of the anharmonic part of the potential energy
function adopted by S. and S. shows that the only k's which can occur in (30) are k4433, k441 and kl88.
Evlden tly

4 3 22 2 22
X8, 4 —(k/322r 403(jt4C ) (k3344 k44 tkt33/42r C tjjt+42r C tjj3(LM( 4m1 2+n231m343)n$3

+ t M(mt42nt +m 4 n23+m342n28) +mm442n48'j) I,
2 2 2 2

of which the last two terms reduce to 4m. c a)3b . The term @43 is entirely like x34 except that the last.
2 2 2 2

term is equal to 4x c au4b . The @34 and @4~ are added together and if it is taken into account that
2

(5 /X3X4)k3344 —kc r3844 Rnd (5 /X1X3) k188 —kcj9188 111 tile Ilotatloll of S, and S, we have Rt olice that
2 2 (e)

(+84++48) (j1 k/8tr Iss)(tjt3/4j)4+4j74/Ijt3) pt33pt44/Ijtt+y3344. In a Slmtlar faShiOn all the Other G43

obtained by S. and S. may be derived.
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We shall then proceed to consider the rotational constants. This consists in evaluating the 8,
and C„as defined by S. and S. We shall here evaluate only B„which is B,—488 —p (v,+ g, /2) 48„B,

(e) . (e) (e)
being (h/84r I„c)since I„=I».The constant 488 will in our notation be x8 ——y8. From the relations
(28) we have that:

x, =(—a /256~ c ) g (1/8~, ) (L(~..—b,.) +4d,.7/(I..) },

which upon insertion of the values a„, b„and d, leads immediately to the result:

3 2 . 2 2 2

x8 y8
——n8 —— 4——B,(—h/403+y /4g4). (A5)

We proceed to evaluate the 0.;. In this appendix we shall evaluate only 0,2 which will serve to demon-
strate how the others may be obtained. We have:

x81——X,(i'3/84r c403I..)$(8 /2 —2I., 8 /I, .)+(2) (I, ) k183/44r c cd17

and

=X.(h/8 I, )t (8 /2 —2I..ii /I..)+(2) (I, )&k /4

(~3331883318+~~2223388+~433828r383+3333334233348) (3&2+&1)/(&8 44&1}7

After inserting the values for re;„and simplifying one obtains:

2 (e) (e) $ 2 2 2 2 2 2
432 (x31+x33)=xg(k/44r c4g3Igg )L( 38 /2) + (2Igg ) &122/44r c 401 Y (3%8+%1)/2(4|12 481)73 (A6)

which is equivalent to the expression of S. and S. for a2.
Of the centrifugal stretching coefllcients D we shall evaluate only Dq which is defined in Eqs. (28).

It here becomes:

D =(I3/512 c)({1/8 ){16I,/(I, ))+(1/8 )L(1 I2,& 4I*.&+8I—*A~)j(I**)7+MI*.V/8 (I-) l

which becomes equal to

DJ =2B.((1/~i)+(& /~8)+(V /~I)) (A7)

It is easy to verify the relationship for D~ obtained by S. and S. and also their relation that
Dzx = (—2/3) (Dg+2Dir).

These constants being evaluated the vibration-rotation energies of the XY3 planar molecule are
determined and are given explicitly by the relations (31) and (32) in Section IV.


