attempts of the electron avalanches to initiate the retrograde streamers which are the forerunners of negative point breakdown with larger points.<sup>13</sup> They result from avalanches which would cause breakdown by positive streamers in a larger uniform gap. The streamers cannot advance all the way to the point cathode owing to the positive space charge which accumulates before the whole discharge is choked off. For still larger points the retrograde streamers reach the point and may cause breakdown.

The authors wish to express their appreciation to Makio Murayama, of the University of California Institute of Experimental Biology, for his valuable assistance in obtaining the photomicrographs.

NOVEMBER 15, 1941

## PHYSICAL REVIEW

VOLUME 60

# Zeeman Effect Data and Preliminary Classification of the Spark Spectrum of Praseodymium—Pr II

NATHAN ROSEN,\* GEORGE R. HARRISON, AND J. RAND MCNALLY, JR. George Eastman Research Laboratories of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received August 29, 1941)

The Zeeman effect of praseodymium has been studied at fields up to 95,000 oersteds over the range 2400 to 7100A. g and J values have been determined for 74 Pr II levels from resolved Zeeman patterns of 141 lines. With these data, together with new wave-length data from the M.I.T.-W.P.A. Wavelength Project which have been applied to the spectroscopic interval sorter and interval recorder, a quadratic term array has been set up which accounts for 312 lines. This array is consistent with King's temperature classification of the lines and with all previous hyperfine structure observations. It is self-consistent in g values to an average deviation of 0.005 unit, and in wave numbers to an average deviation of 0.08 cm<sup>-1</sup>. Previously published hyperfine structure measurements were found insufficiently precise to aid the classification, but were of value in its verification. The lowest term of Pr II is found to be  $f^{3}({}^{4}I^{o}) \cdot s - {}^{5}I^{o}_{4}$ . Most of the strong lines showing hyperfine structure arise from the  $f^{3}s$ configuration.

THE spectra of praseodymium have long defied classification, both because of the complexity of this rare-earth atom, and because many of its lines show hyperfine structure difficult to measure. White<sup>1</sup> has published extensive and valuable data on the hyperfine structure of Pr II, but these prove to be not quite precise enough to establish a classification.

The M.I.T. Wavelength Tables<sup>2</sup> list 2708 strong lines of praseodymium, and the unpublished W.P.A. card catalog at M.I.T. contains 3454 lines of all intensities assigned to the element. Actually the spectrum is so rich that the number of observable lines is limited only by the difficulty of distinguishing true lines from bands. The available description of the spectrum between 8000 and 2400A is fairly good, though limited in wave-length precision by the difficulties of measurement introduced by partially resolved hyperfine structure patterns (h.f.s.). Unless wave-length values accurate to  $\pm 0.003$ A can be obtained, it is impossible in so complex a spectrum to determine which is the correct quadratic array of the many obtained from the combination

TABLE I. Fields for various spectrograms.

| Set No.        | FIELD            | SET NO.      | FIELD            |
|----------------|------------------|--------------|------------------|
| Z 41 H         | 95,000 oersteds  | Z 47         | 89,900 oersteds  |
| Z 41 L<br>Z 42 | 72,340<br>90.860 | Z 48<br>Z 63 | 87,400<br>89,290 |
| Z 44           | 91,500           | Z 73         | 87,540           |
| Z 45<br>Z 46   | 91,500<br>86,400 |              | 85,510<br>87,970 |

722

<sup>&</sup>lt;sup>13</sup> L. B. Loeb and J. M. Meek, *Mechanism of the Electrical Spark* (Stanford Press, 1941), pp. 82, 87, 99, 170.

<sup>\*</sup> Now at University of North Carolina, Chapel Hill, North Carolina.

<sup>&</sup>lt;sup>1</sup> H. E. White, Phys. Rev. **34**, 1397 (1929).

<sup>&</sup>lt;sup>2</sup> (John Wiley and Sons, New York, 1939.)

principle with the interval sorter<sup>3</sup> and recorder.<sup>4</sup> In the absence of data of suitable precision regarding wave-length and h.f.s., Zeeman effect measurements appeared to give the most powerful method of attacking the classification of the Pr spectra.

No Zeeman effect measurements on Pr lines appear to have been made hitherto, probably because of the high magnetic and spectrographic resolution needed for lines showing h.f.s. The availability of fields approaching 100,000 oersteds,<sup>5</sup> combined with spectrographs of high dispersion capable of giving Zeeman exposures in a few minutes, has now made possible the resolution of many patterns. The data thus obtained gave the desired start on the classification, which was then verified and extended by wave-length, h.f.s., and temperature class data.

The three concave gratings and other apparatus used have been described in previous papers dealing with the spectra of other elements.6,7 An arc carrying 4 amp. was run between electrodes of silver containing 20 percent of powdered praseodymium chloride. The arc so obtained was the brightest and steadiest we have yet produced in a strong magnetic field with any element, but most of the lines emitted were found to belong to Pr II and Pr III. Eleven sets of spectrograms were obtained, at fields listed in Table I. Each set contained p, n, and no-field exposures on each of from 12 to 24 plates 20 inches long, distributed throughout the spectrum.

All spectrograms were measured in both directions with an automatic comparator,8 and were reduced by W.P.A. clerical workers, who have been of great assistance in reading, recording, and averaging the measurements used in calculating the data which follow. The field intensities given in Table I were calculated from measurements on the raies ultimes of silver, copper, and calcium, and are believed to be correct to within  $\pm 0.3$  percent.



FIG. 1. Lowest terms of Pr II, showing alternate inverted and normal hyperfine-structure multiple terms in pairs.

## Results

Table II contains the lines of Pr II which we have classified thus far with reasonable assurance. The wave-lengths in angstroms given in the first column have been taken from the M.I.T.Wavelength Catalogs, as have the arc intensities in the second column. The third column gives the temperature class, while the fourth gives the h.f.s. of the line according to White,<sup>1</sup> or in cases marked a, from King.<sup>9</sup> v and r in this column indicate shaded toward short and long wavelengths, respectively. The next column contains the observed wave number, while the column headed o-c gives the difference, in 0.01 cm<sup>-1</sup> units, between the observed wave nunber and that calculated from the difference between the finally assigned wave numbers of the parent levels. The column headed "Comb." gives the lower and upper terms which appear to produce the line. This is followed by two columns giving the g values for these lower and upper levels as deduced from the observed patterns of the line where these could be interpreted.

 <sup>&</sup>lt;sup>3</sup> G. R. Harrison, Rev. Sci. Inst. 4, 581 (1933).
 <sup>4</sup> G. R. Harrison, J. Opt. Soc. Am. 28, 290 (1938).
 <sup>5</sup> G. R. Harrison and F. Bitter, Phys. Rev. 57, 15 (1940).
 <sup>6</sup> G. R. Harrison and J. Rand McNally, Jr., Phys. Rev. 702 (1940). 58, 703 (1940).

J. P. Molnar and W. J. Hitchcock, J. Opt. Soc. Am. 11, 523 (1940).

<sup>&</sup>lt;sup>8</sup> G. R. Harrison, J. Opt. Soc. Am. **25**, 169 (1935); Rev. Sci. Inst. **9**, 15 (1938); G. R. Harrison and J. P. Molnar, J. Opt. Soc. Am. 30, 343 (1940).

<sup>&</sup>lt;sup>9</sup> A. S. King, Astrophys. J. 68, 194 (1928).

| TABLE I | Ι. | Pr | Π | Lines. |
|---------|----|----|---|--------|
|---------|----|----|---|--------|

| λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CLASS H.F.S. | σ OBS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-c                                                                                                                                                                                            | Сомв.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ÿ1 | g 2 | λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CLASS H.F.S.                                           | σ OBS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0-c                                                                                                                                                                          | Сомв.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>g</i> 1 | <b>g</b> 2 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| 7099.54<br>7021.54<br>6850.55<br>6554.632<br>6454.865<br>6554.632<br>6475.287<br>6454.865<br>6397.996<br>6305.262<br>6292.639<br>6242.539<br>6244.344<br>6205.723<br>5062.539<br>6141.508<br>6025.723<br>5967.837<br>5892.231<br>5879.253<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5813.593<br>5831.895<br>5563.93<br>5685.11<br>5581.895<br>5564.764<br>5637.36<br>5583.89<br>5571.9<br>5583.185<br>5583.99<br>5571.841<br>55560.21<br>5551.841<br>5550.20<br>5531.232<br>5531.841<br>5550.21<br>5531.841<br>5551.841<br>5551.841<br>5551.841<br>5552.27<br>5531.841<br>5552.373<br>5531.423<br>5531.423<br>5531.423<br>5531.423<br>5531.423<br>5531.423<br>5531.423<br>5531.423<br>5531.423<br>5531.423<br>5531.433<br>5522.773<br>5331.433<br>5522.773<br>5331.433<br>5522.773<br>5331.433<br>5522.713<br>5228.837<br>5331.433<br>5321.935<br>5311.119<br>5308.96<br>5321.67,61<br>5321.073<br>5292.630<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.633<br>5292.6 | $\begin{array}{c} 2 & 6 \\ 4 & 10 \\ 3 & 3 \\ 3 & 12 \\ 9 & 9 \\ 9 \\ 10 \\ 5 \\ 12 \\ 5 \\ 5 \\ 0 \\ 3 \\ 6 \\ 2 \\ 5 \\ 5 \\ 1 \\ 10 \\ 2 \\ 4 \\ 8 \\ 8 \\ 1 \\ 4 \\ 1 \\ 4 \\ 8 \\ 8 \\ 1 \\ 4 \\ 1 \\ 4 \\ 8 \\ 8 \\ 1 \\ 4 \\ 1 \\ 3 \\ 7 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 10 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 5 \\ 0 \\ 2 \\ 2 \\ 2 \\ 5 \\ 0 \\ 0 \\ 4 \\ 8 \\ 5 \\ 0 \\ 3 \\ 4 \\ 8 \\ 5 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 5 \\ 0 \\ 0 \\ 1 \\ 0 \\ 2 \\ 2 \\ 2 \\ 5 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$ | V            | $\begin{array}{c} 14081.54\\ 14287.97\\ 14287.97\\ 14583.55\\ 15228.95\\ 15439.07\\ 15487.75\\ 15625.58\\ 15963.56\\ 16010.08\\ 16181.40\\ 16121.64\\ 16223.615\\ 16225.15\\ 1625.16\\ 16121.40\\ 16121.64\\ 16223.615\\ 16225.15\\ 16225.15\\ 16225.15\\ 16225.15\\ 16225.15\\ 16225.15\\ 16225.15\\ 17004.26\\ 171064.26\\ 171064.20\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17205.10\\ 17572.35\\ 17577.35\\ 17577.35\\ 17577.35\\ 17572.35\\ 17577.35\\ 17572.35\\ 17572.35\\ 17573.64\\ 17741.48\\ 17741.54\\ 17741.54\\ 17741.90.81\\ 17909.52\\ 18009.52\\ 18032.95\\ 18032.95\\ 18032.95\\ 1802.18\\ 18473.85\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18578.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 18588.53\\ 1858$ | 8313126211311205393513021110018021110018025817144700293142293142621320511520070777110340113040113031221541101293144213205115200511520070777110340113031011221154110111111111111111111111111111 | $\begin{array}{l} b^{3}l^{5}s^{-} = 3s\\ a^{3}H^{5}s^{-} = 8s\\ b^{3}l^{2}t^{-} = 2s\\ b^{3}l^{2}s^{-} = 17s\\ b^{3}l^{2}s^{-} = 17s\\ b^{3}l^{2}s^{-} = 2s\\ b^{3}l^{2}s^{$ |    |     | 5064.84<br>5060.40<br>5034.415<br>5015.543<br>5010.454<br>5002.454<br>4991.774<br>4991.774<br>4991.774<br>4991.774<br>4991.774<br>4991.774<br>4991.774<br>4991.774<br>4991.774<br>4991.28<br>4992.630<br>4912.629<br>4901.483<br>4912.629<br>4901.483<br>4912.629<br>4901.483<br>4912.629<br>4901.483<br>4876.257<br>4856.038<br>4877.81<br>4876.257<br>4856.038<br>4839.540<br>4826.649<br>4826.649<br>4826.649<br>4826.649<br>4826.649<br>4826.649<br>4826.649<br>4826.649<br>4826.649<br>4826.649<br>4826.649<br>4778.303<br>4766.906<br>4766.322<br>4765.222<br>4765.2227<br>4765.2227<br>4765.2227<br>4766.354<br>4778.303<br>4766.906<br>4766.322<br>4766.322<br>4766.322<br>4765.2227<br>4765.2227<br>4765.2227<br>4768.354<br>4778.303<br>4766.906<br>4768.354<br>4778.303<br>4766.906<br>4768.354<br>4778.303<br>4766.906<br>4766.322<br>4765.2227<br>4765.2227<br>4765.2227<br>4765.2227<br>4765.2227<br>4765.2227<br>4765.227<br>4766.355<br>4746.355<br>4746.355<br>4746.355<br>4746.355<br>4746.355<br>4746.355<br>4746.355<br>4746.355.87<br>4767.408<br>4679.112<br>4678.139<br>4668.454<br>4679.412<br>4678.139<br>4668.454<br>4679.408<br>4674.635<br>4774.635<br>4570.565<br>4560.665<br>4570.565<br>4560.066<br>4570.565<br>4560.066<br>4570.565<br>4560.066<br>4570.565<br>4560.066<br>4570.565<br>4560.066<br>4570.565<br>4560.066<br>4570.565<br>4560.066<br>4570.565<br>4560.066<br>4570.565<br>4560.066<br>4570.565<br>4560.066<br>4570.565<br>4560.066<br>4570.565<br>4560.066<br>4570.565<br>4560.222<br>4560.222<br>4560.237<br>4560.237<br>4560.237<br>4560.237<br>4560.237<br>4560.237<br>4560.237<br>4560.237<br>4560.237<br>4560.237<br>4560.237<br>4570.2575<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.565<br>4500.066<br>4570.429<br>4500.066<br>4570.429<br>4500.066<br>4570.429<br>4500.066<br>4570.429<br>4500.066<br>4570.429<br>4500.066<br>4570.429<br>4500.066<br>4570.429<br>4500.066<br>4570.429<br>4500.066<br>4570.429<br>4500.429<br>4500.429<br>4500.429<br>4500.429<br>4500.429<br>4500.429<br>4500.429<br>4500.429<br>4500.429<br>4500.429<br>4500.429<br>4500.429<br>4500.429<br>4500.429<br>4500.429<br>4500.429<br>4500.429<br>4500.429<br>4500.429 | $\begin{array}{c} 2\hbar\\ 1\\ 2\\ 30\\ 4\\ 2\\ 5\\ 8\\ 3\\ \frac{2}{h}\\ 4\\ 1\\ 40\\ 3\\ 10\\ 5\\ 20\\ 0\\ 40\\ 40\\ 25\\ 8\\ 3\\ \frac{2}{h}\\ 4\\ 1\\ 40\\ 3\\ 10\\ 5\\ 20\\ 30\\ 40\\ 25\\ 8\\ 4\\ 5\\ 2\\ 8\\ 12\\ 3\\ 10\\ 6\\ 10\\ 105\\ 200\\ 10\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 5\\ 125\\ 12$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | 19738.47<br>19751.50<br>19755.79<br>19857.76<br>19975.150<br>19975.150<br>19975.150<br>19975.150<br>19982.48<br>19941.79<br>19976.143<br>19984.63<br>20027.39<br>20027.39<br>20027.39<br>20027.39<br>20027.20<br>20110.35<br>20122.22<br>20342.63<br>20350.63<br>20450.53<br>20450.50<br>20459.79<br>20450.50<br>20459.79<br>20450.50<br>20459.79<br>20450.50<br>20574.48<br>20567.47<br>20742.54<br>20742.54<br>20751.26<br>20574.48<br>20657.37<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.50<br>20459.5 | $\begin{array}{c} 224457759132188088772441076107741318115020462677743668361414120113145333444024444614421194123501100855813392010131111561921111111111111111111111111111111$ | $\begin{array}{c} a^{3}I^{*}a = 6a\\ b^{3}I^{*}a = 2b;\\ a^{3}I^{*}a = 1b;\\ a^{5}I^{*}a = 1b;\\ a^{5}I^{*}a = 1b;\\ a^{5}I^{*}a = 2b;\\ a^{5}I^$ |            |            |

TABLE II.—Continued.

| λ                                 | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CLASS 1                | H.F.S.           | σ OBS.                           | 0-c                          | Сомв.                                                                                                                                               | Ø1                          | <i>0</i> .»               | <u>&gt;</u>                      | I                                                                           | CLASS                   | HES              | σ 0BS                              | 0-0                    | Сомв                                                                                                              | <i></i>                       | <i>П</i> а                |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------|----------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|----------------------------------|-----------------------------------------------------------------------------|-------------------------|------------------|------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|
| 4493.119<br>4492.427<br>4487.821  | 25<br>25<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V e                    | 6v<br>6r<br>6v   | 22250.03<br>22253.45<br>22276.29 | -18<br>-5<br>-8              | $a^{5}I^{\circ}_{7} - 15_{7}$<br>$a^{3}I^{\circ}_{6} - z^{5}I_{6}$<br>$a^{5}I^{\circ}_{5} - 4_{6}$                                                  |                             | 9                         | 4164.192<br>4161.65<br>4148.457  | 200<br>8<br>15                                                              | III                     | 6v               | 24007.52<br>24022.18<br>24098.59   | -9 + 1 + 2             | $a^{5}I^{\circ}_{6} - z^{5}I_{6}$<br>$a^{3}I^{\circ}_{6} - 297$<br>$a^{3}I^{\circ}_{6} - 18-$                     | <br><br>0 86?                 | 92<br>                    |
| 4479.618<br>4477.259              | 35<br>125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ĪV e                   | 6v               | 22317.09<br>22328.85             | $^{+16}_{+8}$                | $a^5 L^{\circ_7} - 29_7$<br>$a^5 I^{\circ_6} - 11_6$                                                                                                | 1.054                       | 1.150                     | 4143.136<br>4141.257             | 200<br>150                                                                  | III<br>III              | 6v<br>6v         | 24129.52<br>24140.47               | -5 - 16                | $a^{5}I^{\circ}_{7} - z^{5}K_{8}$<br>$a^{5}I^{\circ}_{8} - z^{3}I_{7}$                                            | (1.177)<br>1.242              | 1.011<br>1.141<br>1.172   |
| 4473.835<br>4468.712<br>4458.336  | 30<br>125<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | III e                  | 6 <i>r</i><br>6v | 22345.93<br>22371.56<br>22423.62 | -5<br>-20<br>-12             | $a^{3}I^{\circ}_{5} - 2^{5}K_{6}$<br>$a^{5}I^{\circ}_{8} - 2^{5}K_{7}$                                                                              | 0.864<br>(1.250)            | 0.963<br>1.125            | 4132.230<br>4118.481<br>4111.871 | 15     250     30                                                           |                         | 6va<br>6v<br>5a  | $24193.21 \\ 24273.97 \\ 24312.99$ | $^{+1}_{-15}$          | $a^{5}I^{\circ}_{6} - 18_{5}$<br>$a^{5}I^{\circ}_{5} - z^{5}I_{5}$<br>$a^{5}I^{\circ}_{4} - 12_{4}$               | (0.875)                       | 0.920                     |
| 4454.382<br>4449.867              | 60<br>125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | 6v<br>6v         | 22443.52<br>22466.30             | $-10 \\ -10$                 | $a^{5}I^{\circ}_{5} - 5_{5}$<br>$a^{5}I^{\circ}_{6} - z^{5}K_{6}$                                                                                   | 1.075                       | 0.961                     | 4100.746<br>4100.22              | 200<br>15                                                                   | îi ê                    | 6v               | 24378.94<br>24382.08               | -1 + 1                 | $a^{5}I^{\circ}_{8} - z^{5}K_{9}$<br>$a^{5}I^{\circ}_{7} - 27_{6}$                                                | 1.256                         | 1.221                     |
| 4429.238<br>4429.238<br>4421.231  | 100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | III e                  | or<br>6v<br>6v   | 22570.93<br>22570.93<br>22611.80 | $^{-45}_{+14}$<br>+ 5        | $a^{5}I^{\circ}_{4} - 3_{5}$<br>$a^{5}I^{\circ}_{7} - 2^{5}K_{7}$<br>$a^{5}I^{\circ}_{7} - 17_{6}$                                                  | (1.177)<br>1.175            | $1.165 \\ 1.061 \\ 1.110$ | 4096.822<br>4091.686<br>4081.018 | 30<br>50<br>50                                                              | m e                     | 6?r?a            | 24402.30<br>24432.93<br>24496 80   | -2<br>+ 7<br>-16       | $a^{3}I^{\circ}{}_{5} - 19_{5}$<br>$a^{3}I^{\circ}{}_{5} - 20_{6}$<br>$a^{5}I^{\circ}{}_{6} - 19_{5}$             | 0.858                         | 1.024                     |
| 4413.765                          | 90<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | Bra<br>6v        | 22650.05<br>22658.31             | 0                            | $a^{3}I^{\circ}{}_{5} - z^{3}K_{6}$<br>$a^{5}I^{\circ}{}_{7} - z^{5}I_{6}$                                                                          | 0.860<br>(1.177)            | 0.992<br>1.046            | 4075.917<br>4073.305             | 15d<br>9                                                                    | =                       |                  | 24527.46<br>24543.18               | $-\frac{4}{-3}$        | $a^{5}I^{\circ}_{6} - 20_{6}$<br>$a^{3}I^{\circ}_{5} - 21_{5}$                                                    | (1.004)                       |                           |
| 4405.849<br>4403.605              | 125<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IV e                   | ər<br>Əv<br>6r   | 22675.34<br>22690.75<br>22702.31 | -6<br>-4<br>-3               | $a^{5}I^{\circ}_{8} - z^{5}K_{8}$<br>$a^{5}I^{\circ}_{8} - z^{5}K_{8}$<br>$a^{3}I^{\circ}_{7} - 30_{8}$                                             | 0.605<br>(1.250)            | 0.823                     | 4062.817<br>4061.336<br>4056.543 | 150<br>4<br>100                                                             |                         | 6r<br><br>6r     | $24606.54 \\ 24615.51 \\ 24644.60$ | -5 + 4 + 8             | $a^{3}I^{\circ}_{6} - z^{3}K_{7}$<br>$a^{5}L^{\circ}_{7} - z^{3}K_{8}$<br>$a^{3}I^{\circ}_{7} - z^{3}K_{8}$       | (1 143)                       | 1.106                     |
| 4395.788<br>4372.385              | 30<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V<br>III e             |                  | 22742.68<br>22864.41             | -17 + 6                      | $a^{3}I^{\circ}_{6} - 19_{5}$<br>$a^{5}K^{\circ}_{5} - z^{3}H_{6}$                                                                                  | 1.052                       | (1.025)                   | 4054.845<br>4044.818             | 50<br>50                                                                    |                         | 6r<br>6ra        | $24654.92 \\ 24716.03$             | $+12 \\ -3$            | $a^{3}I^{\circ}_{5} - 22_{6}$<br>$a^{5}I^{\circ}_{4} - z^{5}I_{5}$                                                | 0.862<br>0.605                | 0.991<br>0.910            |
| 4365.328<br>4359.795              | 125<br>6<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IV e                   | 3r               | 22901.37<br>22930.43             | $^{+9}_{+2}$<br>$^{+3}_{+3}$ | $a^{5}L^{\circ}_{7} - z^{3}K_{7}$<br>$a^{5}L^{\circ}_{7} - z^{3}K_{7}$                                                                              | (1.143)                     | 0.994                     | 4039.357<br>4038.467<br>4034.30  | $     \begin{array}{r}       50 \\       15 \\       20     \end{array}   $ |                         | 6v<br>6?ra<br>6r | 24749.45<br>24754.91<br>24780.47   | $^{+1}_{-2}_{+16}$     | $a^{5}I^{\circ}_{6} - 22e$<br>$a^{5}I^{\circ}_{4} - 124$<br>$a^{3}I^{\circ}_{5} - 24e^{2}_{6}$                    | 1.08<br>0.613                 | 0.98                      |
| 4352.752<br>4351.849<br>4347.490  | 4<br>80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | III e                  | Br<br>Br         | 22967.54<br>22972.30<br>22005.22 | $^{+9}_{-11}$                | $a^{5}L^{\circ}_{6} - z^{5}I_{7}$<br>$a^{3}I^{\circ}_{5} - z^{5}I_{5}$                                                                              | (0.860)                     | 0.904                     | 4033.857<br>4031.755             | 50<br>50                                                                    |                         | 6v<br>6v         | 24783.19<br>24796.11               | -15 + 6                | $a^5I^{\circ}_7 - 30_8$<br>$a^5I^{\circ}_6 - 23_7$                                                                | (1.177)<br>(1.064)            | 1.077<br>1.089            |
| 4338.694<br>4333.913              | 100<br>150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IV e                   | 57<br>57<br>3v   | 23041.98<br>23067.37             | $^{+4}_{+32}$                | $a^{5}I^{\circ}_{6} - 23_{7}$<br>$a^{5}I^{\circ}_{6} - z^{5}I_{5}$                                                                                  | (1.037)<br>1.062            | (0.990)<br>1.075<br>0.910 | 4015.389<br>4008.714<br>4000.190 | 50<br>150<br>50                                                             |                         | 61ra<br>6r<br>6v | 24897.18<br>24938.64<br>24991.77   | $^{+1}_{-14}$          | $a^{3}I^{\circ}_{5} - 25_{5}$<br>$a^{3}I^{\circ}_{7} - z^{5}H_{7}$<br>$a^{5}I^{\circ}_{6} - 25_{5}$               | (1.143)<br>(1.064)            | 1.073<br>1.209<br>1.080   |
| 4332.487<br>4331.472<br>4329 415  | 30<br>5<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                  | 23074.97<br>23080.37<br>23091 34 | -6 +21 - 6                   | $a^{3}I^{\circ}_{5} - 13_{6}$<br>$a^{5}L^{\circ}_{6} - z^{5}H_{5}$<br>$a^{3}I^{\circ}_{5} - z^{3}I_{6}$                                             | (0.860)                     | 1 000                     | 3997.054<br>3994.834<br>2080 718 | 100<br>300                                                                  |                         | 6v<br>6v         | 25011.38<br>25025.28               | -2<br>-28<br>-28       | $a^{5}I^{\circ}_{7} - z^{3}K_{7}$<br>$a^{5}I^{\circ}_{5} - z^{5}H_{4}$                                            | (1.177)<br>0.89               | 1.101 0.89                |
| 4327.698<br>4323.922              | 3<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 6                    | br               | 23100.50<br>23120.67             | $-\frac{8}{-17}$             | $a^{5}K^{\circ}_{5} - 26_{5}$<br>$a^{3}I^{\circ}_{6} - 24_{6}$                                                                                      | (0.000)                     |                           | 3982.063<br>3972.164             | $125 \\ 125 \\ 125$                                                         | III é                   | 6r<br>6v         | 25105.53<br>25168.11               | $-\frac{27}{3}$<br>- 1 | $a^{5}I^{\circ}_{6} - z^{5}H_{6}$<br>$a^{5}I^{\circ}_{5} - 17_{6}$                                                | (1.037)<br>0.877              | 1.106<br>1.118            |
| 4323.551<br>4314.74<br>4313.843   | 100<br>2<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV 6                   | ir<br>           | 23122.65<br>23169.87<br>23174.69 | + 9 + 20 - 4                 | $a^{3}I^{\circ}_{7} - z^{5}I_{8}$<br>$a^{5}I^{\circ}_{6} - 13_{6}$<br>$a^{5}I^{\circ}_{5} - 8_{5}$                                                  | (1.143)                     | 1.167                     | 3971.164<br>3966.573<br>3965 263 | 100<br>100<br>100                                                           |                         | 6r<br>6v<br>6v   | 25174.44<br>25203.57<br>25211.00   | -16 + 1 + 1 = 8        | $a^{3}I^{\circ}_{6} - z^{3}I_{7}$<br>$a^{5}I^{\circ}_{7} - z^{5}I_{8}$<br>$a^{5}I^{\circ}_{4} - z^{5}I_{7}$       | (1.037)<br>(1.177)<br>(1.064) | $1.187 \\ 1.154 \\ 1.128$ |
| 4308.457 4305.763                 | $20 \\ 150 \\ 60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | III 6                  | dva .            | 23203.66<br>23218.18             | $+ \frac{1}{9}$<br>- 6       | $a^{3}I^{\circ}{}_{5} - 14_{5}$<br>$a^{5}I^{\circ}{}_{5} - z^{5}I_{4}$                                                                              | 0.877                       | 0.683                     | 3964.825<br>3964.261             | 125<br>60                                                                   |                         | 6v<br>6r         | 25214.68<br>25218.27               | 0                      | $a^{5}I^{\circ}_{5} - z^{5}I_{6}$<br>$a^{3}I^{\circ}_{5} - z^{3}H_{6}$                                            | (0.875)<br>0.858              | 1.039                     |
| 4297.764<br>4292.351              | 50<br>50<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | III 6                  | Br               | 23237.95<br>23261.40<br>23290.72 | $^{+25}_{+10}$<br>+ 8        | $a^{5}I^{\circ}_{6} - 25_{5}$<br>$a^{5}I^{\circ}_{4} - 7_{5}$<br>$a^{5}K^{\circ}_{5} - 28_{5}$                                                      | (1.037)<br>0.601            | 0.895                     | 3962.445<br>3953.516<br>3949.438 | 60<br>150<br>150                                                            |                         | 6?a<br>6v<br>6n  | 25229.83<br>25286.81<br>25312.92   | -6 + 7 + 1             | $a^{3}I^{\circ}{}_{5} - z^{5}H_{5}$<br>$a^{5}I^{\circ}{}_{8} - z^{3}K_{8}$<br>$a^{5}I^{\circ}{}_{6} - z^{3}H_{6}$ | $0.869 \\ (1.250) \\ 1.08$    | $1.108 \\ 1.145 \\ 1.08$  |
| 4290.99<br>4288.830<br>4282.440   | 5<br>8<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br>TV 6               |                  | 23298.11<br>23309.85             | -10 - 19                     | $a^{5}I^{\circ}_{6} - 14_{5}$<br>$a^{5}K^{\circ}_{7} - z^{3}K_{8}$                                                                                  | 1.045                       |                           | 3947.633<br>3935.823             | 125<br>125                                                                  |                         | 6v<br>6?va       | 25324.49<br>25400.48               | -4<br>+21              | $a^5I^{\circ}_6 - z^5H_5$<br>$a^5I^{\circ}_5 - 18_5$                                                              | (1.064)<br>(0.875)            | $1.125 \\ 0.990$          |
| 4272.271<br>4263.805              | 50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | III 6<br>IV 6          | dv<br>dv<br>dv   | 23344.03<br>23400.18<br>23446.65 | + 4 -10                      | $a^{5}I^{\circ}_{7} - 22_{6}$<br>$a^{5}I^{\circ}_{7} - 23_{7}$                                                                                      | 1.245                       | 0.991                     | 3927.454<br>3925.456<br>3920.524 | 80<br>125<br>30d                                                            | III 6<br>III 3<br>III 2 | 6?ra<br>3a<br>2a | 25454.60<br>25467.56<br>25499.60   | $^{+10}_{+6}_{+10}$    | $a^{3}I^{\circ}_{5} - 26_{5}$<br>$a^{5}I^{\circ}_{4} - z^{5}H_{4}$<br>$a^{5}I^{\circ}_{4} - 16_{5}$               | $0.859 \\ 0.603 \\ (0.605)$   | $1.066 \\ 0.903 \\ 0.985$ |
| $4261.796 \\ 4259.64 \\ 4254 420$ | 15<br>5d<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | bra<br><br>Br    | 23457.71<br>23469.58<br>23408 38 | $^{0}_{+22}$                 | $a^{3}I^{\circ}_{6} - z^{5}I_{7}$<br>$a^{5}L^{\circ}_{7} - z^{3}I_{7}$<br>$a^{3}I^{\circ}_{7} - z^{3}I_{7}$                                         | (1 142)                     |                           | 3918.856<br>3912.898             | 100<br>150                                                                  | III 4<br>III 4          | 4a<br>4a         | 25510.45<br>25549.29               | +8 + 15 + 15           | $a^{5}I^{\circ}_{7} - z^{5}H_{6}$<br>$a^{5}I^{\circ}_{6} - 26_{5}$                                                | (1.177)<br>(1.064)            | 1.094<br>1.097            |
| 4249.484<br>4247.662              | 20<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V 6<br>III 6           | dia<br>dia       | 23525.67<br>23535.75             | $^{+2}_{-9}$                 | $a^{5}I^{\circ}_{7} - 24_{6}$<br>$a^{5}I^{\circ}_{5} - 11_{6}$                                                                                      | (1.143)<br>(1.177)<br>0.878 | 0.98<br>1.156             | 3899.555<br>3889.330             | 100<br>10<br>150                                                            | $\frac{1}{1V}$ 5        | 5a               | 25636.71<br>25704.11               | $^{+10}_{-2}$<br>+13   | $a^{3}I^{\circ}_{5} - 2^{3}H_{7}$<br>$a^{3}I^{\circ}_{5} - 27_{6}$<br>$a^{5}I^{\circ}_{5} - 19_{5}$               | (0.875)                       | 1.025                     |
| 4243.528<br>4241.019<br>4236.210  | 20<br>50<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | III 6<br>IV 6<br>III 6 | ir<br>v          | 23558.69<br>23572.62<br>23599.38 | -11<br>0<br>-13              | $a^{3}I^{\circ}_{6} - z^{3}H_{6}$<br>$a^{5}I^{\circ}_{8} - z^{3}K_{7}$<br>$a^{5}I^{\circ}_{6} - 15\pi$                                              | 1.022<br>(1.250)<br>(1.064) | (1.073)<br>1.108          | 3885.190<br>3884.741             | 100                                                                         | IV 4                    | 1a               | 25731.51<br>25734.48<br>25720 12   | +14<br>- 9             | $a^{5}I^{\circ}_{6} - 27_{6}$<br>$a^{5}I^{\circ}_{5} - 20_{6}$                                                    | 1.058                         | 1.068                     |
| 4225.327<br>4222.98               | $50 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\ 125 \\$ | III 6<br>III 6         | ir<br>iv         | 23660.17<br>23673.31             | -10 - 16                     | $a^{5}I^{\circ}_{4} - z^{5}I_{4}$<br>$a^{5}I^{\circ}_{5} - z^{5}K_{6}$                                                                              | 0.604<br>0.877              | 0.685<br>0.961            | 3878.307<br>3868.578             | 15                                                                          | _                       |                  | 25777.17<br>25841.99               | $-11 \\ -22$           | $a^{5}I^{6}_{6} - 297$<br>$a^{5}I^{6}_{4} - 185$                                                                  |                               | _                         |
| 4213.96<br>4208.305<br>4206.739   | 12<br>18<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | III 6<br>III 6         | ora<br>Sv        | 23723.99<br>23755.87<br>23767.71 | $^{+14}$<br>+ 2<br>- 7       | $a^{3}I^{\circ}{}_{5} - z^{5}H_{4}$<br>$a^{3}I^{\circ}{}_{5} - 16_{5}$<br>$a^{5}I^{\circ}{}_{8} - z^{5}I_{8}$                                       | (0.860)                     | 0.980                     | 3868.125<br>3826.708<br>3823.571 | $\frac{4}{10}$                                                              | _                       | _                | 25845.02<br>26124.74<br>26146.17   | $^{+10}_{+3}$          | $a^{5}I^{\circ}_{5} - 21_{5}$<br>$a^{5}L^{\circ}_{6} - 2^{5}H_{7}$<br>$a^{5}I^{\circ}_{4} - 19_{5}$               |                               |                           |
| 4191.615<br>4189.518              | $\begin{array}{c} 40\\100\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | III 6<br>III 6         | iv<br>iv         | 23850.45<br>23862.39             | -4<br>-13                    | $a^{5}I^{\circ}_{6} - 16_{5}$<br>$a^{5}I^{\circ}_{7} - z^{5}I_{7}$                                                                                  | (1.064)<br>1.175            | $0.985 \\ 1.121$          | $3803.110 \\ 3792.435$           | 50d<br>4                                                                    |                         | _                | 26286.83<br>26360.82               | -3 + 12                | $a^5I^{\circ}_4 - 21_5$<br>$a^5I^{\circ}_6 - z^3K_7$                                                              |                               |                           |
| 4179.422<br>4172.273              | 200<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | III 6<br>III 6         | v<br>v           | 23920.04<br>23961.02             | -13 - 5 - 3                  | $a^{\circ}I^{\circ}_{5} - z^{\circ}I_{6}^{\circ}$<br>$a^{\circ}I^{\circ}_{6} - z^{\circ}K_{7}^{\circ}$<br>$a^{\circ}I^{\circ}_{6} - 17_{6}^{\circ}$ | 1.061<br>(1.064)            | (1.062)<br>1.14           | 3769.695<br>3711.099<br>3710.012 | 20d<br>8d<br>6                                                              | V 2<br>V -              | 2a<br>           | 26519.84<br>26938.56<br>26946.45   | -14 + 12 + 18          | $a^{5}I^{\circ}_{5} - z^{3}H_{6}$<br>$a^{5}I^{\circ}_{5} - 27_{6}$<br>$a^{5}I^{\circ}_{5} - 28_{5}$               |                               |                           |
| 4171,824<br>4169,459<br>4168,08   | $75 \\ 15 \\ 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | III 6<br>V 6           | iv<br>ir         | 23963.60<br>23977.19<br>23985.12 | -1<br>-7<br>+3               | $a^{5}I^{\circ}_{7} - z^{3}H_{6}$<br>$a^{3}I^{\circ}_{6} - 27c$<br>$a^{3}I^{\circ}_{6} - 28c$                                                       | (1.177)                     | 1.074                     | 3699.952<br>3650.176             | $12 \\ 30$                                                                  |                         |                  | 27019.72<br>27388.16               | -6 - 5                 | $a^{5}I^{\circ}_{7} - z^{5}H_{7}$<br>$a^{5}I^{\circ}_{4} - 28_{5}$                                                | 0.607                         | 0.888                     |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                  |                                  | 1.0                          |                                                                                                                                                     |                             |                           |                                  |                                                                             |                         |                  |                                    |                        |                                                                                                                   |                               |                           |

The complexity introduced by h.f.s., coupled with the natural richness of the spectrum, has made the disentangling of overlapping patterns difficult, and less precision can be expected in the g values than is obtained with a spectrum consisting mostly of sharp lines.<sup>10</sup> Where a g value is in parenthesis the pattern of the line was incomplete, overlapped, or unresolved, so this g value was assumed from the average for the level, and the other g value was calculated from

this and the experimental data. In other cases unresolved n patterns were used, a procedure which introduces small errors.

On account of the complexity of the patterns and the necessity of using exposures at various field strengths to interpret them, any table of actual measurements would be unduly extensive even if reported in abbreviated notation.<sup>10</sup> For this reason only final g values are given, their use being to substantiate the quantum numbers assigned, and detailed results are held for a later report.

 $<sup>^{10}</sup>$  G. R. Harrison, W. E. Albertson, and N. Hosford, J. Opt. Soc. Am.  $31,\,439$  (1941).

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                          | 5<br>1<br>2<br>0<br>2<br>0<br>0<br>1<br>3 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                          | 1<br>2<br>0<br>2<br>0<br>0<br>1<br>3      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                          | 2<br>0<br>2<br>0<br>0<br>1<br>3           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                          | 2<br>0<br>2<br>0<br>0<br>1<br>3           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                          | 0<br>2<br>0<br>0<br>1<br>3                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                          | 2<br>0<br>0<br>1<br>3                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>1<br>3                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                           | 0<br>1<br>3                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                          | $\frac{1}{3}$                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                           | - 3                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                          |                                           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                           | 1                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                           | 2                                         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                          | 2                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                           | 2                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                           | 2                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                           | N N                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                           | 2                                         |
| $a^{5}K^{*}_{9}$ 8958.35 — 5 1.222 1.219 1 237 20443.00 — 6 — 1.00<br>$a^{5}L^{*}_{90}$ 9254.94 — 1 1.200 1.19 0 24 $a$ 26523.96 — 4 — 1.02<br>$a^{3}H^{\circ}_{3}$ ? 9378.57 — 8 1.033 1.044 0 25 $_{5}$ 26640.82 — 6 — 1.075<br>$b^{5}I^{\circ}_{8}$ 9646.60 — 11 1.071 1.073 1 $z^{5}I_{7}$ 26860.83 — 10 1.179 1.123<br>$b^{4}I^{\circ}_{8}$ 26944.65 — 7 1.170 1.153 1 $z^{3}Hz$ 26961.92 — 9 1.167 1.073 | 3                                         |
| $a^{5}L^{-}_{10}$ 9294.94 — 1 1.200 1.19 0 246 2053.96 — 4 — 1.02<br>$a^{3}H^{\circ}_{2}$ 9378.57 — 8 1.033 1.044 0 255 26640.82 — 6 — 1.075<br>$b^{5}I^{\circ}_{6}$ 9646.60 — 11 1.071 1.073 1 $s^{5}I_{7}$ 26860.83 — 10 1.179 1.123<br>$b^{5}I^{\circ}_{2}$ 11005 45 — 7 1.170 1.153                                                                                                                        | 1                                         |
| $a^{3}H^{5}x_{5}$ 93/8.57 — 8 1.035 1.044 0 255 20640.82 — 0 — 1.075<br>$b^{5}I^{9}_{6}$ 9646.60 — 11 1.071 1.073 1 $z^{5}I_{7}$ 26860.83 — 10 1.179 1.123<br>$b^{5}I^{9}_{6}$ 11005.45 — 7 1.170 1.153 1 $z^{3}H_{6}$ 26961.92 — 9 1.167 1.073                                                                                                                                                                | 1                                         |
| $b^{2}l^{*}_{6}$ 9646.00 — 11 1.0/1 1.0/3 1 $z^{2}l_{7}$ 26800.83 — 10 1.119 1.123 1 $b^{2}l_{7}$ 26801.92 — 9 1.167 1.073                                                                                                                                                                                                                                                                                     | 1 2                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                         |
| $U_{11} = 11000.10$ $I = 1117 11100$ $I = 2011 2001724$ $I = 1100 1101$                                                                                                                                                                                                                                                                                                                                        | 4                                         |
| $b^{5}I^{6}_{8}$ 11610.92 — 6 1.250 1.231 2 $z^{2}H_{5}$ 20973.54 — 5 1.100 1.101                                                                                                                                                                                                                                                                                                                              | 1                                         |
| $15$ $216/6.28$ — 6 — $1.001$ $2$ $2^{\circ}K_{8}$ $2/12/.88$ — 9 $1.135$ $1.145$                                                                                                                                                                                                                                                                                                                              | 1                                         |
| 25 $22039.98$ — 1 — 0.997 4 $205$ $27198.15$ — 1 — 1.007                                                                                                                                                                                                                                                                                                                                                       | å                                         |
| 35 $225/1.38$ — $1$ — $1.105$ 4 $276$ $2730.36$ — $0$ — $1.00$                                                                                                                                                                                                                                                                                                                                                 | 1                                         |
| $2^{\circ}N_5$ 220/5.40 - 0 0.007 0.821 4 265 27366.21 - 6 - 0.000                                                                                                                                                                                                                                                                                                                                             | ò                                         |
| $4_{6}$ 22/18.31 — 7 — 1.10 0 297 27423.29 — 0 — 1.075                                                                                                                                                                                                                                                                                                                                                         | 4                                         |
| $5_5$ 22885.30 — 7 — 0.994 2 308 27/61.03 — 8 1.018 1106                                                                                                                                                                                                                                                                                                                                                       | ž                                         |
| $0_{6}$ 23141.37 — 5 — 1.002 1 2*K7 23009.71 — 6 1.015 1.000                                                                                                                                                                                                                                                                                                                                                   | 1                                         |
| $7_5$ 23201.30 - 4 - 0.390 3 218 26201.37 6 1.200 11.07                                                                                                                                                                                                                                                                                                                                                        | 1                                         |
| 85 23010.07 - 5 - 1.000 1 2715 2350.08 - 0 1.214 1.105                                                                                                                                                                                                                                                                                                                                                         | 3                                         |
| $2^{214}$ 23000.18 - 5 0.000 0.064 2 $2^{214}$ 28077.72 - 7 1.130 1.001                                                                                                                                                                                                                                                                                                                                        | ŏ                                         |
| $y_7$ 23093.23 - 0 - 1.107 2 $z^{27}Ky$ 20010.04 - 4 1.222 1.217                                                                                                                                                                                                                                                                                                                                               | ĭ                                         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                           | ô                                         |

TABLE III. Pr II terms.

That so many values of o-c are less than 10 (i.e., less than 0.1 cm<sup>-1</sup>) is gratifying, as it is difficult to make exact wave-length measurements on lines with partially resolved h.f.s. 132 lines are found to agree with the wave number calculated from the combination principle to within  $\pm 0.05$  cm<sup>-1</sup>, and 78 more to within  $\pm 0.10$ , leaving only 108 with deviations greater than 0.10 cm<sup>-1</sup>.

In the first column of Table III are listed the term assignments, followed by the wave number of each and the hyperfine structure deduced from all lines considered as arising from the term, where i indicates wider separations at lower wave numbers, and n at higher. The fourth column gives the number of combinations with the term in the present array. The fifth column contains the theoretical g value of a term of the designation given, calculated from Landé's formula for LS coupling. The next column contains the measured g value of the term, averaged from measurements on the number of resolved patterns given, or on unresolved patterns reduced from several plates. The observed g values are in most cases believed to be correct to within  $\pm 0.005$  unit.

#### LOW CONFIGURATIONS OF Pr II

In accordance with the Bohr-Stoner theory the normal praseodymium atom (Z=59) can be expected to have three electrons outside a closed shell. Pr II, with two such electrons, would have a simpler spectrum than Pr I, but in both cases two 6s electrons are present which are very loosely bound; and it is necessary in Pr II to take four electrons into account when predicting terms. Among the odd configurations to be expected are  $fds^2$ ,  $fd^2s$ ,  $f^3s$  and  $f^3d$ . Even configurations which should be important are  $f^2ds$ ,  $f^2s^2$ ,  $f^3p$ , and  $f^4$ .

Many of the strongest lines of Pr II, which presumably arise from low levels, show wide h.f.s. patterns. These usually arise when a single s electron occurs in a configuration, making

TABLE IV. Expected important terms of Pr II.

| 4f <sup>3</sup> 6s | <sup>5, 3</sup> ( <i>IGFDS</i> )°, <sup>3, 1</sup> ( <i>LKIH</i> <sub>2</sub> <i>G</i> <sub>2</sub> <i>F</i> <sub>2</sub> <i>D</i> <sub>2</sub> <i>P</i> )° |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $4f^{3}5d$         | <sup>5,3</sup> (LKIHG, IHGFD, HGFDP, GFDPS, D)°<br><sup>3,1</sup> ( $NML_2K_4I_6H_7G_9F_9D_7P_5S_3$ )°                                                      |
| 4f36p              | $^{5,3}(KIH, HGF, GFD, FDP, P)$<br>$^{3,1}(ML_2K_3I_4H_5G_6F_6D_5P_3S)$                                                                                     |

|                                       | $a^5 I^{\circ}_8$                   | $a^5 I^{\circ}_7$                                                                             | a <sup>5</sup> I° <sub>6</sub>                                                                 | $a^5 I^{\circ_5}$                                 | a <sup>5</sup> I°4                | $a^{3}I^{\circ}_{7}$                                                       | $a^{3}I^{\circ}_{6}$                                                                                                | $a^{3}I^{o}_{5}$                                         |
|---------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| z <sup>5</sup> K9<br>8<br>7<br>6<br>5 | 200 III 6v<br>100 IV 6v<br>X<br>X   | X<br>200 III 6v<br>100 III 6v<br>100 V 6v<br>X                                                | $\begin{array}{c} X \\ X \\ 200 \text{ III } 6v \\ 125 \text{ III } 6v \\ 15 - 6v \end{array}$ | X<br>X<br>X<br>125 III 6v<br>200/ III 6v          | X<br>X<br>X<br>125 III 6r         | $ \begin{array}{c}                                     $                   | $\begin{array}{c} X \\ X \\ 200 \text{ III } 6r \\ 40 - 6r \\ - \end{array}$                                        | X<br>X<br>125 III 6r                                     |
| $z^{3}K_{8}$ 7 6                      | 150 III 6v<br>50 IV 6v<br>X         | 100 III 6v<br>3                                                                               | 4 <u>-</u>                                                                                     | X<br>X                                            | X<br>X<br>X                       | 100 III 6r<br>100 IV 6r                                                    | X<br>150 III 6r<br>60 V 6r                                                                                          | X<br>X<br>90 III 6ra                                     |
| z <sup>5</sup> /8<br>7<br>6<br>5<br>4 | 50 III 6v<br>90 V 6v<br>X X<br>X    | 100 III 6v<br>100 III 6v<br>50 IV 6v<br>X<br>X                                                | X<br>100 III 6v<br>200 III 6v<br>150 IV 6v<br>X                                                | X<br>X<br>125 III 6v<br>250 III 6v<br>150 III 6va | X<br>X<br>50 III 6ra<br>50 III 6r | $\begin{array}{c} 100 \text{ IV } 6r \\ 5d & - \\ x \\ x \\ x \end{array}$ | $\begin{array}{c} X \\ 15 \text{ IV} \\ 25 \text{ V} \\ \overline{\text{ fr}} \\ \overline{\text{ fr}} \end{array}$ | $\begin{array}{c} X \\ X \\ 8 \\ \end{array}$            |
| z <sup>3</sup> I7<br>6<br>5           | 150 III 6v<br>X<br>X                | 40 V 6v                                                                                       | _                                                                                              | <u>x</u>                                          | X<br>X                            | $\begin{array}{c} 35 \text{ IV} & 6r \\ 2 & - \\ X \end{array}$            | 100 III 6r<br>100 V 6r                                                                                              | 50 IV 6?r?a                                              |
| z <sup>5</sup> H7<br>6<br>5<br>4<br>3 | 100 IV 5?a<br>X<br>X<br>X<br>X<br>X | $\begin{array}{ccc} 12 & - & - \\ 100 & III & 4a \\  & X \\  & X \\  & X \\  & X \end{array}$ | 125 IV 6v<br>X<br>X                                                                            | X<br>                                             | X<br>X<br>125 III 3a              | 150 III 6r<br>X<br>X<br>X                                                  | 125 III 6r<br>X<br>X                                                                                                | $ \begin{array}{c}                                     $ |
| z <sup>3</sup> H6<br>5                | X<br>X<br>X                         | 75 III 6v<br>X<br>X                                                                           | 150 III 6v<br>X                                                                                | 20d V 2a                                          | х                                 | $30 \frac{1}{X}$                                                           | 20 III 6r<br>X                                                                                                      | 60 III 6r                                                |

TABLE V. Principal supermultiplet of Pr II.\*

\* X—indicates line forbidden by selection principle for  $\Delta J$ . ——indicates line not found.

plausible the assumption that the lowest terms of Pr II arise from such a configuration. Three likely configurations are then  $fd^2s$ ,  $f^2ds$  and  $f^3s$ . Resulting terms of the latter are given in Table IV. When Hund's theory and Meggers and Laporte's rule are used the lowest terms to be expected from these three configurations are  ${}^{5}I^{\circ}_{4}$ ,  ${}^{5}K_{5}$ , and  ${}^{5}I^{\circ}_{4}$ , respectively.

Our analysis indicates that the level  $f^{3}({}^{4}I^{\circ})$  $\cdot s^5 I^{\circ}_4$  is the lowest. As will be seen from Fig. 1, all eight levels of the low  ${}^{5}I^{\circ}$  and  ${}^{3}I^{\circ}$  terms arising from the addition of an *s* electron to the parent <sup>4</sup>*I*° term of Pr III have been found. Combinations of these terms with the even triads 5KIH and  $^{3}KIH$  which arise from the  $f^{3}p$  configuration give rise to the strongest lines of the spectrum. The raies ultimes of praseodymium are usually given<sup>11</sup> as 4179.422 and 4062.817A. These lines we have classified as  $a^5I^{\circ}_6 - z^5K_7$  and  $a^3I^{\circ}_6 - z^3K_7$ . From the usual multiplet intensity rules one would expect the leading line of the supermultiplet to be strongest, with a prediction of  $a^5 I_8^\circ - z^5 K_9$  as the raie ultime. This line, at 4100.746, is of intensity 200, but other lines are stronger. The estimated intensities of the lines of the basic supermultiplet are given in Table V, where an irregularity in intensities is to be noted. A similar irregularity is found in the homologous supermultiplet of Nd II.<sup>12</sup> The intensities need more careful study before the cause of this anomaly can be explained.

#### Hyperfine Structure

The eight levels of the terms  $f^{3}({}^{4}I^{\circ}) \cdot s^{5}I^{\circ}$  and  ${}^{3}I^{\circ}$  have marked hyperfine structure which appears to be due mainly to the interaction of the 6s electron with the moment of the nucleus. It is of interest to apply to this case the equations given by Goudsmit and Bacher.<sup>13</sup> The change in atomic energy due to the interactions between electronic and nuclear moments (h.f.s.) is given by

$$\Gamma_F = \frac{1}{2} A \left[ F(F+1) - I(I+1) - J(J+1) \right], \quad (1)$$

where J represents the mechanical moment of the electrons, I that of the nucleus (= 5/2 for Pr), F the total moment, and A is a number independent of F.

If we assume that the hyperfine structure is due to the *s* electron and that there is JJ coupling between the latter and the ion, then, as shown by Goudsmit and Bacher,

$$A = a \frac{J(J+1) + s(s+1) - J'(J'+1)}{2J(J+1)}, \qquad (2)$$

<sup>12</sup> McNally, Harrison, and Albertson, to be published shortly.

<sup>&</sup>lt;sup>11</sup> M. I. T. Wavelength Tables.

shortly. <sup>13</sup> S. Goudsmit and R. F. Bacher, Phys. Rev. **34**, 1501 (1929).



FIG. 2. Zeeman patterns of Pr II line showing hyperfine structure. Below, no-field pattern; middle, n components; above, p components. The strong line at the left is  $\lambda$ 4368.327A.

where s is the spin of the electron  $(=\frac{1}{2})$ , J' the moment of the ion, and a a constant which measures the strength of the interaction between the s electron and the nuclear moment.

There are two cases to be considered. For the levels  ${}^{b}I^{o}_{5, 6, 7, 8}$ 

and (2) gives 
$$J' = J - \frac{1}{2}$$

$$A = a/2J.$$
(3)

 $J' = J + \frac{1}{2}$ 

For the levels  ${}^{5}I^{\circ}_{4}$  and  ${}^{3}I^{\circ}_{5, 6, 7}$ 

and

$$A = -a/[2(J+1)].$$
 (4)

The difference in signs of (3) and (4) is in agree-

ment with the observed difference in the shading of the h.f.s. for lines involving the two groups of levels.

For J>1, the total width of the hyperfine structure  $\Delta\sigma$  is found from (1) to be given by

$$\Delta \sigma = \Gamma_{J+I} - \Gamma_{J-I} = A I (2J+1). \tag{5}$$

In attempting to make a quantitative comparison of theory and observation, one is confronted with the difficulty that there is a great deal of variation in the measured h.f.s. data<sup>1</sup> for lines going to a common level that is responsible for the observable h.f.s. One can take an average over these lines to get information about the level in question, but it is to be expected that some uncertainty will remain.

Table VI gives the  $\Delta\sigma$  values for the eight levels as determined from White's h.f.s. data for those lines the classification of which we have confirmed with Zeeman measurements. A minus sign indicates that the h.f.s. is inverted. From the  $\Delta\sigma$  in each case the corresponding value of *a* was calculated by means of (5) and (3) or (4). The various calculated values differ somewhat,

TABLE VI. Values of  $\Delta \sigma$  from White's h.f.s. data.

| Level                                | $\Delta \sigma$ (obs.) | a(CALC.) | $\Delta \sigma(\text{CALC}).$ |
|--------------------------------------|------------------------|----------|-------------------------------|
| 5 I°4                                | -0.80                  | +0.36    | -0.90                         |
| 3I° 5                                | -0.74                  | 0.32     | -0.92                         |
| 31°6                                 | -0.84                  | 0.36     | -0.93                         |
| 3I°7                                 | -0.91                  | 0.39     | -0.94                         |
| <sup>5</sup> <i>I</i> ° <sub>5</sub> | +1.13                  | 0.41     | +1.10                         |
| <sup>5</sup> <i>I</i> ° <sub>6</sub> | +1.10                  | 0.41     | +1.08                         |
| 5 I°7                                | +1.05                  | 0.39     | +1.07                         |
| <sup>5</sup> <i>I</i> ° <sup>8</sup> | +1.11                  | 0.42     | +1.06                         |
|                                      |                        |          |                               |

TABLE VII. g sums for  $f^{3}({}^{4}I^{\circ}) \cdot s$  levels of Pr II.

| Term                                     | g(meas.)       | g(LS)          | $g(J_j)$         | $J_{i}$                                                      | SUM g(MEAS.) | SUM g(THEOR.) |
|------------------------------------------|----------------|----------------|------------------|--------------------------------------------------------------|--------------|---------------|
| a <sup>5</sup> I°4                       | 0.605          | 0.600          | 0.600            | $(4\frac{1}{2}, \frac{1}{2})$                                |              |               |
|                                          |                |                |                  |                                                              | 0.605        | 0.600         |
| a <sup>5</sup> I°5<br>a <sup>3</sup> I°5 | 0.875<br>0.860 | 0.900<br>0.833 | 0.855<br>0.878   | $(4\frac{1}{2}, \frac{1}{2}) \\ (5\frac{1}{2}, \frac{1}{2})$ |              |               |
|                                          |                |                |                  |                                                              | 1.735        | 1.733         |
| $a^{5}I^{0}_{6}_{6}$<br>$a^{3}I^{0}_{6}$ | 1.064<br>1.037 | 1.071<br>1.024 | $1.051 \\ 1.044$ | $(5rac{1}{2},rac{1}{2})\ (6rac{1}{2},rac{1}{2})$         |              |               |
|                                          |                |                |                  |                                                              | 2.101        | 2.095         |
| a <sup>5</sup> I°7<br>a <sup>3</sup> I°7 | 1.177<br>1.143 | 1.179<br>1.143 | $1.171 \\ 1.151$ | $(6\frac{1}{2}, \frac{1}{2}) (7\frac{1}{2}, \frac{1}{2})$    |              |               |
|                                          |                |                |                  |                                                              | 2.320        | 2.322         |
| $a$ <sup>5</sup> $I^{\circ}$ 8           | 1.250          | 1.250          | 1.250            | $(7\frac{1}{2}, \frac{1}{2})$                                |              |               |
|                                          |                |                |                  |                                                              | 1.250        | 1.250         |

|                           |       | 9     |         | 8      |         | 7       |         | 6        |       | 5      |       | 4      |
|---------------------------|-------|-------|---------|--------|---------|---------|---------|----------|-------|--------|-------|--------|
| -                         | g M   | gT    | g M     | gT     | g M     | gT      | g M     | g T      | g M   | g T    | g M   | g T    |
| $z^5K_5$                  |       |       |         |        |         |         |         |          | 0.821 | 0.667  |       |        |
| $z^{5}I_{4}$              |       |       |         |        |         |         |         | <b>-</b> |       |        | 0.684 | 0.600  |
| $z^{5}K_{6}$              |       |       |         |        |         |         | 0.959   | 0.905    |       |        |       |        |
| $z^{3}K_{6}$              |       |       |         |        |         |         | 0.992   | 0.857    |       |        |       |        |
| Z <sup>b</sup> 15         |       |       |         |        |         |         |         |          | 0.911 | 0.900  |       |        |
| $z^{3}I_{6}$              |       |       |         |        |         |         | 1.009   | 1.024    |       |        | 0.007 | 0 000  |
| $z^{\mathfrak{d}}H_4$     |       |       |         |        | 1.060   | 4.054   |         |          |       |        | 0.905 | 0.900  |
| Z <sup>9</sup> K7         |       |       |         |        | 1.062   | 1.054   | 1 0 1 0 | 1 071    |       |        |       |        |
| 2º16                      |       |       |         |        | 1 1 2 2 | 1 1 70  | 1.042   | 1.071    |       |        |       |        |
| Z <sup>3</sup> 17<br>~311 |       |       |         |        | 1.123   | 1.179   | 1 072   | 1 167    |       |        |       |        |
| 2°116<br>~511             |       |       |         |        |         |         | 1.075   | 1.107    | 1 101 | 1 100  |       |        |
| $2^{\circ}\Pi_{5}$        |       |       | 1 1 / 3 | 1 153  |         |         |         |          | 1.101 | 1.100  |       |        |
| 2°11.8<br>~3 V            |       |       | 1.145   | 1.155  | 1 106   | 1 018   |         |          |       |        |       |        |
| 2°IX 7<br>75 I.           |       |       | 1 1 5 4 | 1 250  | 1.100   | 1.018   |         |          |       |        |       |        |
| 25H.                      |       |       | 1.154   | 1.230  |         |         | 1 103   | 1 214    |       |        |       |        |
| 231_<br>231_              |       |       |         |        | 1 187   | 1 1 4 3 | 1.105   | 1.214    |       |        |       |        |
| $\frac{1}{7} K_{0}$       | 1 217 | 1 222 |         |        | 1.107   | 1.140   |         |          |       |        |       |        |
| z5H.                      | 1.417 | 1.444 |         |        | 1.215   | 1.286   |         |          |       |        |       |        |
| ~ 11 /                    |       |       |         |        |         | 1.200   |         |          |       | vii    |       |        |
| Sums                      | 1.217 | 1.222 | 2.297   | 2.403* | 5.693   | 5.680   | 6.178   | 6.238    | 2.833 | 2.667* | 1.589 | 1.500* |

TABLE VIII. g sums for even levels of Pr II.

\* Indicates that all terms of that particular j value derivable from parent term 4I + p have not been found and g sum rule is not applicable. This assumes that 4I is perfect LS coupling.

partly because of errors in the values of  $\Delta \sigma$  and partly, probably, because of incomplete JJcoupling, etc. By taking

## $a = 0.40 \text{ cm}^{-1}$ ,

the value of  $\Delta \sigma$  was calculated in each case on the basis of the above equations. It is evident that the agreement is quite satisfactory.



FIG. 3. Effect of a strong magnetic field in breaking a normal hyperfine-multiple level,  $a^5I^{\circ}_4$ , containing six levels, up into 54 levels.

In the presence of the magnetic field which is used to produce the Zeeman effects, the character of the h.f.s. changes completely. The magnetic field used in practice is a strong field from the standpoint of the h.f.s. and hence it destroys the coupling between I and J, so that the component of each in the direction of the field is quantized nearly independently (Back-Goudsmit effect).<sup>14</sup>

In this case the change in atomic energy due to the external magnetic field and the magnetic moment of the nucleus is given by

$$\Delta E = (-g_I M_I + gM) \frac{He}{4\pi mc^2} + A M_I M, \quad (6)$$

where M and  $M_I$  are the components along the field of J and I, respectively, A is the same constant as in (1), g is the usual g factor for the extra-nuclear electrons, and  $g_I$  is the nuclear g factor. Since  $g_I$  is usually small compared to g, one can take

$$\Delta E = gM \frac{He}{4\pi mc^2} + AM_IM. \tag{7}$$

The first term in the right-hand member corresponds to the ordinary Zeeman effect, the

<sup>&</sup>lt;sup>14</sup> E. Back and S. Goudsmit, Zeits. f. Physik **47**, 174 (1928).

second gives the h.f.s. In this case, the width of the h.f.s. is given by

$$\Delta \sigma = (\Delta E) M_I = +I - (\Delta E) M_I = -I. \tag{8}$$

Hence in a Zeeman pattern, the sharpest lines should be found near the center of the p and of each *s* branch, for which cases |M| is a minimum. An example of this is to be seen in Fig. 2, which shows the no-field line 4368.327A and its Zeeman pattern. A diagram of the h.f.s. for the lower parent level of this line,  $a^5I^{\circ}_4$  without and with a magnetic field, according to Eqs. (1) and (7), is given in Fig. 3, where the h.f.s. spacing has been exaggerated in comparison with the separations of the Zeeman components.

## CALCULATION OF g SUMS

In Table VII are given the g sums for Pr II levels arising from the configuration  $f^{3}({}^{4}I^{\circ}) \cdot s$ . It will be noted that the agreement between the measured and theoretical sums is usually within a few tenths of a percent, though perturbations much greater than this cause deviations of the individual terms. In Table VIII, which gives the g sums for even levels, the agreement is not quite so satisfactory.

We desire to acknowledge the able assistance of workers on the M.I.T.-W.P.A. Wavelength Project, and of Mr. W. J. Hitchcock. A grant from the Rumford Committee of the American Academy of Arts and Sciences in support of the work is gratefully acknowledged.

NOVEMBER 15, 1941

#### PHYSICAL REVIEW

VOLUME 60

# On the ${}^{2}\Pi_{u} \rightarrow {}^{2}\Pi_{g}$ Bands of CO<sub>2</sub><sup>+</sup>. Part I

S. Mrozowski

Ryerson Physical Laboratory, University of Chicago, Chicago, Illinois (Received September 18, 1941)

The band spectrum appearing in emission in the region  $\lambda$ 2900-4300 and believed to belong to the CO<sub>2</sub><sup>+</sup> or possibly CO2 molecule has been studied and the excitation conditions found to be in substantial agreement with the former results of Duffendack and collaborators and of Smyth. The bands have been obtained with great intensity and photographs of most of them have been made in the second order of the 30-foot grating (actually obtained resolving power of 350,000). The rotational structure and the excitation conditions show that most of the bands belong to an extensive  $^2II{\longrightarrow}^2II$  system of bands of the molecule  $CO_2^+$ . The molecule is linear in both states; the lower <sup>2</sup> $\Pi$  appears to be the ground state <sup>2</sup> $\Pi_g$  and the upper <sup>2</sup>II is the first excited state  ${}^{2}\Pi_{u}$  of this molecule predicted by Mulliken. The complete rotational and vibrational analysis of this band system is still in progress; in this

### INTRODUCTION

W HEN a gas through which a discharge is passing contains carbon dioxide (or CO), in addition to the bands belonging to CO and CO<sup>+</sup> a great number of bands appear in the spectrum in the region  $\lambda 2800-4500$ : the most

paper the analysis of 5 double bands of the  $v''_1 = v''_2$  $=v''_3=0$  progression of the symmetrical vibration  $(v'_1)$ varying,  $v'_2 = v'_3 = 0$  is presented. The results of the analysis are:  $\nu_0^{(0,0)} = 28,532.60(^{2}\Pi_{3/2} \rightarrow ^{2}\Pi_{3/2})$  and  $\nu_0^{(0,0)}$ =28,468.48( ${}^{2}\Pi_{\frac{1}{2}} \rightarrow {}^{2}\Pi_{\frac{1}{2}}$ ). The vibrational intervals (i.e., the distances between the origins of successive bands in the progression) are:  $\Delta G'_1 = 1126.71$ ;  $\Delta G'_2 = 1122.66$ ;  $\Delta G'_3$ =1120.22;  $\Delta G'_4$ =1120.04 (all  ${}^{2}\Pi_{3/2u}$ ) and  $\Delta G'_1$ =1125.97;  $\Delta G'_2 = 1120.79; \ \Delta G'_3 = 1116.09; \ \Delta G'_4 = 1111.76 \ (all \ ^2\Pi_{\frac{1}{2}u}).$ Further for  ${}^{2}\Pi_{3/2g}B^{\prime\prime}{}_{0} = 0.3796$ ; for  ${}^{2}\Pi_{\frac{1}{2}g}B^{\prime\prime}{}_{0} = 0.3812$ ; for  ${}^{2}\Pi_{3/2u}B'_{0} = 0.3485; B'_{1} = 0.3475; B'_{2} = 0.3465; B'_{3}$ =0.3457;  $B'_4$ =0.3453; for  ${}^{2}\Pi_{\frac{1}{2}u}B'_0$ =0.3501;  $B'_1$ =0.3492;  $B'_2 = 0.3483$ ;  $B'_3 = 0.3475$ ;  $B'_4 = 0.3466$ . The A-doubling is observable only in the  ${}^{2}\Pi_{\frac{1}{2}} \rightarrow {}^{2}\Pi_{\frac{1}{2}}$  sub-bands in this progression; in  ${}^{2}\Pi_{u}$  it is bigger than in  ${}^{2}\Pi_{g}$  ( $p''_{0}=0.004$  for  $v''_1=0$ ) and increases fast with the vibrational energy.

prominent of these is the double band at  $\lambda 2883$ –2896, which appears whenever the smallest traces of CO<sub>2</sub> (or CO) are present. All these bands have been observed by many investigators (some of them as far back as 1802), but there was considerable uncertainty about their emitter,



FIG. 2. Zeeman patterns of Pr II line showing hyperfine structure. Below, no-field pattern; middle, n components; above, p components. The strong line at the left is  $\lambda 4368.327$ A.