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Observations on the curvature of the track of a meson before and after traversal of a known
amount of matter allow a determination of the mass of the particle. A discussion is presented of
the accuracy and advantages of this method of measuring mass, the principle of which is well
known but has so far been little used. In this connection the stopping power for fast particles
has been computed on the basis of the experiments reported by R. R. Wilson in the preceding
paper. Discussion of the formula used is contained in the appendix. Curves are presented for the
dependence of range on energy and momentum for swift hydrogen and helium nuclei as well as
for mesons. The method of momentum loss is illustrated and values are obtained for the mass of
the meson from measurements published by Anderson and Neddermeyer in 1934. The evidence
available from these mass determinations and those published by other authors shows the
necessity for many more mass determinations before one can decide whether there is a distri-

bution of masses of the meson or not.

INTRODUCTION

EASUREMENT of the range of a meson

and of the curvature of its track by a
magnetic field, i.e., its momentum, are well
known to suffice for a determination of its mass.
For this purpose use is made of the theoretical
relation between initial momentum and total
path length. In a variant of this method one
applies the differential form of the momentum-
distance relation, and measures the change in
magnetic rigidity of the particle over a small
portion of its path. This procedure has been
employed by several observers, and Corson and
Brode! have discussed it in some detail.

The longer is the segment of path length con-
sidered, and the higher is the atomic number of
the traversed material, the more surely one can
exclude the possibility that the particle in ques-
tion is an electron. But then one can no longer
directly apply the differential expression for the
rate of change of momentum with distance.
Still it is in principle possible also in this case to
determine the mass of the particle, as Nedder-
meyer and Anderson? remark in a recent review
of methods of measuring this quantity. From an
experimental point of view it is only necessary
to observe the curvature before and after
traversal of a plate of known thickness. How-

( 13%) R. Corson and R. B. Brode, Phys. Rev. 53, 776
1938).

28S. H. Neddermeyer and C. D. Anderson, Rev. Mod.
Phys. 11, 200 (1939).

ever the procedure in question has been but
slightly used.

This way of determining mass by the method
of momentum loss appears to deserve further
emphasis for three reasons:

(a) The necessary measurements of curvature
of track in a magnetic field and of thickness of
material traversed are among the most direct in
the whole field of cosmic-ray research. Difficult
determinations of the density of ionization along
the track are avoided.

(b) Accuracy in this method, as in almost all
other methods of determining the mass, requires
that the velocity of the meson be not close to
the speed of light. In the acceptable range of
velocities, however, practically every meson
whose curvature can be measured before and
after penetration of the plate will permit an
evaluation of its mass. Contrast this attainable
abundance of data with the rarity of those
collisions of a meson with an electron in which
the energy transfer is sufficient to allow a
determination of mass from the laws of con-
servation of momentum and energy.

(c) The law for the stopping power of matter
for fast particles has an exceedingly reliable
theoretical basis.?

The question whether all mesons have the
same mass is so important that it appears worth
while to give a qualitative discussion of the

3 See in this connection E. J. Williams, Phys. Rev. 45,
729 (1934).
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MASS OF THE MESON

resolving power of the ‘“method of momentum
loss.” If the energy of the meson is large in
comparison with its rest energy, the loss of
energy, AE, in a given thickness of material will
be practically independent of energy, according
to the theory of stopping power. In the rela-
tivistic relation between losses of energy and
momentum, AE~uwvdp, the velocity v will be
essentially a constant, the speed of light. We will
therefore find fast particles losing momentum of
the same order of magnitude whatever be their
mass. Consequently the resolving power is poor
for mesons of relativistic velocity (momentum
>100 Mev/c; Hp>4X 105 gauss cm).

This insensitivity of the momentum loss at
relativistic velocities to the mass of the particle
conversely makes it possible to test the law of
stopping even for mesons whose precise masses
are unknown. It is only necessary that their
energies be sufficiently great: Hp>10°® gauss cm.
Measurements under this condition of the change
in curvature on traversal of a plate were made by
J. G. Wilson* and were found to verify a theo-
retical expression for the absolute rate of loss of
energy not very different from (1) below.

For non-relativistic speeds the rate of energy
loss per unit of distance may be written very
roughly in the form

dE/dx~constant/v2

From this it follows that the mass, u, of the
particle is given by

u~p(dp/const. dx)?.

The percentage error in u will be given by the
sum of (a) the percentage error in the mo-
mentum, p, or corresponding magnetic rigidity,
Hp, of the particle; (b) one-third the percentage
error in the measurement of the momentum loss
(if that loss is small compared to ) ; (c) one-third
the percentage error in the thickness of the
stopping material; (d) one-third the percentage
error in the theoretical constant of the stopping
power formula.

These considerations on the whole favor the
“method of momentum loss for non-relativistic
velocities.

4 J. G. Wilson, Proc. Roy. Soc. A172, 517 (1939).
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RANGE-MOMENTUM RELATION

A more complete treatment of the method in
question requires a discussion of the law of
stopping power. Fortunately, radiative losses can
be neglected for mesons of much greater than
electronic mass as for protons and alpha-par-
ticles, even for the highest velocities (v=0.9¢)
and greatest atomic numbers (Pb; Z=382) which
will be of interest. The so-called ‘‘radiation
unit” or ‘“‘unit length” of the radiative theory
will have a value for mesons greater than that
for electrons (0.4 cm in the case of Pb) approxi-
mately in the ratio of the squares of the two
masses. Thus the mean energy dE, lost in the
form of radiation by a meson of 150-Mev energy
and of mass 200 m traversing 1 cm of lead will
be given by®

dE,/E~dE,/150 Mev~ (1 cm) In2/(200)20.4 cm,

whence dE,~0.01 Mev. This value is trifling in
comparison with the loss of ~10 Mev by ioniza-
tion, which alone therefore need be considered.

According to the theory of stopping power,
the rate of dissipation of energy through ioniza-
tion and excitation by a fast particle of velocity
v and of not too great charge number, 2, will be
given by the relation,®

dE/dx= (4w Ne'z?/mv?)
X {In[2mv2/I(1 —v2/c?) ]— (1*/c¥)}. (1)

Here N represents the number of electrons per
cm? of stopping material, I is a certain mean
energy of excitation for these electrons and m is
the electronic mass. For atomic hydrogen,”
I=1.103(me*/2k2) ; for helium,® I =3.19(me*/2%%).
For air (Z=17.22), Livingston and Bethe?® deter-
mined the mean excitation energy from the
observed stopping power : I =5.92(me!/2%?%). The
experiments of R. R. Wilson reported in the
preceding paper permit a similar evaluation of
the mean excitation energy for aluminum :°
I=11.02(me*/2#?). Elements of high atomic num-

8 For a more detailed treatment of the radiation loss,
see H. J. Bhabha, Proc. Roy. Soc. A164, 257 (1938).

6 For literature and discussion see Appendix.

7 H. A. Bethe, Ann. d. Physik 5, 325 (1930).

8 E. J. Williams, Proc. Camb. Phil. Soc. 33, 179 (1937).

® M. S. Livingston and H. A. Bethe, Rev. Mod. Phys.
9, 267 (1937).

10 R, R. Wilson, Phys. Rev. 60, 749 (1941) and discussion
at end of Wilson’s paper by J. A. Wheeler.
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FiG. 1. Calculated relation between range and momentum for hydrogen and helium nuclei and for mesons. For the
stopping materials computations were based on values of the mean ionization energy mentioned in the text. For Pb and
Al the ionization energy was determined from Bloch’s formula with the constant of proportionality based on the data of
R. R. Wilson in the preceding paper. To interpolate for the stopping power of a compound substance such as PbCl; note
that the logarithm of the effective atomic number is (82 1n82-+34 1n17)/(82+4-34). Given that a meson (z=1) with
a given magnetic rigidity, Hp, of 528,000 gauss cm passes through a 3.70-cm lead plate, corresponding to a range num-
ber of 9.92, and emerges with a rigidity of 238,000 gauss cm. We compute the change in Hp and plot the point 4
in the upper diagram. The secant CD must be parallel to O4 but the positions of C and D individually remain to be found.
A large scale transparent model is constructed of the template in the lower right corner of the figure. Lines SC and SD
are drawn such that D'B’ : C’'B’=DB : CB=1528,000 gauss cm: 238,000 gauss cm.=2.22. With its rulings parallel to 04
and with corresponding points C'D’ or CD, etc., kept on the curve for lead, the template is moved until the prolongation
B’ of C'D’ or B of CD, etc., lies on the line QR extended. The graphical solution so found is indicated by the points CD
on the range curve. From the location of D it is seen that 1.49 = (m/u)(Hp:/1704) =310 (m/u). This result gives u=209 m
for the mass of the meson as determined from the given observations.

For atoms to which the Thomas-Fermi model
applies this formula gives

In(2mc?/I)=11.391—InZ.

ber are most effective in distinguishing mesons
from electrons in the method of momentum loss,
but for these no direct determination of the
mean excitation energy is available. Fortunately

()

(a) the stopping power is not very sensitive to
the value of I and (b) Bloch’s theory of excitation
energies' permits a satisfactory estimate of this
quantity. According to Bloch, the mean excita-
tion energy for atoms containing many electrons
is proportional to the atomic number Z. For the
constant of proportionality he gave the value
I/Z=0.96(me!/2%) =13.1 ev on the basis of the
experiments available in 1933, but the data re-
ported in the preceding paper by Wilson lead to
a more reliable estimate of Bloch’s constant :1°

I/Z=0.85(me*/212) =11.5 ev.
1 F, Bloch, Zeits. f. Physik 81, 363 (1933).

Let us now state the connection between
range and energy or momentum in the form
which is convenient for general use and at the
same time suited for determining the mass of
the meson. The range of a particle of mass u and
charge number 2 may be considered to depend on
any one of the following quantities:

kinetic energy: E=puc*(coshg—1)
momentum : p=pc sinhf
magnetic rigidity : Hp=u(c?/ze) sinhf
velocity : v=c tanhé.

©)

Better than any of these quantities for inde-
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F1c. 2. Calculated relation between range and energy for hydrogen and helium nuclei and for mesons. The point x

corresponds to an alpha-particle with the following properties:

X (7295/4) X (26.97/13 X0.601 cm?/g) =29 g/cm? or 10.7 cm.

pendent variables, however, are the dimension-
less numbers sinh6 and coshé, used in Figs. 1
and 2, respectively. If the dependent variable or
range is expressed in g/cm? it will fluctuate in an
irregular way from element to element because
of the lack of any precise relation between atomic
number Z, and atomic weight, 4. For this
reason let us express the range in terms of
a dimensionless ‘‘range number,” defined as
follows:

‘‘range number’’ =47 - Avogadro’s number
-(e2/mc?)?-(Z/A) - (range in g/cm?)
=(0.601 cm?/g)-(Z/A) - (range in g/cm?).

(4)

In the case of CH,, the expression Z/4 will
have the value (6+4)/(1244). In the case of
dry air at 15°C, at a pressure of 76X13.6X980
dynes/cm?, division of the range by 2714 cm
gives the range number. For lead of density
11.3 g/cm? range number equals thickness multi-
plied by 2.68 cm™.

In terms of the ‘‘range number,’

’

relation (1)

energy =0.2X3727 =745 Mev; range in aluminum = 0.0046

takes the form (z2m/u) - (range number) =

f" d(coshf+cosh—10—2)

In(2mc?/I)42 In sinh®—tanh?0
Numerical integration gives the curves'? drawn
in Figs. 1 and 2. The constant of integration was
fixed in the case of air so as to give a range of
238 cm for 15 Mev protons;? it was estimated in
the case of the other substances listed. Negligible
on the scale of the figures is the slight dependence
of the constant of integration in (5) upon the
charge of the primary, a dependence which
arises principally from the phenomenon of cap-
ture and loss of electrons at the very end of the
range. Of course, the constant of integration has
no effect on the determination of the mass of the
meson by the method of momentum-loss.

Figure 1 illustrates how measurements of
magnetic rigidity before and after a meson

)

2 As long as they last, large photostats of these curves
may be obtained from the Secretary, Department of
Physics, Princeton University. We are indebted to Mr.
Ralph Thompson for much help with the numerical com-
putations.
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TABLE 1. Columns 1, 2 and 3 give measurements of Anderson and Neddermeyer on single cosmic-ray particles. On the pre-
liminary assumption that each particle is a meson, the range-momentum relation allows as described in Fig. 1 a computation
of the ratio (u/m) of unknown mass to electronic mass. Knowledge of the mass and momentum after traversal of the lead plate
suffices to determine the factor 1/8%*= (velocity of light/velocity of particle)? which is approximately proportional to the ioniza-
tion. It is seen that this tonization would be exceedingly large for the last three particles if they were mesons. However, the ob-
served rate of ionization, according to a kind personal communication of Anderson, is certainly not so great for these pariicles
as twice the rate for a fast electron. Therefore the last three particles cannot be mesons of the computed masses. In the absence of
information about the tonization of the other particles, we have calculated the ‘‘energy decrement number,” I, to test whether it is
reasonable to assume that these particles are elecirons which have experienced radiative losses. According to theory, all values of
I between 0 and 1 are equally probable for electrons. Consistently small values of I are therefore an argument against attribu-
ting electronic character to a group of particles. The angles 6 elec. and 6 meson are defined in the text. Arguments based on
scattering indicate that no one of the last five tracks, even if it represents a meson, will permit a mass determination.

1 2 3 4 5 6 7 8 9 10 11 12 13

THICK- MoMENTUM ANALYSIS IF ELECTRON ANLAYSIS IF MESON

NESS OF cp1 ch2 Ee 6 ELEC. cAp RANGE Hp: " 1 9§ MESON
LEAD (1IN MEvV) (MEeV) t 1 (DEGREES) | (MEV) NUMBER Hp: m B (DEGREES)
1.35 113 86 102 3.1 0.00 33 27 3.6 1.32 150 1.8 44
1.1 220 160 173 2.5 0.01 16 60 3.0 1.33 590 4.6 35
1.1 200 - 125 138 2.5 0.02 21 75 3.0 1.60 560 6.2 52
1.1 240 220 233 2.5 0.00 12 (20) 3.0 1.09 (310) 1.5 14
1.1 38 6 19 2.5 0.07 430 32 3.0 6.3 [45] 15.7 1700
0.7 63 23 | 31 1.6 . 0.27 90 40 1.9 2.7 [110] 6.9 238
1.0 140 - 20 32 2.3 0.34 123 120 2.7 7.0 [390] 101 1230
1.0 106 26 38 2.3 0.20 95 80 2.7 4.1 [250] 26 475
1.5 110 12 30 3.5 0.09 250 98 4.0 9.2 [220] 88 2350

penetrates a plate of known thickness allow a the more reliable where the fractional loss in
determination of the mass of the meson. momentum has been the greater.

From the data alone it is not possible to tell
DisTiNcTION BETWEEN ELECTRONS AND MESONS  which tracks represent mesons and which repre-
sent electrons. In fact two possible explanations
exist for the change in momentum in any given
instance. Either the loss is due to a high rate of
ionization, in which case the particle must be
moving slowly, and the quotient (momentum/
velocity) will be large and will indicate a meson;
or the loss is due to radiation, which is only
possible if the mass is comparable to that of an
electron. There are in principle, however, three
qualitative means to distinguish between elec-
trons and mesons: (a) ionization, (b) scattering,
and (c) the theory of radiation.

(a) A meson emerging from the lead plate into
the cloud chamber will ionize more than an
electron of the same momentum. The relative
rate of ionization will be given approximately
by the ratio ¢®/v?=1+4(uc?/cp)? which has been
computed in column 12 of Table I on the assump-
tion that the particles are mesons. The calcu-
lated rates of ionization are on the whole rather

. different from those to be expected for electrons,

18 C. C. Anderson and S. H. Neddermeyer, International %md m. fact Dr. Anderson informs us that an
Conference on Physics (London, 1934, Table II, p. 179).  inspection of the last three tracks shows that

In 1934 Anderson and Neddermeyer® reported
measurements on the momentum loss of single
cosmic-ray particles which had traversed ~1 cm
of lead without undergoing multiplication. Their
observations are reproduced in the first three
columns of Table I. As the cascade theory and
the work of these and other physicists have
since emphasized, many particles of this char-
acter at sea level are mesons. On the preliminary
assumption that all of the particles are mesons,
the entries in column 8 of Table I will represent
loss of momentum by ionization alone. Conse-
quently the methods outlined in the caption of
Fig. 1 will permit a determination of the mass of
each particle. The values in columns 8, 9, and 10
of the table were used in the graphical calcu-
lations. The computed ratio of the mass of each
particle to that of the electron is given in
column 11. No estimate of probable error has
been attempted. Those values will generally be
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this criterion excludes the possibility that these
tracks represent mesons. It will be noted that
this test requires only a qualitative knowledge of
the ionization, in contrast to those methods of
determining the meson mass which depend on an
accurate count of numbers of ions.

(b) Particles of the same momentum will
suffer the more scattering the greater is their
mass. Following the treatment of multiple scat-
tering given by Williams,* we may express the
arithmetic mean projected angle of deflection due
to multiple scattering in lead approximately in
the form

6 in degrees= (2500 degrees Mev/pc). )
(thickness in cm) (14 [uc?/pc]?)?.

Here there is some ambiguity as to the proper
mean value to insert for the momentum, p,
which changes in traversing the plate. The
scattering is greatest when the particle is travel-
ing most slowly. We have used for p in (6) the
momentum after traversal of the plate in order
to obtain a rough estimate of the order of magni-
tude of the scattering to be expected for each of
the tracks in Table I. As columns 7 and 13 of
this table show, there is not sufficient difference
in the expected scattering for the first four
particles to distinguish between electrons [u=m
in Eq. (6)] and mesons (u from column 11 of
table). For the last five tracks the computed
scattering is so great that the calculation itself
has no meaning. It is clear that these tracks will
give no information about the mass of mesons.

Generalizing the foregoing conclusion, we may
say that it is important to avoid large scattering
in determining the mass of the meson by the
method of momentum loss. This condition will
be satisfied if the momentum of the particle
after traversal of the plate is not too small. On
the other hand, the momentum afterward must
be considerably less than that before traversal if
the measurement of the momentum change is to
be accurate. Both conditions will be abundantly
fulfilled if the primary momentum is of the
order of 100 Mev and the momentum decreases
in the plate by a factor of the order of 2.

(c) In addition to ionization and scattering as
criteria in selecting acceptable tracks, we have in

KE, J. Williams, Phys. Rev. 55, 303 (1940).
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the theory of radiation a means to analyze the
possibility that the particles in Table I are fast
electrons. If this is the case, they will have lost
energy by ionization at a rate of ~12 Mev per cm
of lead. We can therefore correct the values, cps,
of the final energy to obtain the value, E,, which
would have been observed if radiative losses
alone occurred. Column 4 of the table gives E,
and column 5 shows the thickness, ¢, of the plate
as measured in terms of the so-called ‘‘unit-
length’ of the theory of radiation. There is to
be expected a statistical connection between E,
and ¢ According to Bethe and Heitler'® the
chance, dN, that an electron emerges from the
plate with a final energy E; (corrected for
ionization losses) is given by the expression

dN=E"dE(InE/E;)*/(t—1))! (7

Let 'us measure the loss of energy through radia-
tion by an ‘‘energy decrement number,” I,

defined as follows:
I= [ ymexp(—p)ay/a-1)!
=I(InE/E;, t—1). (8)

This quantity will be zero if there is no energy
loss, unity if the particle loses all of its energy
by radiation. It is a purely experimental quantity
and is easily computed, for extensive tables of
the function I(z, p) are available.’® In terms of
the ‘“‘energy decrement number,” relation (6)
takes a very simple form:

dN=dI. 9

In words, all values of the energy decrement
number between zero and unity are equally probable,
whatever be the original energy of the electron
or the thickness of the plate which it penetrates.

The energy decrement number, I, for each
particle in Table I has been computed according
to the definition in Eq. (7). The entries in column
6 show that the values of I are on the whole
quite small, particularly for the first four tracks.
In the absence of other information, consistently
small values of I will be an argument against
attributing electronic character to a group of
particles.

In(E/E¢)

15 H. Bethe and W. Heitler, Proc. Roy. Soc. A146,
83 (1934).
18 K. Pearson,

Tables of the Incomplete T'-Function
(London, 1922).
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TaBLE I1. Previously published data on the mass of the meson. The methods used for the determination are: curvature in
magnetic field and ionization density (c and 1), curvature and range (¢ and r), change of curvature in a known amount of matter
(¢ and c), curvature and collision with an electron (c and e). The errors given for the momentum and the mass are those cal-
culated by the authors. The references are listed separately. Notes give additional information from original paper.

cp (1IN MEV) Mass (u/m) METHOD REF. ¢p (1IN MEV) Mass (u/m) METHOD REF.
1 33 220450 cand ¢ 1] 13 7.7 120430 cc 9,3
2 55 >430(<800) cand 7 1 Note: Curvature of track changes in the gas by 0.6
3 44 190460 cand ¢ 1 cm/cm. Observed length of 5 cm sets a lower limit for the
4 160430 cand ¢ range which gives according to (3) an upper limit of mass

34
Note: Values of 1, 3 and 4 are considered reliable; the
upper limit of u/m for particle 2 is set by a minimum range
equal to the observed length of track in the chamber, the
lower limit is estimated from the lower limit of ionization.

5 45 250 cand 7 2,3
Note: Mass value considered as ‘‘good.”
29 ~130 cand 7 4

Note: Value only approximate. Corson and Brode, (3),
calculate u/m =160 with a different method for evaluating
the ionization loss.

as 110 m.

14 22243—>150+3 180420 cc 10

Note: Particle loses momentum by penetrating 4.8 cm
of Pb; calculated by use of Bhabha’s relativistic formula
[Proc. Roy. Soc. A164, 255 (1938)].

15 11.640.2 17048 cand 7 10

Note: Radius of curvature is an average over range of
6.5 cm, therefore calculated mass is somewhat doubtful,
in spite of small margin of error given. No allowance made
for the scattering which is important at such a low velocity.

7 57 ~200 cand ¢ 5
Note: Value “probable,” but not very good.
8 16.5 <200 candr 14,3

Note: Observable range was 18 cm, track out of focus,
so that ionization density not measurable; if it was 10
times normal, mass would be 125.

9 16.5 ~350 cand 7 6,3
Note: Observed by (6), calculated by (3); according to
private communication from Anderson curvature is aver-
age value over whole length of track (4 cm), partlcle be-

sides probably scattered, computed value has ‘“not much
meaning.”’
10 =42 <1000 cand r 6,3

Note: The same critical remark a fortiori, as the partlcle
does not stop in the chamber (range >5 cm) and the Hp
value given is only an upper limit.

candr 7,8

1 52 220435
Note: Considered by Anderson as reliable measurement.
12 180 <65 cand e 8

Note: Value calculated from possible collision with an
atomic electron which coming out of the plate shows an
energy of 16 Mev; other interpretation possible.

16 2.4 20? cand 7 11
17 843 100430 cand 7 11
18 8.541.5 120430 cand 7 11
19 442 55435 candr 11
20 1246 1704100 cand 7 11

Note: Values obtained by use of ‘“‘slow’ cloud chamber;
masses of particles 17 and 18 considered as better values
than those of the other particles. No allowance made for
the scattering which is important at such low velocities.

21 93 240420 cande . 12
Note: Value reliable.

22 221—126 250450 cc 13

23 165— 87 170420 cc 13
Note: 23 considered reliable.

24 30 180425 candz;

cand e 15

Note: Reliable.

Average of reliable values: 180

E. J. Williams and E. Pickup, Nature 141, 648 (1938).
2D. R. Corson and R. B. Brode, Phys. Rev. 53, 215 (1938).
3D, R. Corson and R. B. Brode, Phys. Rev. 53, 773 (1938).
4 J. C. Street and E C. Stevenson. Phys. Rev. 52 1003 (1937).
5P Ehrenfest, Jr., C. R, Paris, 206, 428 (1938).
6 C. D. Anderson andS H. Neddermeyer, Phys. Rev. 50, 263 (1936),
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The criteria of ionization and scattering ex-
clude the last five tracks in Table I, and the
change of momentum is too small for the fourth
track to permit a reliable mass determination.
Without a qualitative knowledge of the ioniza-
tion we cannot exclude the otherwise unlikely
possibility that the first three tracks represent
electrons. If they represent mesons, however,

9 A. J. Ruhlig and H. R. Crane, Phys. Rev. 53, 266 (1938).
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they by no means lead to a unique value for the
mass of the meson. Nor do the mass determina-
tions previously published and compiled in Table
IT allow a decision of the very important question
whether the mass of the meson is unique. In this
connection we may recall the remark of Anderson
and Neddermeyer in 19392 that ‘it has become
increasingly likely that a complete interpretation
of the experimental data is not to be found in
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the single assumption of unstable particles with
unit charge and a unique mass of the order of
200 electron masses.” Also Weisz!” has pointed
out that assumption of a suitable distribution of
meson masses allows a reasonable correlation of
otherwise discordant estimates of the lifetime of
the meson.

Before any statistically reliable conclusions
about the uniqueness of mesons are possible, it
will be necessary to obtain many more measure-
ments of the masses of penetrating particles.
For this purpose the method of momentum loss
appears especially satisfactory in view of the
considerations presented in this paper.

We are indebted to Dr. Carl D. Anderson for
correspondence and to Dr. Marcel Schein for a
number of interesting discussions on the proper-
ties of the meson.

AprPENDIX. REMARKS ON EQ. (1) FOR StOPPING POWER

The non-relativistic form of relation (1) was first derived
by H. Bethe,’® who has also given the above relativistic
formula. Equation (1) does not, however, agree with the
relativistic expressions for stopping power as published in
various general references.! In the derivation one classifies
the various energy losses, Q, into two groups according as
they are less than or greater than a certain quantity, Qi,
which is small in comparison to mc?, large in comparison
with atomic binding energies, but which is otherwise
arbitrary. The rate of loss of energy by collisions in the
first group is

(2w Ne*Z2/mv®) {In [2me?Q1/I2(1 —92/c?) ] — (v2/c?) }

as Mgller?® and Bethe?® have both proven. E. J. Williams?
obtained the same result by the method of impact parame-

17 P, Weisz, Phys. Rev. 59, 845 (1941).

18 H. Bethe, Ann. d. Physik 5, 325 (1930); Handbuch
der Physik (1933), second edition, Vol. 24, Part I, p. 523,
Eq. (56.16).

19 Mott and Massey, The Theory of Atomic Collisions
(Oxford, 1933), p. 269; Heitler, The Quantum Theory of
Radiation (Oxford, 1936), p. 218; Livingston‘and Bethe,
Rev. Mod. Phys. 9, 263 (1937), Eq. (750); Neddermeyer
and Anderson, Rev. Mod. Phys. 11, 199 (1939).

20 Mgller, Ann. d. Physik 14, 579 (1932); Bethe, Zeits.
f. Physik 76, 293 (1932).

# E. J. Williams, Proc. Roy. Soc. A139, 175 (1933).
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ters and was able to show that the relativistic terms in this
expression arise from the Lorentz contraction of the field of
the primary particle in distant collisions, and should there-
fore be considered as especially reliable. In collisions of the
second group where the energy transfer is large (Q > Q) and
lies between Q and Q+-dQ, the calculated average rate of
loss of energy is

(2w Ne*Z2/mc?)(dQ/Q) [c2/v*— (Q/Q max)+correction].

Here Q max=2mpe?/(m?+u2+2mEo/c?) is the maximum
loss which a primary of momentum p, and total energy E,
can experience in a single encounter. The calculated value
of the correction term is in general very large and depends
in a striking way upon the spin and magnetic moment
assumed for the heavy particle.?? The calculated correction
term is however negligible if the energy of the struck
electron in the center-of-gravity frame of reference is small
in comparison with mc® This condition is satisfied if the
energy of the primary in the laboratory frame of reference
is small in comparison with (u/m)uc?, or consequently
Q max is considerably less than E,. Then impacts for which
Q is between Q; and Q max result in an average rate of loss
of energy,

(27w NeZ? /m*) {In(Q max/Q1) — (*/c?) }.

If in addition p is much greater than m, then Q max will be
given by 2mpe?/u2=2me?/(1 —22/c?), and the total average
rate of loss of energy will be represented by expression (1).
Relation (1) is valid only if the primary is considerably
heavier than an electron; only if its energy is small in
comparison with (u/m)uc?; only if it is moving faster than
the bound electrons of the stopping material;® only if
capture and loss of electrons by it can be neglected and its
charge is not too great;* only if the energy is not so great
that the density of the material has an influence upon its
stopping power ;% only if the average energy loss and most
probable energy loss are essentially identical.?6 All these
conditions are satisfied in the present application.
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