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Range and Ionization Measurements on High Speed Protons

RQBERT R. WILsoN
Palmer Physical Laboratory, Princeton University, Princeton, ¹mJersey

(Received October 8, 1941)

The relative specific ionization along an initially mono-energetic 4-Mev proton beam has been
measured. The stopping power of aluminum relative to air is found to be 1.48 mg jcm per cm of
air at 15'C and 76 cm Hg, and is also found to be independent of the energy in the interval from
1.5 Mev to 4.0 Mev. That this should be, so is adequately explained in the interpretation by
J.A. Wheeler. The stopping power of a variety of metal foils was also measured and the results
are given. From the above measurements it is possible to calculate I, the mean excitation energy
of atoms with many electrons (a constant which enters in Bethe's formula for the rate of loss of
energy of heavy particles due to ionization) to be 0.85 Z(me /2k) or 11.5 Z in electron volts.

A. INTRODUCTION

' ~N connection with an experiment on proton-
s proton scattering' in which the small Berkeley

cyclotron (4-Mev protons) was used, it was
desirable to obtain a mono-energetic proton beam
of known energy. The raw beam of the cyclotron
is inhomogeneous in energy by as much as
twenty percent. ' This diAicul ty was circumvented
by appropriately placing three one-mm slits
about 30 cm apart and in the fringing magnetic
field of the cyclotron. ' Although this decreased
the intensity of the original beam by a factor of
about one thousand, there was ample current
left for scattering and range experiments. To
determine the energy of this so obtained mono-
energetic beam, it was decided for reasons of
expediency and accessibility to measure the

*The experimental part of this paper was done in
August, 1940 at the Radiation Laboratory of the Uni-
versity of California.' R. R. Wilson and E. C. Creutz, Phys. Rev. 59, 916
(1941).

2 R. R. Wilson J.App. Phys. 11, 781 {1940).'E. C. Creutz and R. R. Wilson, Phys. Rev. 59, 916
(1941).

ionization in air produced by the protons as a
function of their range. It is felt that the results
of these measurements, although terminated
before their completion, are of sufficient interest
to warrant publication.

B. RELATIVE IONIZATION BY HIGH

ENERGY PROTONS

Figure 1 illustrates the apparatus and method
of measuring the relative ionization produced by
the protons. Because of the difficulty of keeping
the beam current constant, it was necessary to
use two ionization collectors as shown; one to
measure the specific ionization at various points
along the proton path, and another, which was

kept in a fixed location, to serve as a monitor ion

collector. 'The protons emerge from the vacuum
system through a one-half mil Cellophane foil
and first pass through the monitor ion collector.
Then they pass through air until they reach the
movable shallow ion collector. This collector
consists of a thin aluminum foil (2.16 mg/cm')
located 0.5 mm in front of an insulated circular
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brass button of 4" diameter. The foil was raised
to a potential of a few hundred volts with respect
to the button, and the ionization current to the
button was measured with a sensitive galvanome-
ter. The monitor collector consisted simply of two
parallel plates (with guard plates), one of which
was raised to a potential of about a thousand
volts and the other which led to a galvanometer
that measured the ion current. The voltages on
the collectors were adjusted high enough so that
the ionization currents were very nearly inde-
pendent of voltage.

The ratio I of the ionization current in the
shallow ion chamber to that in the monitor
collector, normalized to unity at its maximum
value, is plotted in Fig. 2 for various positions of
the shallow ionization collector. It is seen that
the points fall along a typical Bragg curve. To
determine if the results were influenced by
heating of the air due to the energy loss of the
protons (current about 10 " amp. and of cross
section 1 X 2 mm), a run was made with one-half
the proton current used before. Within the
accuracy of the measurements, the points were
unchanged from their previous values. The
temperature of the air as well as the atmospheric
pressure was read at each measurement so that
the results could be reduced to standard values.
Because of multiple scattering in the air, the
proton beam, as indicated by the fluorescence it
produced on a ZnS screen, spread out to nearly
the full aperture of the movable ion collector at
its greatest distance from the entrance foil, and it
is possible that the points near the end of the
Bragg curve are slightly influenced by this effect.

The striking characteristics of the curve are the
pronounced decrease of ionization with energy,
the very sharp maximum, and the rapid linear
decrease of the curve after the maximum. The
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ionization range curve. However, the relation
between the extrapolated ionization range and
the mean range, from which can be obtained the
energy, 4 is not yet accurately known for protons.
The difference between the two ranges can be
calculated if one knows how the ionization varies
along the path of an individual proton, especially
near the end of the range. Rado' has attempted to
do this with the available data. Inasmuch as
these data are so widely variable from one
observer to another, he was unable to reach any
definite value. His work does suggest, however,
that 0.6 cm should be subtracted from the
extrapolated ionization range of 23.2 cm, as read
from Fig. 2, to give 22.6 cm as the mean range.
When this range is reduced to 15'C and 76-cm

Hg pressure, and when the stopping power of the
foils is added, we obtain 4.00 Mev for the energy
of the protons as given by the Cornell range
energy relation. ' The determination of the
stopping power of the foils will be explained in

the next section.
It is felt that obtaining an ionization range

4 M. S. Livingston and H. A. Bethe, Rev. Mod. Phys.
9, 264 (1937).

5 Rado, Thesis, Massachusetts Institute of Technology
(1939).

curve can be fit adequately, except for the last
two cm, by an equation of the form

I=A j(RII—R),

where A and Ro are constants with values 4.2 and
27 cm, respectively. The sharp maximum is an
indication of how mono-energetic the proton
beam was. The intersection of a straight line
fitted to the linear part near the end of the Bragg
curve with the range axis gives the extrapolated
ionisetion. range. It can be seen that this quantity
is very precisely determined from such an
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TABLE I. Specific stopping power

( dE/NZdx)—
( dE/NZdx), ;, —

FOIL
In(2mv'/constant) —lnZ

ln (2mv'/constant) —In 7.22
(3) Ai

CU
Fe
Mo
Ni
Pt
Ta
Zn10 A -eoretIca1 estImAn approximate t"

by H. Je en, Zeit . f. Phb, i s. . ysik 106, 620 (1937).

The left-hand side of 1i e o re ation (3) may by e repre-

MG

CM~

17.30
25.35

7.47
27.85
11.48
17.80
47.20

8.29

TOTAL
STOPPING
BY FOIL

IN CM

11.72
12.55
4.07

11.87
5.97
5.40

14.72
4.13

SPECIFIC
STOPPING
POWER IN

MG—
~

PER CM

1.48
2.02
1.83
2.34
1.92
3.30
3.20
2.01

ENERGY
INTERVAL

IN MEV

1.5-4.0
2.6—4.0
3.7—4.0
2.7—4.0
34—40
3.4—4.0
2.2—4.0
3.7—4.0

0.864
0.665
0.718
0.597
0.668
0.465
0.475
0.668
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circumstance requires the introduction of the
corrections of Livingston and Bethe4 into the
right-hand side of (3), which then, quite inde-
pendent of Bloch's theory of excitation energies,
becomes:

In (2mv'/I„i) —(C„/Z) ~i

In (2mv'/I, ;,) —(Cp/7. 22),;,
(5)

ENERGY
MEV

Jn NUMERATOR 1n
(2mc~/lair) (CI /7. 22) air oF (5) (CI /Z) Ai (2mcm/IAi)

2.0
2.5
3.0
3.5
4,0

4.00
4.22
4.40
4.55
4.69

0.11
0.10
0.10
0.09
0.08

3.38
3.58
3.73
3.87
4.00

0.04
0.05
0.05
0.06
0.06

8.87
8.86
8.83
8.83
8.82

For I. ;, Livingston and Bethe find 80.5 ev or
5.92(me'/2A') from the observed absolute stopping
power. Their Fig. 28 gives the corrections C~.
Wilson's Fig. 4 shows that 27.8 mg/cm' of Al are
equivalent to 20 cm air (300'K, 75.31 cm pres-
sure). This comparison gives for the ratio (5) the
value (26.97/26) (20 &(1.166/27. 8) =0.870, con-
stant over the range of velocities investigated.
These data are used in Table II to compute IAi.

The values in the last column come out to be
strikingly consistent with one another. Since
corrections for binding of the L electrons will be
least important at the higher energies, it is
reasonable to take 8.83 as best value of
1n(2mc'/I~i). This result gives I~i= 150 ev
= 11.0(me'/2''). Table II suggests why the stop-
ping power of aluminum is constant relative to
air over a considerable interval of energy: the
correction for binding of the X electrons is
decreasing for one element, increasing for the
other. The complicated nature of the compensa-
tion shows how difficult it is to give. any simple
interpretation to the linear relationship in Fig. 6.

rABLE II. Determination of mean excitation energy of
aluminum from stopping power relative to air observed by
IVilson for protons of various energies.

As basis for fixing the constant of proportion-
ality between I and Z there is really available at
present only the data for air and aluminum:

Air, I/Z= 11.15 ev=0.820(me4/25'),
Aluminum, I/Z= 11.54 ev=0.848(me4/2A').

Since Bloch's statistical theory of the proportion-
ality is the more nearly correct the higher is the
atomic number, it seems to be reasonable in the
light of the evidence to write for the mean excita-

I.O-
Al

0.6—

0.6—

0.4—
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tion energy of atoms with many electrons

I/Z = 11.5 ev =0.85 (me4/25')

The constant in (6), about 10 percent lower than
that given by Bloch, is employed in the following

paper to determine the range-energy relation for
fast particles in lead.

In conclusion the author takes pleasure in
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