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The fundamental low frequency parallel band at 10p, and
its upper stage band at 16@, have been re-examined under
high dispersion. It is found that most of the fine structure
lines hitherto reported as single are resolved into multiplets.
The positions of the lines may be accounted for accurately
by assuming that the energy levels have the form,

P"'/hc = W,'-/he+A, '.(J2+J—X2)+C,'.X2+ F(m).

The superscripts s or e indicate whether the level in
question is the lower or the upper of the two levels produced
by the double minimum potential. F(JX) is the small

centrifugal distortion term calculated by Slawsky and
Dennison. The constants Ao', Ao, Ai', Aio, A2', Ci' —Co

and Ci —Co'. are determined from the experimenta. l

data. The f'ollowing vibrational energies are also found,
le' ——932.24hc, 8'i' ——968.08hc and 8'2' ——1597.4hc.

In the discussion of the rotational constants, it is pointed
out that two quantities are involved, (a) the average

constants, averaged over the two levels of the double
minimum, as -', (A„s+A„~), and (b) the difference of the
constants, as A„—A,'. Recently Shaffer has calculated the
theoretical expressions for the averaged constants and has
shown how these depend upon the anharmonic terms in the
potential energy. A treatment of the difference of the
constants is equivalent to a treatment of the change in the
splitting of the two levels of the double minimum due to the
vibration-rotation interaction. This may be computed
from the expression for the splitting of the double minimum
levels given by the %-K-B method of approximation. The
calculated result for the change in splitting of the first
vibration levels is

(»P.) h..= —0.162(J +J)+0.222X,

which is in excellent agreement with the observed change

(»/hc)exp 0 17 (J +J)+0 23K

The significance of the agreement is discussed.

INTRODUCTION

~ 'HE general problem of the evaluation of the
vibration-rotation energy levels of poly-

atomic molecules has received considerable atten-
tion in recent years and much progress has been
made. The present paper contributes to this
problem and is concerned with the high resolu-
tion of the low frequency parallel bands of
ammonia. It will be shown that certain novel
features appear here which are produced by the
double minimum potential of ammonia and
which are not likely to occur in measurable
degree in other spectra.

The Hamiltonian function representing a poly-
atomic molecule is separable only in zeroth
approximation and the usual procedure is to
develop H as a series involving a number of
orders of approximation and to treat these by
the methods of perturbation theory. In zeroth
approximation the vibration-rotation energy
levels of an axially 'symmetrical molecule, such

as ammonia, are given by the expression,

Here the +; are the normal vibration frequencies
(expressed in cm ') and d; are the degrees of
degeneracy of the various normal vibrations.

A, =h/8~'cd', C, = k/8x'cIc',

where I~' and Ig' are the equilibrium values of
the moments of inertia for axes perpendicular to
and parallel to the symmetry axis, respectively.

When the change of the electric moment due
to the vibration lies along the symmetry axis,
the selection rules for the rotational numbers
are 67=0, &j. and ZX=O. As is well known this
produces a simple band of the so-called parallel
type which consists of a positive, 'negative and
zero branch. The lines of the positive and nega-
tive branches have the spacing 2A, and are.
multiple, that is, each line is composed of a
number of superimposed components. It is to be
expected that in the next order of approximation
these component lines may separate slightly
from each other.

In the case of the ammonia molecule there is
one further circumstance to be recalled. ' The

~o/&c =2* ~'(~'+ kd'& 'For a review of the ammonia spectrum see D. M
+~e(J~+J)+ I, ce ~e)+ ~ Dennison, Rev. Mod. Phys. 12, 175 (1940).
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nitrogen atom possesses two equivalent positions
of equilibrium, one on either side of the plane of
the hydrogens. This fact produces a splitting of
each energy level into two levels. The doublet
separation is small (about 0.66 cm ') for the
ground state but becomes rapidly larger for the
excited states of the vibration v3. The wave
functions characterizing these two states are
either symmetrical or antisymmetrical with re-

spect to the plane of the hydrogen atoms, the
lower of the two levels of the doublet being sym-
metrical. Parallel type bands, such as those to
be discussed here, correspond to transitions con-
necting a symmetrical with an antisymmetrical
level.

The methods for treating the interaction be-
tween the vibration and rotation of polyatomic
molecules have been discussed by Wilson and
Howard' and have recently been applied in

detail to the pyramidal XY3 molecule by Shaffer. '
This treatment leads to an expression of the
following type for the energy of a level not in-

volving a perpendicular vibration. 4

W'/kc = Wv'/bc+ A v'( J'+ J)
+ (Cv' —A v*)K'+iF(JK) (1)

The first term 8"~' represents the vibrational
energy. The quantities Az' and Cz' are functions
of the vibrational numbers, in first approximation
linear functions. The superscript s indicates that
the level in question is the lower member of the
doublet pair caused by the double minimum
character of the potential; the upper level will

be designated with the superscript a. Shaffer's
formula does not contain the superscript s or a,
of course, since he did not consider effects
arising from the double minimum potential.

The fact that A y' and A y may differ from
each other is indicated by the following qualita-
tive argument. Consider the case where X=O.
This corresponds to the classical motion in

which the molecule is rotating about an axis
perpendicular to the axis of the pyramid. The
centrifugal force tends to force the hydrogen
atoms away from the nitrogen and to make the
apex angle of the pyramid more acute. In other

' E. B.Wilson and J. B. Howard, J. Chem. Phys. 4, 260
(1936).' W. H. Shaffer, J. Chem. Phys. 9, 607 (1941).' In the case of the perpendicular frequencies there occur
additional terms due to the Coriolis forces.

words the centrifugal distortion raises the barrier
separating the two equivalent equilibrium posi-
tions of the nitrogen atom. Accordingly, the
doublet separation, which is a very sensitive
function of the barrier height, will be decreased
and therefore Ay —A~' must be negative. On the
other hand when X=J the energy levels corre-
spond to the classical motion of rotation about
the axis of the pyramid. The centrifugal forces
will clearly tend to make the apex angle of the
pyramid more obtuse and hence in effect will
lover the barrier height. .Thus we may expect
Cy —Cy' to be positive. It will appear that the
experimental data are in accord with these
predictions.

The last term in Eq. (1), namely F(JK),
represents what may be called the centrifugal
distortion of the molecule. It is small, depends
principally upon quartic combinations of the
quantum numbers Jand X and is in first approxi-
mation independent of the vibrational state;
hence no superscript s or a is necessary. F(JK)
has been calculated by Slawsky and Dennison. ~

Recently Foley and Randall' have measured'
under high dispersion lines of the pure rotation
spectrum of ammonia. They were thus able to
determine F(J, K) —F(J—1, K) experimentally
and their results are in almost perfect agreement
with the calculated formula, particularly when
the new values of the molecular force constants'
are used.

F(J, K) —F(J 1, K) = —0.00294—J'
+0.00279JK'. (2)

The frequencies of the lines constituting a
parallel type band may be written out easily
from the energy expression Eq. (1).For example,
the positive branch lines of the band correspond-
ing to the change 0,—+1 in the vibrational
number are given by

O, s, J—1, K
v, ', .', ~, x' ——(Wi' —Wo')/hc

+(Ag'+AD') J+(Ag' —Ao') J'
+(Ci' —Co' —Ai +AD')K'

+F(J, K) —F(J 1, K). (3)—
' Z. I. Slawsky and D. M. Dennison, J. Chem. Phys. T,

SO9 (1939).
~ H. M. Foley and H. M. Randall, Phys. Rev. 59, 171

(1941).
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Fto. 1. Curves A and 8:The double 10' band with partially resolved Q branches. The 0,~1, component with center
at 968.08 cm ' is marked A. Center of the 0,~1, band lies at 931.S8 cm '. Curve C: A part of the P branch of the 16@,
band 1~~2,.

Thus the fact that the quantities A and C are
functions of the vibrational state introduces a
convergence in the series through the term
proportional to J'. Moreover since X may take
on the values, 0, 1, , J—1, each line which
was formerly single will be split into a multiplet
of J components. The spacing of the lines in a
multiplet will be quadratic. Since, as has been
pointed out, the A and C depend upon whether
the superscript is s or a, the convergence and
the multiplet spacing of the complementary
vibrational band 0 ~1, may be very different
from that of the band 0.—+1,. The intensities
of lines in a multiplet are interesting. Because of
the proton spin, when K is a multiple of three
the line in question is enhanced by the factor
two. The state where 4=0, J is even and the
vibration superscript is s does not exist and

consequently lines involving a transition to it
are absent. Likewise, states where X=O, J is
odd and the superscript is a do not occur.

The bands which have been chosen for the
present investigation are the long wave parallel
bands corresponding to the following changes in

the vibrational quantum number V3, 0,—+1„
0 ~1, and 1,—+2,. The first two bands lie at
about 10@while the third has its center at about
16@.The next section describes the experimental
procedure and results, and shows that the ob-

served lines may be adequately represented by
means of a formula of the type of Eq. (3). In the
last section an attempt is made to calculate

(Az —Az') and (C& —Cz') theoretically.

EXPERIMENTAL~

The spectrometer employed for these observa-

tions has already been described. ' For the 10'
~ During the spring of 1936, Dr. M. V. Migeotte working

in this laboratory mapped a part of the positive branch of

band an absorption cell 12 cm long with KBr
windows was found convenient. The gas pressures
ranged from 2 to 5 cm. The resolving power
was about 1000 with the slit widths used (about
0.45 mm, corresponding to 0.35 cm '). For the
weaker 16' band, a cell having an absorption
path of two meters was available. Because of its
small aperture much wider slits (about 0.9 mm)
were necessary, and the resolving power was
somewhat less.

The results are shown in Fig. 1. The upper
curve is the double 10@band, its high frequency
component, namely 0,—+1„being indicated with
A. The lower curve is the negative or I' branch of
the 16' band (1,~2, transition). It is consider-
ably obstructed by many water lines. The posi-
tive or R branch of this band is not accessible on
account of the strong absorption of atmospheric
CO2. The numbers below the lines in the figure
are the initial Jvalues, and those above the lines
are the X values. The line frequencies, measured
in wave numbers reduced to vacuum, are given
in Table I.

A study of Fig. 1 reveals that the 10' band
possesses all the qualitative features predicted
by Eq. (3). The lines of this parallel type band
are clearly multiple and the multiplet spacing is
very different for the band 0,—+1„where it is
large, and for the band 0,~1, where it is so
small as to be observable only in the lines of
higher ordinal number. The enhancement of the
lines where Z is a multiple of three is also clear,
but the absence of half of the lines where %=0 is
less apparent since the resolution of the spec-

the 10' band, and was able to resolve the fine structure of a
number of the lines. His results were in substantial agree-
ment with those we have obtained. We wish to acknowledge
his priority in resolving this portion of the band, and to
thank him for allowing us to examine his measurements.

J. D. Hardy, Phys. Rev. 38, 2162 (1931).
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TRANSITION J
R BRANCH

"vac

I BRANCH

~vac

Og —&is

Op-+2a

1O—p2s

5 —+6 3
4

4~5 3
3~4 1

2
2-+3 0, 1

5~6
4 p5
3~4
1~2

2 —+1 0, 1
3~2 1
4 —+3 0,1

2

1053.11 2 ~1
1051.42 3 ~2
1032.05
1013.06 4 ~3
1012.47
992.55

6 —+5

1084.59 1 p0
1065.49 3 -+2
1046.34 4 p3
1007.51 5 p4

9~8

10—+9

590.32 5 -+4
571.41
553.96
551.93

O, i
1
2

0,1
2
3
1
2
3
4

0,1
2
3
4
5

892.05
872.52
871.70
853.66
852.70
851.30
834.73
833.96
832.61
830.60
816.48
815.55
814.13
812.53
809.68

948.21
908.15
887.93
867.80
783.39
782.75
782.14
763.55
762.87
761.35

536.14
534.74
531.99
528.49
515.38

trometer is not sufficient to distinguish between
the lines E=O and %=1. However, a study of
the positions of the lines shows without question
that the theoretically predicted missing lines are
indeed absent. Specifically, the separation be-
tween the line E=2 and the first line of the
multiplet, which is either the single line %=1 or
the merged line of E=0 and K= 1, is systemati-
cally larger in the latter case.

The quantitative treatment of the data is not
difficult. It is desired to show (a) whether the
energy levels may be expressed in the form given
by Eq. (1), and (b) to evaluate the constants
Ay', Ay, Cy' and Cy . The first step is to elimi-
nate the centrifugal distortion term F(JX).
This may be done by subtracting the numerical
values given by formula (2) from the observed
line positions of the positive branch and adding
them to the line positions of the negative branch.
One thus obtains lines corresponding to a ficti-
tious molecule which possesses a vibration rota-
tion energy expression in which the centrifugal
distortion term F(JX) has been omitted. The
second step is to use the combination relation to
obtain the difference in energy between two
states of the molecule having the same vibra-
tional excitation, 1, or 1„ the same X but with
values of J differing by two units. From these

TABLE I. Observed positions of lines in the bands at 10'
and id@.

TABLE II. Values of constants 21.

J
5~6, 5~4

4~5, 4~3
3~4, 3~2

2~3 2~1

3

3
1
2

0, 1

2A Ip

20.111
20.121
20.120
20.113
20.137
20.116

5~6, 5~4
4~5, 4~3
3~4, 3~2
1~2, 1~0

2A 14

19.780
19.772
19.773
19.773

Average 19.774

Average 20.120

Finally the centers of each of the three bands
may be located with considerable precision. The
interval between the ground levels 0, and 0, is
taken from observations of Wright and Randall. '

Wp'/he =0,
Wp /he=0. 66,
Wt'/hc =932.24,
Wt'/hc =968.08,
W, '/hc = 1597.4.

' N. Wright and H. M. Randall, Phys. Rev. 44, 391
(1933).

2At' or 2At~ are found by dividing by (27+1).
The results of this procedure are shown in
Table II. Note that in the case of the band
0,~1„which determines 2A1, the multiplet
spacing is so small that up to J=6 the lines are
observed as single. It is seen that the various
determinations of 2A1' and 2A&' are quite con-
sistent although the last figure in the average
values is no doubt meaningless.

In a similar way the combination relations
may be used to determine the 2Ap' and 2Ap
these are given in Table III.

The spacings of the lines composing a given
multiplet furnish the means of determining such
quantities as (Ct' —Cp At +Ap ). The pro-
cedure of course is to divide by 2%+1 the
interval between two lines having the same J
but with E values differing by unity. The
results appear in Table IV.

For the 16' band which corresponds to the
vibrational transition 1 ~2„ it is not possible to
use combination relations since only one branch
could be measured experimentally. However,
since the energies of the 1 levels are known,
those of the 2, levels may be found. From them
the following numerical values are obtained:

2A 2' =20.36,
C2~ —Ci —A2'+A 1 = —0.50.
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TABLE I I I. Values of constants A0.

2A Os 2AO'

pair resulting from the double minimum. From
Eq. (1), this separation, Av, is given by

6~5, 4~5
5~4, 3~4

4~3, 2~3

3
1
2

0, 1

19.876
19.873
19.884
19.877

5~4, 3~4
3~2 1~2

19.887
19.890

Average 19.888

Average 19.877

DISCUSSION

In considering the interaction between vibra-
tion and rotation it is best to divide the effects
into two classes: (a) the effects which are inde-
pendent of the double minimum nature of the
potential energy, and (b) effects which may be
attributed solely to the double minimum poten-
tial. Of these, the former will determine the
average values of A and C (averaged over the
two levels caused by the double minimum), that
is, o(Av'+Av') and o(Cv'+Cv'). The latter will

fix the interval between the two levels of any

It will appear in the next section that certain
combinations of A and C are susceptible of
theoretical estimation. For convenience we list
these below. The data do not seem to warrant
the retention of more than two significant
figures.

A- —A = —000
A)' —A g' ———0.17,
(Cx —Co*—Ag +Ao') (Cl' Co —Ai +Ao )

=0.23—(Cg' —Cg') —(A, —'A g*).

In the next section it will be shown that there
are theoretical arguments for supposing that
both A p

—A p and Cp —Cp' are small. Experi-
mentally Ap —Ap' is indeed small and it is safe
to conclude that Cp' —Cp' is also negligible.
Hence the approximation in the last equation is
probably quite good and C& —C&'=+0,06.

The experimental data and their analysis
appear to be very satisfactory. The consistency
shown in Tables II, III, and IV demonstrates
that these vibration rotation energy levels of
the ammonia molecule may be expressed by a
formula of the type of Eq. (1). Moreover the
qualitative predictions regarding the effect of
centrifugal forces upon the rotational constants
A and C are verified since A ~' —A ~' is observed
to be negative, whereas C~ —C~' is positive.

av/ac = (Wv' —Wv') /&c

+(Av' —Av')(J'+ J—K')+(Cv' —Cv')K '

(a) The methods of treating the vibration-
rotation interactions which are independent of
the double minimum potential are well known
and, as already stated, have been applied in
detail to the pyramidal molecule XY3 by Shaffer. '
They consist in developing the Wilson and
Howard form of the Hamiltonian in a series of
approximations and of treating each term by.
perturbation theory. This procedure does not
distinguish between the levels s and a and
consequently will describe the average values of
the A and C for these levels. Shaffer finds,

essentially,

—,'(Av'+Av') =A, —g n;(V, +-',d;),
—,'(Cv'+Cv') = C.—Z v, (&,+o&;)

The subscript i ranges over all the normal
frequencies and the V, are the corresponding
quantum numbers. The quantities o.; and y; are
functions of the masses, the normal frequencies
and of those anharmonic terms in the potential
which are cubic in the normal coordinates. There
are eight of these unknown cubic constants and
it is thus evident that the fine structures of at
least eight of the ammonia bands must be
measured before this part of the problem can be
solved in detail. Before turning our attention to
(b) we may remark that the average values of
A~ and C& depend essentially upon the potential
function in the neighborhood of the equilibrium
configuration, that is upon the region where the
wave function is large. On the other hand, the
doublet separation is determined by the behavior
of the potential near the barrier. A study of
the doublet separation is thus capable of furnish-
ing information about the molecule at points
which are distant from the equilibrium con-
figuration.

(b) Since the Hamiltonian function proposed
by Wilson and Howard is exact, it might furnish
'a starting point for the calculation of Ay' —Ay
and C& —C&'. It is very complicated however
and the particular series development used in (a)
would probably not be applicable here. Certain
approximations may be made which greatly
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simplify the work and which appear to be well

justified physically. The principal assumption is
that the normal coordinate x3 associated with
the band v3 at 10@, leads directly over the lowest
part of the pass connecting the two equivalent
equilibrium configurations of the molecule. This
assumption must be very nearly true since it is
known experimentally that the doublet separa-
tions for the excited states of the vibrations vi, v2

and v4 differ only slightly, if at all, from the
doublet separation 0.66 cm —' of the ground state.
On the other hand, the doublet separation of the
first excited state of u3, is 35.9 cm ', about 50
times that of the ground state. We may conclude
that the motions associated with x~, x2 and x4 do
not lead from one equilibrium configuration to
the other except by way of a very high potential
barrier. This is also a plausible conclusion when
the act:ual motions associated with these coordi-
nates are considered.

Since the subject of our study is the doublet
separation and since this depends almost wholly
upon x3 we shall ignore the remaining coordi-
nates. The actual Hamiltonian will be approxi-
mated by one which is a functiori of x3 alone,
the other coordinates being given their equi-
librium values, namely zero. The normal coordi-
nate x3 describes a deformation in which the
hydrogen atoms move symmetrically with re-
spect to the axis of the pyramid, and in first
approximation the N —H bond distances are
unchanged. Thus, whatever the value of x3, the
molecule retains its axial symmetry. The mo-
ments of inertia are of course functions of x3 but
the products of inertia are always zero. Under
these assumptions, the Hamiltonian takes on a
very simple form. We express it in terms of y
rather than of x3 where y is the actual displace-
ment of each hydrogen relative to the nitrogen
atom, taken, however, along the path of the
normal coordinate x3.

II= (P '+Pp')/2Ig+P '/2Ic+ p'/2IJ, + V.

P, Pp and P~ are the components of the total
angular momentum of the system. The combina-
tions occurring here may be diagonalized at once
leading to a Hamiltonian which contains only
the vibrational coordinate y and its conjugate
momentum p.
II=p'/2@+ V+5'(J'+J K')/2Iz+h'K'/2—Ic.

The origin for the coordinate y is chosen to
be the equatorial plane through the nitrogen
atom, that is, at the center of the barrier sepa-
rating the two equilibrium positions for the
hydrogens. y& is the first root of U —E=0.

In the present calculation U must be increased
by b U and E by bE, the latter to take account of

TABLE IV. Values of constants.

K Cz& —CP& —A 1& +A 0& J Z C1+ —Co& —At~+A po

5~4

3~2
5~6
3~4

—0.300—0.213—0.266—0.240—0.273—0.256—0.243—0.270—0.251—0.266—0.258—0.210

Average —0,254

10~9 7
8

9~8 7
6

—0.020—0.024—0.016—0,024

Average —0.021

&o D. M. Dennison and G. F.. Uhlenbeck, Phys. Rev. 41,
313 (1932),

It will prove convenient to rearrange the
terms in the Hamiltonian; let,

II=p'/2 p+ V+ 8 V+ W„o

where W~o is a constant equal to A,,(J'+J—K')
+CA' and

h V Ao( Jo+J Ko) (1/2I~ 1/2I„o)
+fPKo(1/2Ic —1/2Ic') ~

The problem has now been brought to such a
form that it differs from the usual double mini-
mum problem in only two respects, (1) the
potential is increased by 8V and (2) the energy
constant of the whole system is increased by W~'.
This last point will, of course, have no effect
upon the quantity to. be calculated, namely the
splitting of the levels caused by the double
minimum potential.

This splitting has been calculated by Dennison
and Uhlenbeck" using the W-K-8 approxi-
mation.

They find
6= 2k'/A'

where
Vl

A'=exp (2/fi) [2p(V E)]&dy —.
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the fact that the average of the levels's and a
may be slightly shifted by bU. A' can be de-
veloped since 8V is small. Thus 6+56=2hv/A'
aIld

tI'Jl g+Sgg

A~=exp (2/h)J [2p(V+5 V—E—6E]'dy
0

9J 1

= exp(2/h) [2p( V—E)]~dy
Jo

p(s v sE) [—2&(v E)7—'*dy—
0

+5[2p(~ v—~E)7'

The first term in this exponent gives 6 while
the next two determine bA. The third term may
be expected to be negligible in comparison with
the second since the integrand is so small in
the region y& to y&+by&. A numerical calculation
indicates that it contributes less than one per-
cent to bh and consequently we shall ignore it.
If we assume that bh is small, the exponential
may be developed" and we obtain,

flat
8k= —(2A/h) p(5V —bE)[2p(V E)7 '*dy-

~o

It does not appear to be possible to evaluate
this integral by any means other than numerical
quadrature. We have chosen to use for V the
double minimum potential proposed by Man-
ning. "

V/hc =a sech'(y/2 p) bsech'(y/2 p) .—

This function has the correct general form but
there is no reason to suppose that it is the best
function for describing the ammonia molecule.
However, it is well known that the splitting of
the levels is rather independent of the particular
form of the potential. The constants obtained
by Manning from the data for ammonia are

'1 The approximation of developing the exponential is
only justi6ed as long as the integral occurring in the
exponent is small compared with unity. A substitution of
the numerical values to be obtained later shows that this
is true for the lines actually used in the analysis. For lines
of large ordinal numbers where the multiplet spacings are
correspondingly large, this will no longer be the case and
it is probable that the energy levels cannot be expressed in
the form of Eq. (1).

'2 M. F. Manning, J. Chem. Phys. 3, 136 (1935).

a = 66,551, b = 109,619 and p =0.04793(h/cp) '*.

The mean energies E are not given directly by
Manning but only the energy differences. A cal-
culation yields as the value for the first excited
state (E~'+E~')/2hc = —43,692.0.

The quantity bV may be found by writing
out the moments of inertia Ig and Ig. These
will be expressed first as functions of two vari-
ables, r, the distance between a hydrogen and
the nitrogen atom, and n, the angle between a
N —H bond and the equatorial plane through
the nitrogen.

Ig = [3m31/(3m+M) ]r' sin' a+-,'mr' cos' n
Iq =3rnr' cos' o..

The motion corresponding to the frequency v3

is, to a high degree of approximation, one in
which r remains constant and n alone varies.
The relationship between n and y is then,
a= cxoy/yp where yo is the distance along the arc
from the equatorial plane to the equilibrium
position and o.o is the equilibrium value of the
angle. From previous work' these are known to
be, 0.386)(10 cm and 21' 49.7', respectively.
Actually the assumption that r is a constant is
not quite justified and will be modified later.
It is very instructive, however, to carry out the
computation under this assumption and that
will be done first. bU is then determined as a
function of y and the only quantity not yet
discussed is bE. bE is the change in the average
position of the levels s and a caused by the
rotation. Since this change, for example the term
~(Av'+Av') —A„ is proportional to V+-'„ it is
evident that for the first excited state,

8E/hc =
2 [q (A i'+ A p) —

q (A 0*+A p~) 7
g (j2+J—K2) + 32[-', (g,'+ gg )

—-'( o'+ o')]K'

Introducing the observed values we obtain,

bE/hc =0 05(I'+J K').—0.16K'.—

The contribution due to bE turns out to be
85/he=0. 007(I'+I) —0.029K', which is con-
siderably smaller than that due to bU.

The numerical evaluation of the integral deter-
mining bh for the first excited state is not
difficult. Near the point y=y~ the integrand
becomes infinite but this portion could be ob-
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tained through an exact integration where, how-
ever, the potential was approximated by a
straight line. Multiplying the integral by the
observed splitting in the absence of rotational
interaction, namely 6/bc=35. 8 we find,

8A/bc = —0.105(Jo+J)+0.194K'.

It will be recalled that the observed change of
splitting is

(bd, /hc), b, = —0.17(J'+J)+0.23K'

Clearly this first theoretical estimate of 5A is
only moderately satisfactory. It was based upon
the assumption that the distance r between each
hydrogen and the nitrogen atom remains con-
stant throughout the motion. This point may
now be reexamined. The normal coordinate
treatment of the problem yields not only the
frequencies but also the motion associated with
each frequency. Thus it is easy to show from
the normal frequency determinant that, in the
motion v3, the hydrogen atoms oscillate along
lines which make an angle Pp with the symmetry
axis of the pyramid where

cot Pp ——43 (m)I, o
—b) /c.

The quantities b and c are potential constants
the latest values of which are given in reference 1.
A substitution yields Pp ——16' 7.2'. The lines
along which the hydrogens would travel under
the assumption that r remains constant are
easily found from the known equilibrium con-
figuration of the ammonia molecule. These lines
make an angle +0=21'49.7' with the axis of
the pyramid.

Thus as the hydrogen atoms move toward the
equatorial plane through the nitrogen, the dis-
tance r decreases and at such a rate that the
angle between the line along which they move
and the line perpendicular to the N —H bond is
np —Pp ——5' 42.5'=0.10 radian. If this motion
were to continue from the equilibrium position
all the way to the equatorial plane r should be
set equal to

rpl 1 —0.10(no —n) ]—rpL1 —0.10no(1 —y/yp) g.

This last approximation depends upon the fact
that the distance along the actual path is very
nearly equal to the distance along the arc for
such a small angle np —Pp.

The spiral path postul'ated for, the hydrogen
particles has one unsatisfactory feature, namely
that it makes an inward cusp at the equatorial
plane. This may bc eliminated by adding a
further term to the expression for r; let,

r=rp[1 0—10.(np a—)+(0 05./np)(np o—.)'j—ro L1 —0.05uo+ 0 05ooo(y/yo)' P.

This function satisfies the condition imposed
by the normal coordinate treatment, namely
(dr/dn), =,=0.10, and has no cusp at the equa-
torial plane since (dr/dn) p=0. We are well
aware that very little reliance can be placed
upon this estimate for r. It must be emphasized
that the normal coordinate treatment can only
give information concerning the displacements
near the equilibrium configuration. Our function
contains this information and is otherwise merely
plausible.

The integral determining 8A may now be
recomputed. It yields the result,

(hA/hc)&h„= —0.162(J'+J)+0.222K'.

The agreement between (86),q„and (86)obs is
almost perfect and some remarks should be
made concerning its significance. The change in
the splitting of the levels is an eff'ect which
depends upon the potential energy function of
the molecule at some distance from the equi-
librium configuration, namely in the region near
the potential barrier. From the motion near the
equilibrium configuration we have estimated the
manner in which the molecule most easily passes
from one equilibrium position to the other, that
is, we have estimated the distance r as a function
of n. This estimate was admittedly very rough
but the fact that it leads to a correct value of bD,

indicates that it must be of the correct order of
magnitude.

The agreement may be interpreted as furnish-

ing information on the trustworthiness of the
potential constants which have been used. It will

be recalled that these were obtained' from esti-
mates of the normal frequencies of the ammonia
molecule and not, as in the usual procedure, from
the positions of the fundamental bands. This
latter method was employed by Slawsky and
Dennison and led to rather diff'erent values for
the constants. A substitution of the older con-



HARALD H. NIELSEN

stants yields the angle Po
——28'40' and thus

wouM predict that as the hydrogens approach
the equatorial plane,

' the distance r increases.
This result would have destroyed the agreement
between the calculated and observed separation
of the double minimum levels. One further
point may be noted. If the potential of the
arnrnonia molecule was of the valence type and
contained no cross product term between the
change in the valence angles and the change in
valence distance, the angle pp may be computed
readily and is 22' 1'. This also predicts an. in-
crease of r, although only a slight one, as the
hydrogens approach the plane and consequently

would not lead to the very satisfactory agreement
which we have obtained.

The change in the splitting of the ground level

may be calculated in a similar fashion. It will

be considerably smaller, partly because the
integral is smaller but principally because the
splitting itself 60/he=0. 66 is so small. We find

A —A '= —00011
Cp —Cp' =0.0005.

The first of these values was determined experi-
mentally and found to be Ap' —Ap'= —0.00~.
The agreement is satisfactory although not very
significant.
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The Vibration-Rotation Energies of Polyatomic Molecules
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The quantum-mechanical Hamiltonian function, II, for the general vibrating-rotating poly-
atomic molecule of N atoms has been expanded by the method of Wilson and Howard to second
order of approximation. It has been practicable to obtain solutions of the Schrodinger equation
(II—B)&=0 for asymmetric molecules, axially symmetric molecules and linear molecules.
Expressions for the anharmonic terms occurring in the vibration energy, the effective moments
of inertia, the amplitudes of the internal angular momentum of oscillation and the centrifugal
distortion coefficients are derived so that when the normal coordinates are known the vibration-
rotation energies of a polyatomic molecule may be calculated from the results given. Tetra-
hedrally symmetric rnolecules and models in which internal rotation occurs are regarded as
anomalous cases and a.re not treated.

I. INTRoDUcTIoN

ECENTLY a number of papers have appeared in which the form of the vibration-rotation
energies of certain polyatomic molecular models' have been derived to a second order of

approximation. The method followed has in each instance been equivalent to that delineated by
Kilson and Howard, although the details have varied slightly from case to case. The method consists
essentially in approximating by the method of the perturbation theory to three items, namely: the
energy of the atomic nuclei oscillating anharmonically about their positions of equilibrium in a set
of body-fixed coordinates; the eA'ective moments of inertia of the molecule regarded as a semi-rigid
rotator and the distortion of the molecular energies due to the centrifugal forces.

An inspection of the final results in these papers reveals that they are nearly always of the same
form. Thus, for example, the oscillational energy always consists of a set of terms linear in the

' A. Adel and D. M. Dennison, Phys. Rev. 43, 716 (1933);W. H. Shaffer and H. .H. Nielsen, Phys. Rev. 56, 188 (1939);
W. H. Shaffer, H. H. Nielsen, and L. H. Thomas, Phys. Rev. 56, 895 (1939); W. H. Shaffer, H. H. Nielsen, and L. H.
Thomas, Phys. Rev. 56, 1051 {1939);B. T. Darling and D. M. Dennison, Phys. Rev. SV, 128 (1940); Ta-You Wu, J,
Chem. Phys. 8, 489 (1940); S. Silver and W. H. Sha6er, J. Chem. Phys. 9, 599 (1941); W. H. Shaffer, J. Chem. Phys.
9, 607 (1941);W. H. Shaffer and A. H. Nielsen, J. Chem. Phys. 9, 847 (1941}.

2 E. B. Wilson, Jr., and J. B. Howard, J, Chem. Phys. 4, 262 (1936).


