attempts of the electron avalanches to initiate the retrograde streamers which are the forerunners of negative point breakdown with larger points. ${ }^{13}$ They result from avalanches which would cause breakdown by positive streamers in a larger uniform gap. The streamers cannot advance all the way to the point cathode owing

[^0]to the positive space charge which accumulates before the whole discharge is choked off. For still larger points the retrograde streamers reach the point and may cause breakdown.

The authors wish to express their appreciation to Makio Murayama, of the University of California Institute of Experimental Biology, for his valuable assistance in obtaining the photomicrographs.

Zeeman Effect Data and Preliminary Classification of the Spark Spectrum of Praseodymium - Pr II

Nathan Rosen,* George R. Harrison, and J. Rand McNally, Jr.
George Eastman Research Laboratories of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received August 29, 1941)

Abstract

The Zeeman effect of praseodymium has been studied at fields up to 95,000 oersteds over the range 2400 to 7100 A . g and J values have been determined for 74 Pr II levels from resolved Zeeman patterns of 141 lines. With these data, together with new wave-length data from the M.I.T.-W.P.A. Wavelength Project which have been applied to the spectroscopic interval sorter and interval recorder, a quadratic term array has been set up which accounts for 312 lines. This array is consistent with King's temperature classification of the lines and with all previous hyperfine structure observations. It is self-consistent in g values to an average deviation of 0.005 unit, and in wave numbers to an average deviation of $0.08 \mathrm{~cm}^{-1}$. Previously published hyperfine structure measurements were found insufficiently precise to aid the classification, but were of value in its verification. The lowest term of Pr II is found to be $f^{3}\left({ }^{4} I^{\circ}\right) \cdot s-{ }^{5} I^{\circ}{ }_{4}$. Most of the strong lines showing hyperfine structure arise from the $f^{3} s$ configuration.

THE spectra of praseodymium have long defied classification, both because of the complexity of this rare-earth atom, and because many of its lines show hyperfine structure difficult to measure. White ${ }^{1}$ has published extensive and valuable data on the hyperfine structure of Pr II, but these prove to be not quite precise enough to establish a classification.

The M.I.T. Wavelength Tables ${ }^{2}$ list 2708 strong lines of praseodymium, and the unpublished W.P.A. card catalog at M.I.T. contains 3454 lines of all intensities assigned to the element. Actually the spectrum is so rich that the number of observable lines is limited only by the difficulty

[^1]of distinguishing true lines from bands. The available description of the spectrum between 8000 and 2400 A is fairly good, though limited in wave-length precision by the difficulties of measurement introduced by partially resolved hyperfine structure patterns (h.f.s.). Unless wavelength values accurate to $\pm 0.003 \mathrm{~A}$ can be obtained, it is impossible in so complex a spectrum to determine which is the correct quadratic array of the many obtained from the combination

Table I. Fields for various spectrograms.

Set No.	Field	Set No.	Field
$Z 41 H$	95,000 oersteds	$Z 47$	89,900 oersteds
Z 41 L	72,340	$Z 48$	87,400
Z 42	90,860	$Z 63$	89,290
$Z 44$	91,500	$Z 73$	87,540
$Z 45$	91,500	Z 75-p	85,510
$Z 46$	86,400	Z 75-n	87,970

principle with the interval sorter ${ }^{3}$ and recorder. ${ }^{4}$ In the absence of data of suitable precision regarding wave-length and h.f.s., Zeeman effect measurements appeared to give the most powerful method of attacking the classification of the Pr spectra.

No Zeeman effect measurements on Pr lines appear to have been made hitherto, probably because of the high magnetic and spectrographic resolution needed for lines showing h.f.s. The availability of fields approaching 100,000 oersteds, ${ }^{5}$ combined with spectrographs of high dispersion capable of giving Zeeman exposures in a few minutes, has now made possible the resolution of many patterns. The data thus obtained gave the desired start on the classification, which was then verified and extended by wave-length, h.f.s., and temperature class data.

The three concave gratings and other apparatus used have been described in previous papers dealing with the spectra of other elements. ${ }^{6,7}$ An arc carrying 4 amp . was run between electrodes of silver containing 20 percent of powdered praseodymium chloride. The arc so obtained was the brightest and steadiest we have yet produced in a strong magnetic field with any element, but most of the lines emitted were found to belong to Pr II and Pr III. Eleven sets of spectrograms were obtained, at fields listed in Table I. Each set contained p, n, and no-field exposures on each of from 12 to 24 plates 20 inches long, distributed throughout the spectrum.

All spectrograms were measured in both directions with an automatic comparator, ${ }^{8}$ and were reduced by W.P.A. clerical workers, who have been of great assistance in reading, recording, and averaging the measurements used in calculating the data which follow. The field intensities given in Table I were calculated from measurements on the raies ultimes of silver, copper, and calcium, and are believed to be correct to within ± 0.3 percent.

[^2]

Fig. 1. Lowest terms of Pr II, showing alternate inverted and normal hyperfine-structure multiple terms in pairs.

Results

Table II contains the lines of Pr II which we have classified thus far with reasonable assurance. The wave-lengths in angstroms given in the first column have been taken from the M.I.T. Wavelength Catalogs, as have the arc intensities in the second column. The third column gives the temperature class, while the fourth gives the h.f.s. of the line according to White, ${ }^{1}$ or in cases marked a, from King. ${ }^{9} v$ and r in this column indicate shaded toward short and long wavelengths, respectively. The next column contains the observed wave number, while the column headed $o-c$ gives the difference, in $0.01 \mathrm{~cm}^{-1}$ units, between the observed wave nunber and that calculated from the difference between the finally assigned wave numbers of the parent levels. The column headed "Comb." gives the lower and upper terms which appear to produce the line. This is followed by two columns giving the g values for these lower and upper levels as deduced from the observed patterns of the line where these could be interpreted.

[^3]'「able II. Pr II Lines.

λ	I	Class	H.F.S.	σ ObS.	$0-c$	Сомв.	91	g_{2}	λ	I	Class	H.F.S.	σ Obs.	o-c	Сомв.	$g 1$	92
7099.54	2	-	-	14081.54	$+8$	$65{ }^{\circ}{ }_{5}{ }^{-}-3{ }_{5}$	-	-	5064.84	$2 h$	-	-	19738.47	+22	$a^{3} I^{\circ}{ }_{6}-6{ }_{6}$	-	
7021.54	6	-	-	14237.97	-13	$a^{3} \mathrm{H}^{5}{ }_{5}-8{ }_{5}$			5061.50	1	-	-	19751.50	-14	$b^{5} I^{\circ}{ }_{4}-26{ }_{5}$		
6850.55	4			14.593 .35	-12	$b^{5} I^{\circ}{ }_{1}-25$			5060.40	2	-	-	19755.79	$+5$	$a^{3} I^{4}{ }_{7}-z^{3} I_{6}$		
6564.632	10	V	-	15228.95	+6	$b^{5} 5^{\circ}{ }_{4}-z^{5} \mathrm{~K}_{5}$	0.622	0.818	5034.415	30	V	-	19857.76	+ 7	$a^{5} K^{\circ}{ }_{9}-z^{5} K^{\prime}$	1.219	1.219
6475.287	3			15439.07	$+2$	$b^{5} I^{\circ}{ }_{4}^{4}-55$			5015.543	4	-	-	19932.48	-15	$a^{3} I^{\circ}{ }_{5}-1{ }_{5}$		
6454.865	3			15487.75	-11	$b^{5} I^{\circ}{ }_{5}-11_{6}$			5013.20	2	-	-	19941.79	+9	$b^{5} I^{\circ}{ }_{4}{ }^{5}-285$	-	
6397.996	12	V		15625.58	$+13$	$b^{5} 1^{\circ}{ }_{5}^{5}-2^{5} K_{6}$	0.926	(0.959)	5004.584	5		-	19976.14	-1	$a^{5} L^{\circ} 9-308$		
6305.262	9	V		15885.39	+1	$b^{5} I^{\circ}{ }_{7}-z^{5} I_{7}$			5002.454	8	V	-	19984.63	-3	$a^{5} \mathrm{~K}^{\circ}{ }_{7}-22_{6}$	-	
6278.675	9	V		15922.52	+ 2	$b^{5} 1^{\circ}{ }_{6}-z^{5} K_{7}$	(1.073)	1.056	4991.774	3	-	-	20027.39	+12	$a^{5} I^{\circ}{ }_{6}-1{ }^{5}$	-	
6262.539		V		15963.56	$+10$	$b^{5} I^{\circ}{ }_{6}-17_{6}$	(1.073)	1.120	4991.774	$3^{\text {s }}$	-	-	20027.39	$+8$	$a^{5} L^{\circ} 8-237$	-	
${ }_{6} 6244.344$	10	V		16010.08	$+6$	$b^{5} I^{\circ}{ }_{6}-z^{5} I_{6}$			4977.578	$2 h$	-	-	20084.50	$+10$	$a^{5} L^{\circ}{ }_{6}{ }^{\text {b }}-11_{6}$		
6200.79	5	V	-	16131.40	-3	$b^{5} I^{\circ}{ }_{7}-z^{5} K_{8}$	1.145	(1.143)	4971.18	4	-	-	20110.35	+18	$a^{5} K^{\circ}{ }_{7}-24_{\epsilon}$	-	
6182.343	12	V	-	16170.64	-9	$b^{5} \mathrm{I}^{\circ}{ }_{8}-308$	1.233	1.073	4968.35	,			20122.22	+17	$a^{5} K^{{ }^{5}}{ }_{8}-30{ }_{8}$		
6165.945	50	V	-	16213.64	-3	$b^{5} I^{8}{ }_{4}^{4}-z^{5} I_{4}$	0.620	(0.684)	4956.645	40	V	6?a	20169.33	+12	$a^{3} I^{\circ}{ }_{7}-157$	(1.143)	1.057
6161.194	50	V	-	16226.15	+ 5	$b^{5} I^{\circ}{ }_{5}-z^{5} I_{5}$	0.92	0.89	4943.735	3		-	20221.99	-4	$a^{5} L^{\circ}{ }_{6}-z^{5} K_{\text {c }}$	(1.143)	
6159.093	3			16231.67	+18	$a^{3} H^{\circ}{ }_{5}-176$	1.04	1.04	4931.28	1	-	-	20273.07	$+4$	$a^{5} K^{\circ}{ }_{6}-16{ }_{5}$		
6141.508	6	V	5?a	16278.15	$+10$	$a^{3} H^{\circ}{ }_{5}-z^{5} I_{6}$			4925.630	10	V	5?a	20296.32	-1	$a^{3}{ }^{\circ}{ }_{5}{ }^{\circ}-2_{5}^{5}$		
6025.723	25	V		16590.93	-2	$b^{5} I^{\circ}{ }_{8}-2^{5} I_{8}$		-	4914.418	3		-	20342.63	0	$a^{5} K^{\circ}{ }_{6}-z^{5} K_{7}$		
5967.837	15	V	-	16751.86	$+1$		1.075	0.991	4912.629	10	V	-	20350.04	-7	$a^{5} K^{\circ}{ }_{8}-z^{3} K_{7}$	1.13	(1.106)
5892.231	10	V		16966.81	+1	$b^{5} I^{\circ}{ }_{8}-z^{3} I_{7}$	1.235	(1.187)	4901.483	5			20396.31	-6	$a^{5} L^{\circ}{ }_{9}-z^{5} I_{8}$		
5879.253	10	V	-	17004.26	0	${ }^{65} 5^{\circ}{ }_{7}-z^{3} K_{7}$	1.149	(1.106)	4886.045	20	V		20460.75	+1		-	
5823.723	60	V	2	17166.40	-30	$b^{5} I^{\circ}{ }_{5}-z^{5} I_{c}$			4879.121	30	V	$6 r$	20489.79	0	$a^{3} I^{\circ}{ }_{7}{ }^{4}-z^{5} K_{7}$		
5813.593	3	-		17196.31	-11	$3^{55} I^{\circ}{ }_{7}-2^{5} I_{8}$	1.153	(1.154)	4877.81	40	V	$6 r$	20495.30	$+17$	$a^{3} I^{4}{ }_{6}-9$	1.046	1.108
5810.622	10			17205.10	-2	$b^{5} \mathrm{I}^{\circ}{ }_{8}-z^{5} \mathrm{~K}_{9}$	1:227	(1.217)	4876.257	20	V	-	20501.46	-24	$a^{5} L^{\circ}{ }^{7}{ }^{5}-176$		
5807.55	2			17214.21	-2	$b^{5} I^{\circ}{ }_{6}-z^{5} I_{7}$			4865.237	40	V		20548.26	+13	$a^{5} \mathrm{~K}^{\circ}{ }_{7}-z^{3} H_{6}$	1.057	(1.073)
5791.382	8	V	-	17262.26	$+1$	$a^{3} H^{\circ}{ }_{5}{ }^{5}-25{ }_{5}$	1.043	1.063	4859.038	40	V	$6 r$	20574.48	-18	$a^{3} J^{\circ}{ }_{6}-11_{6}$		
5775.920	${ }_{10}{ }^{\text {h }}$	V		17308.47	$+5$	$b^{5} 5^{\circ}{ }_{4}-12{ }_{4}$			4839.540	25	-		20657.37	+1	$a^{5} K^{\circ}{ }_{5}-12_{4}$	-	
5719.090	10	V	-	17480.46	-4	$a^{5} L^{\circ}{ }_{8}-97$	1.08	(1.107)	4826.649	40		$6 r$	20712.54	+25	$\left.a^{3}\right)^{\circ}{ }_{6}-z^{5} K_{6}$	-	
5717.785 5715.37	$4{ }_{4}^{2 h}$	-	-	17484.45 1749184	-1	$a^{5} K^{\circ}{ }_{7}-97$		(1)	4826.310	9	-	-	20713.99	-10	$a^{5} K^{\circ}{ }_{7}-z^{5} K_{8}$	-	
5715.37 5711.65	4 8	-	-	17491.84 17503.23	0	$a^{5} K^{\circ}{ }_{6}-4{ }^{5}$			4824.655	5	\checkmark		20721.09	-2	$a^{5} K^{\circ}{ }_{5}-13{ }^{5}$		
5695.93	8	-	-	17551.54	-1	${ }^{5} I^{\circ}{ }_{6}{ }^{\text {a }}$ - 26 a	1.078	(1.103)	4801.344	40	V	-	20765.48	-14		1.20	1.145)
5689.185	1	-	-	17572.35	+ 8	$6^{5} I^{\circ}{ }_{7}-z^{3} I_{7}$			4799.94	2	$\underline{-}$	-	20827.79	-14		0.73	2
5687.19	$4 h$	-	-	17578.51	-20	$a^{5} K^{\circ}{ }_{5}-1_{5}$	-	-	4794.903	7	-	-	20849.67	+2	$a^{5} \mathrm{~K}^{\circ}{ }_{5}-14{ }_{5}$	-	
5685.61	3	-	-	17583.40	$+5$	$a^{3} H^{\circ}{ }_{5}-z^{3} H_{6}$			4783.354	125	V	$6 v$	20900.00	+ 6	$a^{5} I^{\circ}{ }_{7}-9_{7}$	1.170	1.105
5681.896	7	V	-	17594.89	-8	$a^{3} H^{\circ}{ }_{5}-2^{5} H_{5}$	1.035	(1.101)	4779.196	15	-	-	20918.19	$+7$	$a^{5} \mathrm{~K}^{\circ}{ }_{8}-z^{3} I_{7}$		
5677.04	3	-	-	17609.94	-1	$a^{5} L^{\circ}{ }_{7}{ }^{\text {a }}$ - ${ }^{5}{ }_{5}$		-	4778.303	35	-	$6 v$	20922.10	-27	$a^{5} I^{\circ}{ }_{6}-35$	-	
5662.19	2	-	-	17656.12	$+7$	$b^{5} I^{\circ}{ }_{5}-195$	-	-	4766.906	35	V		20972.13	+4	$a^{5} I^{\circ}{ }_{7}-10{ }_{8}$	-	
5647.64	2	-	-	17701.61	-1	$a^{5} K^{\circ}{ }_{7}-2^{5} K_{6}$	-	-	4766.322	20	-	$6 r$	20974.69	+3	$a^{3} 1^{\circ}{ }_{5}-4_{8}^{8}$	-	
5637.36	2	-	-	17733.64	-14	$b^{5} I^{\circ}{ }_{6}-276$	-	-	4765.222	80	V	$6 v$	20979.53	+ 6	$a^{5} I^{\circ}{ }_{7}-11_{6}$	1.179	(1.156)
5634.93	2			17741.54	-7	$6^{5} I^{\circ}{ }_{6}-285$	-	-	4762.727	60	V	$6 r$	20990.52	-6	$a^{3} I^{\circ}{ }_{6}-z^{3} K_{6}$	1.038	(0.992)
5621.854	15	V		17782.80	-10	$a^{5} L^{\circ}{ }_{6}-15$		-	4758.910	3	-	-	21007.36	-18	$a^{5} L^{\circ}{ }_{8}-297$	-	
5610.219	6	V		17819.68	$+10$	$a^{3} H^{\circ}{ }_{5}-265$	1.043	1.073	4757.937	100	-	-	21011.66	+16	$a^{5} K^{\circ}{ }_{7}-297$	-	-
5582.39	3			17908.51	+2	$b^{5} \mathrm{I}_{5}^{5}-22.6$	-	-	4754.635	15	-	$6 v$	21026.25	-14	$a^{5} I^{7}{ }_{6}-z^{5} K_{5}$	-	-
5582.11	2	-		17909.41	-9	$a^{5} K^{\circ}{ }_{8}-z^{5} K_{7}$	--	-	4746.635	15	-	$6 v$	21026.25	-14	$a^{5} I^{\circ}{ }_{6}-z^{5} K_{5}$		
5580.39	2	V		17914.93	$+3$	$a^{5} K^{\circ}{ }_{6}-6{ }_{6}$			4746.93	100	V	$6 r$	21060.38	-1	$a^{5} K^{\circ}{ }_{6}-21_{5}$	(0.915)	0.886
5571.841	10	V	-	17942.42	+1	$a^{5} K^{\circ}{ }_{5}-25$	0.684	0.998	4744.925	100	V	$6 v$	21069.28	-2	$a^{5} I^{\circ}{ }_{6}-4{ }_{6}$	(1.064)	1.10
5560.21	1	-	-	17979.95	+ 4	$a^{5} K^{\circ}{ }_{7}-z^{3} K_{6}$	--	-	4738.622	$8 d$		-	21097.30	$+10$	$a^{3} I^{\circ}{ }_{7}-20{ }_{6}$	-	
5551.08	2	-	-	18009.52	-12	$a^{3} \mathrm{H}^{\circ}{ }_{5}-28_{5}$	-		4734.177	100	V	$6 v$	21117.09	-1	$a^{5} 1^{\circ}{ }_{7}-z^{5} K_{6}$	1.176	0.961
5543.87	2	-	-	18032.95	- 6	$a^{5} L^{\circ}{ }_{7}^{7}-6 e$	-		4728.630	40	V	$6 r$	21141.88	-3	$a^{3} I^{\circ}{ }_{5}-5{ }_{5}$	(0.860)	0.98
5519.39	2	V		18112.93	$+2$	$b^{5} I^{\circ}{ }_{8}-z^{3} K_{8}$			4721.910	3			21171.97	-1	$a^{5} K_{6}{ }^{\circ}-22_{6}$		
5509.146	50	V	-	18146.61	+1	$a^{5} L^{\circ}{ }_{6}-25$	0.723	0.998	4707.939	50	IV	60	21234.79	+45	$a^{5} I^{\circ}{ }_{5}-1{ }_{5}$	0.858	0.986
5502.20	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	-	-	18169.51	+13	$a^{5} K^{\circ}{ }_{9}-z^{5} K_{8}$			4707.541	80	V	$6 v$	21236.58	+ 3	$a^{5} I^{\circ}{ }_{6}-5_{5}$	1.064	(0.994)
5431.135	3	IV	-	18407.25	+8	$b^{5} I^{\circ}{ }^{\circ}{ }^{5}-z^{5} \mathrm{H}_{7}$	-	-141	4689.341	4	-	-	21319.01	-13	$a^{3} I^{\circ}{ }_{7}-22{ }_{6}$		
5411.555	25	IV	-	18473.85	+4	$a^{5} K^{\circ}{ }_{5}{ }^{5}-3_{5}$	0.660	1.141	4685.447	5	-	-	21336.73	$+3$	$a^{5} L^{\circ}{ }_{7}-237$	-	
5381.262	60	V	-	18577.85	+2	$a^{5} K^{\circ}{ }_{5}-z^{5} K_{5}$	0.685	0.822	4679.498	2	-	-	21363.94	+ 4	$a^{5} L^{\circ}{ }_{8}-308$	-	
5368.830	5d		-	18620.87	+13	$a^{5} \mathrm{~K}^{\circ}{ }_{5}-4_{6}$	-	-	4679.112	8	-	$6 r$	21365.61	-14	$a^{3} I^{\circ}{ }_{7}-237$	-	
5352.403	80	V	$3 ?$	18678.02	+2	$a^{5} L^{\circ}{ }_{6}-3_{5}$	0.712	1.155	4678.168	12	-	-	21369.93	,	$a^{5} \mathrm{~K}^{\circ}{ }_{5}-z^{5} \mathrm{H}_{4}$	-	
5331.483		V		18751.31	0	$a^{5} K^{\circ}{ }_{6}-11_{6}$	0.914	1.157	4672.595	3	-	-	21395.41	+2	$a^{5} I^{\circ}{ }_{7}-z^{3} K_{6}$	-	
5322.778	30	V	-	18781.97	-5	$a^{5} L^{\circ}{ }_{6}-z^{5} K_{5}$	0.718	0.820	4672.081	100	IV	$6 r$	21397.76	+4	$a^{3} I^{\circ}{ }_{5}-6_{6}$	0.868	1.070
5321.82	8	V	-	18785.35	-11	$a^{5} \mathrm{~K}^{\circ}{ }_{8}-237$	-	-	4668.454	6	-	-	21414.39	+ 4	$a^{5} K^{\circ}{ }_{6}-25{ }_{5}$	-	-
5321.086	8	V		18787.94	-5	$a^{5} K^{\circ}{ }_{5}{ }^{5}-5_{5}$	-	-	4668.230	10	V	$6 r$	21415.42	-14	$a^{3} I^{\circ}{ }_{6}{ }^{\circ}-13{ }_{6}$	-	
5312.327	5	V	$6 r a$	18818.92	-2	$a^{3} I^{\circ}{ }_{7}-9{ }_{7}$		-	4664.647	100	V	$6 r$	21431.87	-6	$a^{3} I^{\circ}{ }_{6}-z^{3} I_{6}$	1.037	(1.009)
5311.119	10	V	-	18823.20	-10	$a^{5} \mathrm{~K}_{9}{ }_{9}-30{ }_{8}$	1.217	1.073	4651.517	125	V	$6 v$	21492.35	-1	$a^{5} I^{\circ}{ }_{6}-6{ }_{6}$	1.05	1.07
5308.96	3	-	-	18830.86	+9	$a^{5} L^{\circ}{ }_{8}-157$		-	4646.059	50	V	$6 r$	21517.61	-4	$a^{3} I^{\circ}{ }_{5}-7{ }_{5}$	0.863	0.893
5300.145	2	-	-	18862.18	$+10$	$b^{5} I^{8}{ }_{6}-z^{5} H_{6}$		-	4628.751	200	III	$6 v$	21598.06	+2	$a^{5} I^{\circ}{ }_{5}-2{ }_{5}$	0.873	0.994
5300.145	2	-	-	18862.18	+14	$a^{5} L^{\circ}{ }_{7}{ }_{7}-108$			4627.05	15		-	21606.01	-11	$a^{5} L^{\circ}{ }_{6}-1{ }^{\text {a }}$		
5298.106	25	V	-	18869.44	+2	$a^{5} L^{\circ}{ }_{7}-11_{6}$	0.928	1.160	4612.072	60	IV	6?a	21676.19	-9	$a^{5} I^{\circ}{ }_{4}-1{ }_{15}$	0.601	0.995
5292.630	50	IV	-	18888.95	+1	$a^{5} K^{\circ}{ }_{6}-z^{5} K_{6}$	0.914	(0.959)	4603.478	4			21716.64	-4	$a^{5} L^{\circ}{ }_{6}{ }^{5}-17{ }_{6}$		
5292.10	60	V	$6 r a$	18890.85	-24	$a^{3} \mathrm{I}^{\circ}{ }_{7}-10_{8}$	(1.143)	1.138	4595.87	6	-	-	21752.59	+12	$a^{5} L^{\circ}{ }_{7}{ }^{\text {\% }}$ - $z^{5} I_{7}$		
5289.937	,		-	18898.57	+10	$a^{3} I^{\circ}{ }_{7}-11_{6}$	1.142	(1.156)	4589.76	$5 d$	\bar{V}	-	21781.55	+ 3	$a^{3} I^{\circ}{ }_{7}-z^{5} I_{7}$	-	
5263.878	25	IV	-	18992.13	- 5	$a^{5} L^{0}{ }_{6}-55$	0.724	0.996	4581.584	10	V	6? 4	21820.42	$+5$	$a^{5} I^{\circ}{ }_{7}-13_{6}$	-	-
5259.743	125	V	-	19007.07	$+2$	$a^{5} L^{0}{ }_{7}-z^{5} K_{6}$	0.925	(0.959)	4578.139	40	V	$6 v$	21836.84	$+10$	$a^{5} I^{\circ}{ }_{7}-z^{3} I_{c}$	(1.177)	1.010
5258.20	2	V	520	19012.64	0	$\mathrm{b}^{5} \mathrm{I}^{\circ}{ }_{7}-z^{5} \mathrm{H}_{7}$	-	-	4576.320	50	V	6 ra	21845.51	+11	$a^{3} I^{\circ}{ }_{6}-157$	(1.037)	1.066
5251.738	10	V	5?a	19036.03	-7	$a^{3} I^{\circ}{ }_{7}-2^{5} K_{6}$	1.138	(0.959)	4574.636	4	-	-	21853.56	0	$a^{5} L^{\circ}{ }_{7}-z^{3} H_{6}$	-	-
5220.113	80	IV	-	19151.35	0	$a^{5} L^{\circ}{ }_{8}-z^{5} K_{7}$	1.03	(1.062)	4570.565	40	V	$6 r$	21873.02	0	$a^{3} I^{\circ}{ }_{5}-85$	0.856	1.064
5219.053	50	IV	-	19155.24	-7	$a^{5} K^{\circ}{ }_{7}-z^{5} K_{7}$	1.040	1.064	4568.545	30	-	-	21882.69	+8	$a^{3} I^{\circ}{ }_{7}-z^{3} H_{6}$		
5216.761	8		-	19163.66	-7	$a^{5} K^{\circ}{ }_{5}-75$	-	--	4561.461	6	--	-	21916.68	$+15$	$a^{3} I^{\circ}{ }_{5}-z^{6} I_{4}$	-	-
5208.460	0	V	-	19194.20	-11	$6^{5} 5^{\circ}{ }_{4}^{\circ}-25{ }_{5}$	-	-	4561.10	3	-	-	21918.41	+8	$a^{5} L^{\circ}{ }_{9}-z^{3} K_{8}$	-	-
5207.905	15			19196.27	0	$a^{5} \mathrm{~K}^{\circ}{ }_{7}-17_{6}$	-	-	4554.790	4	V	-	21948.78	-13	$a^{5} L^{\circ}{ }_{6}{ }^{5}-18{ }_{5}$	-	-
5206.562 5195.307	30 20	V	-	19201.20	-3	$a^{5} K^{\circ}{ }_{8}-z^{5} I_{7}$	-	-	4550.882	10	V	$6 v$	21967.63	- 3	$a^{5} I^{\circ}{ }_{6}-85$	1.07	1.07
5195.307 5195.110	10	V	-	19242.79	-4	$a^{5} K^{\circ}{ }_{7}-2^{5} I_{6}$	-	-	4550.06	15	-	-	21971.59	-9	$a^{5} \mathrm{~K}^{\circ}{ }_{6}-26_{5}$	-	-
5195.110 5183.848	10 5	V	三	19243.52 19285.33	0 -1	$a^{5} \mathrm{~K}^{\circ}{ }_{9}-z^{5} \mathrm{I}_{8}$	-	-	4540.151	5	II	-	22019.54	$+2$	$a^{5} L_{7}{ }^{\circ}-z^{5} \mathrm{~K}_{8}$	-	-
5175.833	10		-	192815.20	+1	$a^{5} L^{\circ}{ }^{7}-z^{3} K_{6}$	-	-	4535.921	125	III	$6 r$	22040.08	$+10$	$a^{5} I^{0}{ }^{4}-25$	0.605	0.998
5173.898	100	IV	-	19322.41	+1	${ }_{a^{5} L^{5}{ }_{9}^{6}-{ }^{5}{ }^{5} K_{8}}$	1.116	(1.143)	4534.154 4524.695	150	IV	$6 r$	22048.67 22094.76	+10 -13	$a^{3} I^{\circ}{ }_{7}-z^{5} K_{8}$ $a^{5} K_{7}{ }^{\text {a }}$ - ${ }^{5} H_{6}$	(1.143)	1.146
5161.743	40	V	2?a	19367.92	0	$a^{5} L^{0}{ }_{6}-75$	0.720	(0.896)	4524.365	10	IV	-	22096.37	-1	$a^{3} I^{\circ}{ }_{6}^{7}-16_{5}$		
5135.125	50	V	-	19468.31	$+3$	$a^{5} \mathrm{~K}^{\circ}{ }_{8}-z^{5} \mathrm{~K}_{8}$	1.160	1.141	4517.595	40	IV	$6 v$	22129.48	-1	$a^{5} I^{\circ}{ }_{5}-3{ }_{5}$	0.880	1.165
5129.520	100	IV	-	19489.58	-1	$a^{5} K^{0}{ }_{6}-z^{5} I_{5}$	0.91	0.91	4510.160	200	III	$6 r$	22165.97	-1	$a^{3} I^{5}{ }_{6}-z^{5} K_{7}$	1.029	(1.062,
5121.7	2	-	-	19519.34	+24	$a^{5} K^{\circ}{ }_{5}{ }^{\text {a }}$ - 8_{5}^{5}			4501.828	20		-	22206.99	$+5$	$a^{3} I^{\circ}{ }_{6}-17{ }_{6}$	-	(1.062,
5118.021	4	V	-	19533.37	+6	$a^{5} I^{\circ}{ }_{8}^{\circ}-108$	-	(1217)	4496.429	200	11 I	$6 r$	22233.65	-16	$a^{3} \mathrm{I}^{\circ}{ }_{5}-11_{6}$	0.861	1.153
5110.768	80	V	-	19561.10	0	$a^{5} L^{\circ}{ }^{10}-z^{5} K_{9}$	1.19	(1.217)	4496.429	200	III	$6 v$	22233.65	+19	$a^{5} I^{\circ}{ }_{5}-z^{5} K_{5}$	0.875	(0.821)
5110.382	80	V	-	19562.58	-3	$a^{5} \mathrm{~K}_{5}^{\circ}-z^{5} I_{4}$	0.686	0.686	4493.119	25	-	$6 v$	22250.03	-21	$a^{5} I^{\circ}{ }_{6}-97$	-)

Table II.--Continued.

λ	I	Class	H.f.S.	$\boldsymbol{\sigma}$ OBS.	$0-c$	Сомв.	91	$g 2$	λ	I	Class	H.F.S.	σ OBS.	$0-c$	Comb.	g_{1}	g_{2}
4493.119	25	\checkmark	$6 v$	22250.03	-18	$a^{5} I^{\circ}{ }_{7}-157$	-	-	4164.192	200	III	$6 v$	24007.52	9	$a^{5} I^{\circ}{ }_{6}-z^{5} I_{6}$	-	-
4492.427	25	V	$6 r$	22253.45	-5	$a^{3} I^{\circ}{ }_{6}-z^{5} I_{6}$	-		4161.65	8			24022.18	+1	$a^{3} I_{6}^{\circ}-297$		
4487.821	40	V	$6 v$	22276.29	-8	$a^{5} I^{\circ}{ }_{5}{ }^{\circ}-46$			4148.457	15	III	5?a	24098.58	+2	$a^{3} I^{\circ}{ }_{5}{ }^{\circ}-18{ }_{5}$	0.863	1.011
4479.618	35			22317.09	$+16$	$a^{5} L^{\circ}{ }_{7}{ }^{\circ}-297$			4143.136	200	III	6 v	24129.52	-5	$a^{5} \Gamma^{5}{ }_{7}-2^{5} K_{8}$	(1.177)	1.141
4477.259	125	IV	$6 v$	22328.85	+8	$a^{5} I^{\circ}{ }_{6}-11_{6}$	1.054	1.150	4141.257	150	III	$6 v$	24140.47	-16	$a^{5} I^{\circ}{ }_{8}{ }^{\circ}-z^{3} I_{7}$	1.242	1.172
4473.835	30			22345.93	-5	$a^{3} I^{\circ}{ }_{7}-297$			4132.230	15	IV	6va	24193.21	+1	$a^{5} I^{\circ}{ }_{6}{ }^{\circ}-185$		
4468.712	125	III	$6 r$	22371.56	-20	$a^{3} I^{\circ}{ }_{5}-2^{5} K_{6}$	0.864	0.963	4118.481	250	III	$6 v$	24273.97	-15	$a^{5} I^{\circ}{ }_{5}-2^{5} I_{5}$	(0.875)	0.920
4458.336	90	V	$6 v$	22423.62	-12	$a^{5} I^{\circ}{ }_{8}{ }^{5}-2^{5} I_{7}$	(1.250)	1.125	4111.871	30	IV	$5 a$	24312.99	0	$a^{5} \Gamma^{5}{ }_{5}-12{ }_{4}$	0.878	0.914
4454.382	60	IV	$6 v$	22443.52	-10	$a^{5} I^{\circ}{ }_{5}-5_{5}$			4100.746	200	III	$6 v$	24378.94	-1	$a^{5} I^{\circ}{ }_{8}-z^{5} \mathrm{~K}_{9}$	1.256	1.221
4449.867	125	III	$6 v$	22466.30	-10	$a^{5} I^{\circ}{ }_{6}-z^{5} K_{6}$	1.075	0.961	4100.22	15			24382.08	$+1$	$a^{5} I^{\circ}{ }_{7}-276$		
4429.238	60	III	$6 r$	22570.93	-45	$a^{5} I^{0}{ }_{4}-3_{5}$	0.608	1.165	4096.822	30	III	6?r?a	24402.30	-2	$a^{3} I^{\circ}{ }_{5}-195$	0.858	1.024
4429.238	100	III	$6 v$	22570.93	+14	$a^{5} I^{\circ}{ }_{7}{ }^{0}-z^{5} K_{7}$	(1.177)	1.061	4091.686	50			24432.93	+7	$a^{3} I^{5}{ }_{5}-20{ }_{6}$		
4421.231	100	IV	$6 v$	22611.80	+5	$a^{5} I^{\circ}{ }_{7}-17_{6}$	1.175	1.110	4081.018	50	III	$6 v$	24496.80	-16	$a^{5} I^{\circ}{ }_{6}-195$	(1.064)	1.035
4413.765	90	III	$6 r a$	22650.05	0	$a^{3} I^{\circ}{ }_{5}-z^{3} K_{6}$	0.860	0.992	4075.917	$15 d$		-	24527.46	-4	$a^{5} I^{\circ}{ }_{6}-20{ }^{\text {a }}$		
4412.155	50	IV	$6 v$	22658.31	0	$a^{5} I^{\circ}{ }_{7}-z^{5} I_{6}$	(1.177)	1.046	4073.305	9			24543.18	-3	$a^{3} I^{\circ}{ }_{5}-21_{5}$		
4408.844	125	III	$6 r$	22675.34	-6	$a^{5} I^{\circ}{ }_{4}-2^{5} K_{5}$	0.605	0.823	4062.817	150	III	$6 r$	24606.54	-5	$a^{3} I^{\circ}{ }_{6}-z^{3} K_{7}$	1.035	1.106
4405.849	100	IV	$6 v$	22690.75	-4	$a^{5} I^{\circ}{ }_{8}{ }^{\text {a }}$ - $2^{5} \mathrm{~K}_{8}$	(1.250)	1.146	4061.336	4		-	24615.51	+ 4	$a^{5} L^{\circ}{ }_{7}-z^{3} K_{8}$		
4403.605	100	V	$6 r$	22702.31	-3	$a^{3} I^{\circ}{ }_{7}-30{ }_{8}$			4056.543	100	III	$6 r$	24644.60	+8	$a^{3} \Gamma_{7}^{7}-z^{3} K_{8}$	(1.143)	1.149
4395.788	30	V		22742.68	-17	$a^{3} I^{\circ}{ }_{6}-19_{5}$	1.052	(1.025)	4054.845	50	III	$6 r$	24654.92	+12	$a^{3} I^{\circ}{ }_{5}-22_{6}$	0.862	0.991
4372.385	10			22864.41	$+6$	$a^{5} K^{\circ}{ }_{5}-z^{3} H_{6}$			4044.818	50	III	6 ra	24716.03	-3	$a^{5} I^{\circ}{ }_{4}{ }^{4}-z^{5} I_{5}$	0.605	0.910
4368.327	125	III	$6 r$	22885.65	+9	$a^{5} I^{\circ}{ }_{4}-5_{5}$	0.605	0.994	4039.357	50	III	$6 v$	24749.45	+1	$a^{5} \Gamma^{\circ}{ }_{6}-22_{6}$	1.08	0.98
4365.328	6		-	22901.37	+2	$a^{5} L^{\circ}{ }_{7}-z^{3} K_{7}$			4038.467	15	III	6? ra	24754.91	-2	$a^{5} I^{\circ}{ }_{4}{ }^{4}-12{ }_{4}$	0.613	0.918
4359.795	100	IV	$6 r$	22930.43	+3	$a^{3} I^{\circ}{ }_{7}-z^{3} K_{7}$	(1.143)	1.102	4034.30	20		$6 r$	24780.47	+16	$a^{3} I^{\circ}{ }_{5}-24{ }_{6}$?		
4352.752	4	-		22967.54	+9	$a^{5} L^{{ }_{6}{ }_{6}-z^{5} I_{7}}$			4033.857	50	III	$6 v$	24783.19	-15	$a^{5} I^{\circ}{ }_{7}-308$	(1.177)	1.077
4351.849	80	III	$6 r$	22972.30	-11	$a^{3} I^{\circ}{ }_{5}-z^{5} I_{5}$	(0.860)	0.904	4031.755	50	III	$6 v$	24796.11	+6	$a^{5} I^{\circ}{ }_{6}-237$	(1.064)	1.089
4347.490	100	IV	$6 r$	22995.33	0	$a^{3} I^{\circ}{ }_{6}-22{ }_{6}$	1.047	(0.990)	4015.389	50	III	6 ? ra	24897.18	+1	$a^{3} I^{\circ}{ }_{5}-25_{5}$	0.858	1.073
4338.694	100	IV	${ }^{6} r$	23041.98	+4	$a^{3} I^{\circ}{ }_{6}-237$	(1.037)	1.075	4008.714	150	III	$6 r$	24938.64	-14	$a^{3} I^{\circ}{ }_{7}{ }^{5}-z^{5}{ }^{5}{ }_{7}$	(1.143)	1.209
4333.913	150 30	IV	$6 v$	23067.37	+32	$a^{5} I^{\circ}{ }_{6}{ }^{3}-z^{5} I_{5}$	1.062	0.910	4000.190	50	III	$6 v$	24991.77	-4	$a^{5} I^{\circ}{ }_{6}-25_{5}$	(1.064)	1.080
4332.4872	30 5	-	-	23074.97	-6	$a^{3} I^{\circ}{ }_{5}-13{ }_{6}$			3997.054	100	III	$6 v$	25011.38	-2	$a^{5} I^{0}{ }_{7}-z^{3} K_{7}$	(1.177)	1.101
4329.415	50	IV	$6 ? r$ a	23091.34	-6	$a^{3} I^{\circ}{ }_{5}-z^{3} I_{6}$	(0.860)	1.009	3994.834 3989	200	III	$6 v$	25025.28 2505729	-28	$a^{5} I^{0}{ }_{5}-z^{5} H^{5}$ $a^{5} I_{5}^{0}-165$	0.89 0.873	0.89 0.982
4327.698	3	-	-	23100.50	-8	$a^{5} K^{\circ}{ }_{5}-26{ }_{5}$		-	3982.063	125	III	$6 r$	25105.53	-3	$a^{3} I^{\circ}{ }_{6}-2^{5} H_{6}$	(1.037)	1.106
4323.922	35	IV	$6 r$	23120.67	-17	$a^{3} I^{\circ}{ }_{6}-24{ }_{6}$			3972.164	125	III	$6 v$	25168.11	-1	$a^{5} \Gamma^{\circ}{ }_{5}-17_{6}$	0.877	1.118
4323.551	100	IV	$6 r$	23122.65	$+9$	$a^{3} I^{\circ}{ }_{7}{ }^{5}-z^{5} I_{8}$	(1.143)	1.167	3971.164	100	III	$6 r$	25174.44	-16	$a^{3} I^{\circ}{ }_{6}{ }^{\text {a }}$ - $z^{3} I_{7}$	(1.037)	1.187
4314.74	2		-	23169.87	+20	$a^{5} I^{\circ}{ }_{6}{ }^{\circ}-13{ }_{6}$		-	3966.573	100	III	$6 v$	25203.57	$+1$	$a^{5} I^{\circ}{ }_{7}{ }^{\text {a }}$ - $z^{5} I_{8}$	(1.177)	1.154
4313.843	4	-		23174.69	-4	$a^{5} 5^{\circ}{ }^{\circ}{ }^{5}-85$			3965.263	100	III	$6 v$	25211.90	+8	$a^{5} I^{\circ}{ }_{e}-z^{5} I_{7}$	(1.064)	1.128
4308.457	20		,	23203.66	$+9$	$a^{3} I^{\circ}{ }_{5}-145$			3964.825	125	III	$6 v$	25214.68	0	$a^{5} I_{5}^{\circ}-z^{5} I_{6}$	(0.875)	1.039
4305.763	150	III	$62 a$	23218.18	-6	$a^{5} I^{\circ}{ }_{5}-2^{5} I_{4}$	0.877	0.683	3964.261	60	III	$6 r$	25218.27	0	$a^{3} \Gamma^{5}{ }_{5}-z^{3} H_{6}$	0.858	1.071
4302.100	60			23237.95	$+25$	$a^{3} I^{\circ}{ }_{6}-25_{5}$	(1.037)	1.065	3962.445	60	III	6?a	25229.83	-6	$a^{3} I^{\circ}{ }_{5}-z^{5} \mathrm{H}_{5}$	0.869	1.108
4297.764	50	III	$6 r$	23261.40	+10	$a^{5} I^{5}{ }_{4}-75$	0.601	0.895	3953.516	150	III	$6 v$	25286.81	+ 7	$a^{5} I^{\circ}{ }_{8}{ }^{5}-z^{3} K_{8}$	(1.250)	1.145
4292.351	5			23290.72	+8	$a^{5} K^{\circ}{ }_{5}-285$	-	-	3949.438	150	III	$6 v$	25312.92	+1	$a^{5} I^{\circ}{ }_{6}{ }^{\text {a }}$ - $z^{3} H_{6}$	1.08	1.08
4290.99	5			23298.11	-10	$a^{5} I^{\circ}{ }_{6}-14{ }_{5}$	-	-	3947.633	125	III	$6 v$	25324.49	-4	$a^{5} I^{\circ}{ }_{6}-z^{5} H_{5}$	(1.064)	1.125
4288.830	8		-	23309.85	-19	$a^{5} \mathrm{~K}^{\circ}{ }_{7}-z^{3} \mathrm{~K}_{8}$	-	-	3935.823	125	III	$6 ? v a$	25400.48	+21	$a^{5} I^{5}{ }_{5}-185$	(0.875)	0.990
4282.440 4272.271	75 50	IV	$6 v$ $6 v$	23344.63 23400.18	+7 +4	$a^{5} I^{\circ}{ }_{8}-308$ $a^{5} I_{7}{ }^{\text {c }}$ - 22_{6}	1.245 1.177	1.071 0.991	3927.454 392545	80 125	III	6?ra	25454.60	$+10$	$a^{3} I^{\circ}{ }_{5}^{5}-265$	0.859	1.066
4263.805	50	IV	$6 v$	23446.65	-10	$a^{5} \mathrm{I}^{\circ}{ }_{7}^{7}-23{ }_{7}$	1.177	0.991	3925.456 3920.524	${ }_{30}^{125}$	III	$3 a$ $2 a$	25467.56	+6 +10	$a^{5} I^{\circ}{ }^{4}-z^{5} H_{4}$ $a^{5} I_{4}^{4}-165$	0.603 (0.605)	0.903 0.985
4261.796	15	IV	$6 r a$	23457.71	0	$a^{3} I_{6}{ }_{6}-2^{5} I_{7}$	-	-	${ }_{3918.856}^{3920.54}$	100	III	$4 a$	25510.45	+10 +8	${ }^{a^{5} 5^{5}{ }^{\text {a }}{ }^{4}-z^{5}{ }^{5} H_{6}}$	(1.177)	0.985 1.094
4259.64	$5 d$		-	23469.58	+22	$a^{5} L^{0}{ }_{7}-z^{3} I_{7}$	(113)	-	3912.898	150	III	$4 a$	25549.29	+15	$a^{5} I^{\circ}{ }_{6}-26_{5}$	(1.064)	1.097
4254.420	35	IV	$6 r$	23498.38	-3	$a^{3} I^{\circ}{ }_{7}-z^{3} I_{7}$	(1.143)	1.191	3908.033	100	IV	5?a	25581.10	$+10$	$a^{5} I^{\circ}{ }_{8}-2^{5} \mathrm{H}_{7}$	(1.250)	1.220
4249.484	20	V	620	23525.67	+2	$a^{5} I^{\circ}{ }^{7}{ }^{7}-246$	(1.177)	0.98	3899.555	10		-	25636.71	-2	$a^{3} I^{\circ}{ }_{5}{ }^{\circ}-276$		
4247.662	60	III	$6 v$	23535.75	-9	$a^{5} I^{\circ}{ }_{5}-11_{6}$	0.878	1.156	3889.330	150	IV	5a	25704.11	+13	$a^{5} I^{\circ}{ }_{5}-19_{5}$	(0.875)	1.025
4243.528	20	III	$6 r$	23558.69	-11	$a^{3} 5^{\circ}{ }_{6}-z^{3} H_{6}$	1.022	(1.073)	3885.190	100	IV	$4 a$	25731.51	+14	$a^{5} I^{\circ}{ }_{6}-276$	1.058	1.068
4241.019 4236.210	50 20	IV	$6 v$	23572.62	0 -13	$a^{5} I^{\circ}{ }_{8}-z^{3} K_{7}$	(1.250)	1.108	3884.741	4		-	25734.48	-9	$a^{5} I^{\circ}{ }_{5}-20_{6}$		-
4225.327	50	III	$6 r$	23660.17	-1		(1.064) 0.604	1.085 0.685	3884.039 3878.307	5	-	-	25739.13	-7 -11	${ }^{5}{ }^{5} I^{\circ}{ }_{6}-28_{5}{ }^{5}{ }^{5}{ }_{6}-29_{7}$	-	-
4222.98	125	III	$6 v$	23673.31	-16	$a^{5} I^{0_{5}^{4}}{ }^{5}-2^{5} K_{6}$	0.877	0.961	3868.578	15	-	-	25841.99	-11	$a^{5} 5_{6}{ }^{5}-297$ $a^{5} \mathrm{I}_{4}-185$	-	
4213.96	12		-	23723.99	+14	$a^{3} I^{\circ}{ }_{5}-z^{5} \mathrm{H}_{4}$			3868.125	4	-	-	25845.02	+10	$a^{5} I^{\circ}{ }_{5}-21_{5}$		
4208.305	18	III	$6 r a$	23755.87	+ 2	$a^{3} I^{\circ}{ }_{5}-16_{5}$	(0.860)	0.980	3826.708	-	-	-	26124.74	+3	$a^{5} L^{\circ}{ }_{6}-z^{5} H_{7}$	-	
4206.739	50	III	$6 v$	23767.71	-7	$a^{5} I^{0}{ }_{8}-z^{5} I_{8}$	1.256	1.160	3823.571	10	-	-	26146.17	+20	$a^{5} I_{4}^{\circ}-195$	-	
4191.615	40	III	$6 v$	23850.45	-4	$a^{5} I^{\circ}{ }_{6}-16_{5}$	(1.064)	0.985	3803.110	50 d	-	-	26286.83	-3	$a^{5} \Gamma^{\circ}{ }_{4}-21_{5}^{5}$	-	
4189.518	100	III	$6 v$	23862.39	-13	$a^{5} I^{\circ}{ }_{7}-z^{5} I_{7}$	1.175	1.121	3792.435	4		-	26360.82	+12	$a^{5} I^{\circ}{ }_{6}-z^{3} K_{7}$		
4180.68	8		-	23812.84	-13	$a^{3} I^{\circ}{ }_{5}-2^{5} I_{6}$			3769.695	20 d	V	$2 a$	26519.84	-14	$a^{5} I^{\circ}{ }_{5}-z^{3} H_{6}$		
4179.422	200	III	$6 v$	23920.04	-5	$a^{5} I^{\circ}{ }_{6}{ }^{\text {c }}-2^{5} K_{7}$	1.061	(1.062)	3711.099	$8 d$	V	a	26938.56	+12	$a^{5} I^{\circ}{ }_{5}-27{ }_{6}$	-	
4172.273	75	III	$6 v$	23961.02	-3	$a^{5} I^{\circ}{ }_{6}{ }^{\text {a }}$ - 176	(1.064)	1.14	3710.012	6	-	-	26946.45	+18	$a^{5} I^{\circ}{ }_{5}-28{ }_{5}$		
4171.824	75	III	$6 v$	23963.60	-1	$a^{5} I^{\circ}{ }_{7}-z^{3} H_{6}$	(1.177)	1.074	. 3699.952	12	-	-	27019.72	-6	$a^{5} 5^{5}{ }_{7}-z^{5} \mathrm{H}_{7}$		
4169.459	15	V	$6 r$	23977.19	-7	$a^{3} I^{\circ}{ }_{6}-27 c$			3650.176	30	-	-	27388.16	-5	$a^{5} I^{\circ}{ }_{4}^{\circ}-28{ }_{5}$	0.607	0.888
4168.08	20	-	-	23985.12	$+3$	$a^{3} I^{\circ}{ }_{6}-28_{5}$	-	-									

The complexity introduced by h.f.s., coupled with the natural richness of the spectrum, has made the disentangling of overlapping patterns difficult, and less precision can be expected in the g values than is obtained with a spectrum consisting mostly of sharp lines. ${ }^{10}$ Where a g value is in parenthesis the pattern of the line was incomplete, overlapped, or unresolved, so this g value was assumed from the average for the level, and the other g value was calculated from

[^4]this and the experimental data. In other cases unresolved n patterns were used, a procedure which introduces small errors.
On account of the complexity of the patterns and the necessity of using exposures at various field strengths to interpret them, any table of actual measurements would be unduly extensive even if reported in abbreviated notation. ${ }^{10}$ For this reason only final g values are given, their use being to substantiate the quantum numbers assigned, and detailed results are held for a later report.

Table III. Pr II terms.

TERM	Wave Number	h.f.s.	No. Comb.	$\begin{gathered} g I S \\ (\mathrm{THEOR} .) \end{gathered}$	$\stackrel{g}{(\mathrm{MEAS} .)}$	No. Patterns Resolved	TERM	Wave Number	h.f.s.	No. Comb.	$\begin{gathered} g L S \\ \text { (THEOR.) } \end{gathered}$	$\begin{gathered} g \\ \text { (MEAS.) } \end{gathered}$	No. Patterns Resolved
$a^{5} I^{\circ}{ }_{4}$	0.00	$6 i$	15	0.600	0.605	12	$z^{5} K_{6}$	24115.41	-	10	0.905	0.959	5
$a^{5} I^{\circ}{ }_{5}$	441.94	612	23	0.900	0.875	12	$z^{3} K_{6}$	24393.70	-	6	0.857	0.992	1
$a^{5} \mathrm{I}^{\circ}{ }_{6}$	1649.01	$6 n$	32	1.071	1.064	3	$z I_{5}$	24716.06	-	8	0.900	0.911	2
$a^{3} I^{\circ}{ }_{5}$	1743.65	$6 i$	30	0.833	0.860	16	124	24754.93	-	4	-	0.911	2
$a^{5} I^{\circ}{ }_{7}$	2998.31	$6 n$	24	1.179	1.177	12	136	24818.68	-	5	-	-	0
$a^{3} I^{\circ}{ }_{6}$	3403.12	$6 i$	26	1.024	1.037	3	$z^{3} I_{6}$	24835.05	-	4	1.024	1.009	2
$a^{5} L^{\circ}{ }_{6}$	3893.38	-	14	0.714	0.721	5	145	24947.22	-	4	-	$\overline{07}$	0
$a^{5} K^{\circ}{ }_{5}$	4097.57	-	16	0.667	0.683	3	157	25248.52	-	5	-	1.07	0
$a^{5} I^{\circ}{ }_{8}$	4437.09	$6 n$	10	1.250	1.250	7	$z^{5} \mathrm{H}_{4}$	25467.50	-	4	0.900	0.905	1
$a^{3} I^{\circ}{ }_{7}$	5079.31	$6 i$	20	1.143	1.143	1	16_{5}	25499.50	-	7	-	0.984	3
$a^{5} L^{\circ}{ }_{7}$	5108.36	-	16	0.911	0.926	1	$z^{5} \mathrm{~K}_{7}$	25569.10	-	10	1.054	1.062	1
$a^{5} K^{\circ}{ }_{6}$	5226.47	-	12	0.905	0.915	1	176	25610.06	-	9	-7	1.116	2
$a^{5} \mathrm{~K}^{\circ}{ }_{7}$	6413.79	-	14	1.054	1.042	0	$z^{5} I_{6}$	25656.62	-	9	1.071	1.042	2
$a^{5} L^{\circ}{ }_{8}$	6417.75	-	6	1.042	1.06	0	185	25842.21	-	4	-	0.999	2
$b^{5} I^{\circ}{ }_{4}$	7446.51	-	9	0.600	0.622	1	195	26145.97	-	6	-	1.025	2
$a^{5} \mathrm{~K}^{\circ}{ }_{8}$	7659.60	-	7	1.153	1.161	0	20_{6}	26176.51	-	4	-	-	0
$a^{5} L^{\circ}{ }_{9}$	7805.50	-	4	1.133	1.115	0	215	26286.86	-	4	-	0.89	0
$b^{5} I^{\circ}{ }_{5}$	8489.94	-	7	0.900	0.93	0	226	26398.45	-	9	-	0.990	3
$a^{5} \mathrm{~K}^{\circ}{ }_{9}$	8958.35	-	5	1.222	1.219	1	237	26445.06	-	8	-	1.08	0
$a^{5} L^{\circ}{ }^{10}$	9254.94	-	1	1.200	1.19	0	246	26523.96	-	4	-	1.02	1
$a^{3} H^{\circ}{ }^{\text {a }}$?	9378.57	-	8	1.033	1.044	0	255	26640.82	-	6	-	1.075	1
$b^{5} I^{\circ}{ }_{6}$	9646.60	-	11	1.071	1.073	1	$z^{5}{ }^{3} 7$	26860.83	-	10	1.179	1.123	3
$b^{5} I^{\circ}{ }_{7}$	11005.45	-	7	1.179	1.153	1	${ }^{3} \mathrm{H}_{5}$	26961.92	-	9	1.167	1.073	2
$b^{5} I^{\circ}{ }_{8}$	11610.92	-	6	1.250	1.231	2	$z^{5} H_{5}$	26973.54	-	5	1.100	1.101	1
15	21676.28	-	6	-	1.001	2	$z^{5} \mathrm{~K}_{8}$	27127.88	-	9	1.153	1.143	1
25	22039.98	-	7	-	0.997	4	265	27198.15	-	7	-	1.067	1
35	22571.38	-	7	- 67	1.163	4	276	27380.38	-	6	-	1.06	0
$z^{5} \mathrm{~K}_{5}$	22675.40	-	6	0.667	0.821	4	285	27388.21	-	8	-	0.886	1
46	22718.31	-	7	-	1.10	0	297	27425.29	-	6	-	-	0
55	22885.56	-	7	-	0.994	2	308	27781.65	-	8	-	1.075	4
66	23141.37	-	5	-	1.062	1	$z^{3} \mathrm{~K}_{7}$	28009.71	-	8	1.018	1.106	3
75	23261.30	-	4	-	0.896	3	$2^{5} I_{8}$	28201.87	-	8	1.250	1.154	1
85	23616.67	-	5	- -1	1.068	1	$z^{5} \mathrm{H}_{5}$	28508.68	-	6	1.214	1.103	1
$z^{5} I_{4}$	23660.18	-	5	0.600	0.684	2	$z^{3} I_{7}$	28577.72	-	7	1.143	1.187	3
97	23898.25	-	6		1.107	2	$z^{5} \mathrm{~K}_{9}$	28816.04	-	4	1.222	1.217	0
108	23970.40	-	4	-	1.14	0	$z^{3} \mathrm{~K}_{8}$	29723.83	-	7	-	1.145	1
116	23977.78	-	10	-	1.156	5	$z^{5} \mathrm{H}_{7}$	30018.09	-	7	1.286	1.215	0

That so many values of $o-c$ are less than 10 (i.e., less than $0.1 \mathrm{~cm}^{-1}$) is gratifying, as it is difficult to make exact wave-length measurements on lines with partially resolved h.f.s. 132 lines are found to agree with the wave number calculated from the combination principle to within $\pm 0.05 \mathrm{~cm}^{-1}$, and 78 more to within ± 0.10, leaving only 108 with deviations greater than $0.10 \mathrm{~cm}^{-1}$.

In the first column of Table III are listed the term assignments, followed by the wave number of each and the hyperfine structure deduced from all lines considered as arising from the term, where i indicates wider separations at lower wave numbers, and n at higher. The fourth column gives the number of combinations with the term in the present array. The fifth column contains the theoretical g value of a term of the designation given, calculated from Landé's formula for $L S$ coupling. The next column contains the measured g value of the term, averaged from measurements on the number of resolved patterns given, or on unresolved patterns reduced from several plates. The observed g values are in most cases believed to be correct to within ± 0.005 unit.

Low Configurations of Pr II

In accordance with the Bohr-Stoner theory the normal praseodymium atom $(Z=59)$ can be expected to have three electrons outside a closed shell. Pr II, with two such electrons, would have a simpler spectrum than Pr I, but in both cases two $6 s$ electrons are present which are very loosely bound; and it is necessary in Pr II to take four electrons into account when predicting terms. Among the odd configurations to be expected are $f d s^{2}, f d^{2} s, f^{3} s$ and $f^{3} d$. Even configurations which should be important are $f^{2} d s$, $f^{2} s^{2}, f^{3} p$, and f^{4}.

Many of the strongest lines of Pr II, which presumably arise from low levels, show wide h.f.s. patterns. These usually arise when a single s electron occurs in a configuration, making

Table IV. Expected important terms of Pr II.

$4 f^{3} 6 s$	${ }^{5,3}(I G F D S)^{\circ},{ }^{3,1}\left(L K I H_{2} G_{2} F_{2} D_{2} P\right)^{\circ}$
$4 f^{3} 5 d$	${ }^{5,3}(L K I H G, I H G F D, H G F D P, G F D P S, D)^{\circ}$ $4 f^{3} 6 p$

Table V. Principal supermultiplet of Pr II.*

	$a^{5} I^{\circ}{ }_{8}$	$a^{5} I^{\circ}{ }_{7}$	$a^{5} I^{\circ}{ }_{6}$	$a^{5} \mathrm{I}^{\circ}{ }_{5}$	$a^{5} I^{\circ}{ }_{4}$	$a^{3} I^{\circ}{ }_{7}$	$a^{3} I^{\circ}{ }_{6}$	$a^{3} I^{\circ}{ }_{5}$
$z^{5} \mathrm{~K} 9$	200 III $6 v$	X	X	X	X	X	X	X
8	100 IV $6 v$	200 III $6 v$	X	X	X	150 IV $6 r$	X	X
7	-	100 III $6 v$	200 III $6 v$	X	X	$30-6 r$	200 III $6 r$	X
6	X	$100 \mathrm{~V} 6 v$	125 III $6 v$	125 III $6 v$	X	$10 \mathrm{~V} 5 ? a$	$40-6 r$	125 III $6 r$
5	X	X	$15-6 v$	2002 III $6 v$	125 III $6 r$	X		-
$z^{3} \mathrm{~K}_{8}$	150 III $6 v$	-	X	X	X	100 III $6 r$	X	X
7	50 IV $6 v$	100 III $6 v$	4 - -	X	X	100 IV $6 r$	150 III $6 r$	X
6	X	3 - -	-	-	X	-	$60 \mathrm{~V} 6 r$	90 III 6 ra
$z^{5} I_{8}$	50 III $6 v$	100 III $6 v$	X	X	X	100 IV $6 r$	X	X
7	$90 \mathrm{~V} 6 v$	100 III $6 v$	100 III $6 v$	${ }_{125}^{\text {X }}$	X	$5 d$ -	$15 \mathrm{IV} 6 r a$	X
6	X	50 IV $6 v$	200 III $6 v$	125 III $6 v$	X		$25 \mathrm{~V} 6 r$	8 - -
5	X	X	150 IV $6 v$	250 III 6v	50 III $6 r a$	X	$\overline{\mathrm{x}}$	80 III $6 r$
4	X	X	X	150 III $6 v a$	50 III $6 r$	X	X	
$z^{3} I_{7}$	150 III $6 v$	- ${ }^{-}$	-	X	X	$35 \mathrm{IV} 6 r$	100 III $6 r$	X
6	X	$40 \mathrm{~V} 6 v$	-	-	X	2 -	$100 \mathrm{~V} 6 r$	50 IV 6?r?a
,	X	X				X		
$z^{5} \mathrm{H}_{7}$	100 IV 5 ? a	12 - -	-	X	X	150 III $6 r$	5 - 6	X
	X	100 III $4 a$	-	-	X	$\overline{\mathrm{x}}$	125 III $6 r$	III
,	X	X	$125 \mathrm{IV} 6 v$	300 III $6 v$	125 III $3 a$	X	$\overline{\mathrm{x}}$	60 III $6 ? a$
4	X X	X X	X	$300 \underset{\mathrm{X}}{\text { III }} 6 v$	125 III $3 a$	X	X	12 X
$z^{3} H_{6}$	X	75 III $6 v$	150 III $6 v$	$20 d \mathrm{~V} 2 a$	X	30 - -	20 III $6 r$	60 III $6 r$
	X	X				X		
\cdots	X	X	X			X	X	

* X-indicates line forbidden by selection principle for ΔJ. --indicates line not found.
plausible the assumption that the lowest terms of Pr II arise from such a configuration. Three likely configurations are then $f d^{2} s, f^{2} d s$ and $f^{3} s$. Resulting terms of the latter are given in Table IV. When Hund's theory and Meggers and Laporte's rule are used the lowest terms to be expected from these three configurations are ${ }^{5} I^{\circ}{ }_{4},{ }^{5} K_{5}$, and ${ }^{5} I^{\circ}{ }_{4}$, respectively.

Our analysis indicates that the level $f^{3}\left({ }^{4} I^{0}\right)$ $-s^{5} I^{\circ}{ }_{4}$ is the lowest. As will be seen from Fig. 1, all eight levels of the low ${ }^{5} I^{\circ}$ and ${ }^{3} I^{\circ}$ terms arising from the addition of an s electron to the parent ${ }^{4} I^{\circ}$ term of Pr III have been found. Combinations of these terms with the even triads ${ }^{5} \mathrm{KIH}$ and ${ }^{3} \mathrm{KIH}$ which arise from the $f^{3} p$ configuration give rise to the strongest lines of the spectrum. The raies ultimes of praseodymium are usually given ${ }^{11}$ as 4179.422 and 4062.817 A . These lines we have classified as $a^{5} I^{\circ}{ }_{6}-z^{5} K_{7}$ and $a^{3} I^{\circ}{ }_{6}-z^{3} K_{7}$. From the usual multiplet intensity rules one would expect the leading line of the supermultiplet to be strongest, with a prediction of $a^{5} I^{\circ}{ }_{8}-z^{5} K_{9}$ as the raie ultime. This line, at 4100.746 , is of intensity 200 , but other lines are stronger. The estimated intensities of the lines of the basic supermultiplet are given in Table V, where an irregularity in intensities is to be noted. A similar irregularity is found in the homologous super-

[^5]multiplet of Nd II. ${ }^{12}$ The intensities need more careful study before the cause of this anomaly can be explained.

Hyperfine Structure

The eight levels of the terms $f^{3}\left({ }^{4} I^{\circ}\right) \cdot s^{5} I^{\circ}$ and ${ }^{3} I^{\circ}$ have marked hyperfine structure which appears to be due mainly to the interaction of the $6 s$ electron with the moment of the nucleus. It is of interest to apply to this case the equations given by Goudsmit and Bacher. ${ }^{13}$ The change in atomic energy due to the interactions between electronic and nuclear moments (h.f.s.) is given by

$$
\begin{equation*}
\Gamma_{F}=\frac{1}{2} A[F(F+1)-I(I+1)-J(J+1)], \tag{1}
\end{equation*}
$$

where J represents the mechanical moment of the electrons, I that of the nucleus ($=5 / 2$ for Pr), F the total moment, and A is a number independent of F.
If we assume that the hyperfine structure is due to the s electron and that there is $J J$ coupling between the latter and the ion, then, as shown by Goudsmit and Bacher,

$$
\begin{equation*}
A=a \frac{J(J+1)+s(s+1)-J^{\prime}\left(J^{\prime}+1\right)}{2 J(J+1)}, \tag{2}
\end{equation*}
$$

[^6]

Fig. 2. Zeeman patterns of Pr II line showing hyperfine structure. Below, no-field pattern; middle, n components; above, p components. The strong line at the left is $\lambda 4368.327 \mathrm{~A}$.
where s is the spin of the electron $\left(=\frac{1}{2}\right), J^{\prime}$ the moment of the ion, and a a constant which measures the strength of the interaction between the s electron and the nuclear moment.

There are two cases to be considered. For the levels ${ }^{5} I^{\circ}{ }_{5,6,7,8}$

$$
J^{\prime}=J-\frac{1}{2}
$$

and (2) gives

$$
\begin{equation*}
A=a / 2 \mathrm{~J} . \tag{3}
\end{equation*}
$$

For the levels ${ }^{5} I^{\circ}{ }_{4}$ and ${ }^{3} I^{\circ}{ }_{5,6,7}$

$$
J^{\prime}=J+\frac{1}{2}
$$

and

$$
\begin{equation*}
A=-a /[2(J+1)] . \tag{4}
\end{equation*}
$$

The difference in signs of (3) and (4) is in agree-
ment with the observed difference in the shading of the h.f.s. for lines involving the two groups of levels.

For $J>1$, the total width of the hyperfine structure $\Delta \sigma$ is found from (1) to be given by

$$
\begin{equation*}
\Delta \sigma=\Gamma_{J+I}-\Gamma_{J-I}=A I(2 J+1) \tag{5}
\end{equation*}
$$

In attempting to make a quantitative comparison of theory and observation, one is confronted with the difficulty that there is a great deal of variation in the measured h.f.s. data ${ }^{1}$ for lines going to a common level that is responsible for the observable h.f.s. One can take an average over these lines to get information about the level in question, but it is to be expected that some uncertainty will remain.
Table VI gives the $\Delta \sigma$ values for the eight levels as determined from White's h.f.s. data for those lines the classification of which we have confirmed with Zeeman measurements. A minus sign indicates that the h.f.s. is inverted. From the $\Delta \sigma$ in each case the corresponding value of a was calculated by means of (5) and (3) or (4). The various calculated values differ somewhat,

Table VI. Values of $\Delta \sigma$ from White's h.f.s. data.

Level	$\Delta \sigma$ (obs.)	a (CALC.)	$\Delta \sigma$ (CALC)
${ }^{5} I^{\circ}{ }_{4}$	-0.80	+0.36	-0.90
${ }^{4} I^{\circ}{ }^{5}$	-0.74	0.32	-0.92
${ }^{5} I^{6}$	-0.84	0.36	-0.93
${ }^{5}{ }^{\circ}{ }^{6}$	-0.91	0.39	-0.94
${ }^{5} I^{\circ}$	+1.13	0.41	+1.10
${ }^{5} I^{5}$	+1.10	0.41	+1.08
${ }^{5} I^{\circ}{ }^{6}$	+1.05	0.39	+1.07
${ }^{5} I^{\circ}{ }_{8}$	+1.11	0.42	+1.06

Table VII. g sums for $f^{3}\left({ }^{4} I^{0}\right) \cdot$ s levels of Pr II.

Term	g (MEAS.)	$g(L S)$	$g\left(J_{j}\right)$	J_{j}	Sum g (meas.)	Sum g (THEOR.)
$a^{5} I^{\circ}{ }_{4}$	0.605	0.600	0.600	(41, $\frac{1}{2}$)		
					0.605	0.600
$\begin{aligned} & a^{5} I^{\circ}{ }_{5}^{5} \\ & a^{3} I^{\circ}{ }_{5} \end{aligned}$	0.875 0.860	0.900 0.833	$\begin{aligned} & 0.855 \\ & 0.878 \end{aligned}$	$\begin{aligned} & \left(4 \frac{1}{2}, \frac{1}{2}\right) \\ & \left(5 \frac{1}{2}, \frac{1}{2}\right) \end{aligned}$		
					1.735	1.733
$\begin{aligned} & a^{5} I^{\circ}{ }^{\circ}{ }^{6} a^{3} I^{\circ} \end{aligned}$	1.064	1.071 1.024	1.051 1.044	$\left(5 \frac{1}{2}, \frac{1}{2}\right)$ $\left(6 \frac{1}{2}, \frac{1}{2}\right)$		
					2.101	2.095
$\begin{aligned} & a^{5} I^{\circ}{ }^{7} \\ & a^{3} I^{O_{7}} \end{aligned}$	1.177 1.143	1.179 1.143	1.171 1.151	$\begin{aligned} & \left(6 \frac{1}{2}, \frac{1}{2}\right) \\ & \left(7 \frac{1}{2}, \frac{1}{2}\right) \end{aligned}$		
					2.320	2.322
$a^{5} I^{\circ}{ }_{8}$	1.250	1.250	1.250	($7 \frac{1}{2}, \frac{1}{2}$)		
					1.250	1.250

Table VIII. g sums for even levels of Pr II.

	9		8		7		6		5		4	
	g_{M}	g_{T}	g_{M}	g_{T}	g_{M}	$g T$	g_{M}	g_{T}	g_{M}	g_{T}	g_{M}	g_{T}
$z^{5} K_{5}$									0.821	0.667		
$z^{5} I_{4}$											0.684	0.600
$z^{5} K_{6}$							0.959	0.905				
$z^{3} K_{6}$							0.992	0.857				
$z^{5} I_{5}$									0.911	0.900		
$z^{3} I_{6}$							1.009	1.024				
$z^{5} \mathrm{H}_{4}$											0.905	0.900
$z^{5} \mathrm{~K}_{7}$					1.062	1.054						
$z^{5} I_{6}$							1.042	1.071				
$z^{5} I_{7}$					1.123	1.179						
$z^{3} H_{6}$							1.073	1.167				
$z^{5} \mathrm{H}_{5}$									1.101	1.100		
$z^{5} \mathrm{~K}_{8}$			1.143	1.153								
$z^{3} K_{7}$					1.106	1.018						
$z^{5} I_{8}$			1.154	1.250								
$z^{5} \mathrm{H}_{6}$							1.103	1.214				
$z^{3} I_{7}$					1.187	1.143						
$z^{5} \mathrm{~K}_{9}$	1.217	1.222										
${ }^{5} \mathrm{H}_{7}$					1.215	1.286						
Sums	1.217	1.222	2.297	2.403*	5.693	5.680	6.178	6.238	2.833	2.667*	1.589	1.500*

* Indicates that all terms of that particular j value derivable from parent term ${ }^{4} I+p$ have not been found and g sum rule is not applicable. This assumes that ${ }^{4} I$ is perfect $L S$ coupling.
partly because of errors in the values of $\Delta \sigma$ and partly, probably, because of incomplete $J J$ coupling, etc. By taking

$$
a=0.40 \mathrm{~cm}^{-1},
$$

the value of $\Delta \sigma$ was calculated in each case on the basis of the above equations. It is evident that the agreement is quite satisfactory.

Fig. 3. Effect of a strong magnetic field in breaking a normal hyperfine-multiple level, $a^{5} I^{\circ}{ }_{4}$, containing six levels, up into 54 levels.

In the presence of the magnetic field which is used to produce the Zeeman effects, the character of the h.f.s. changes completely. The magnetic field used in practice is a strong field from the standpoint of the h.f.s. and hence it destroys the coupling between I and J, so that the component of each in the direction of the field is quantized nearly independently (Back-Goudsmit effect). ${ }^{14}$
In this case the change in atomic energy due to the external magnetic field and the magnetic moment of the nucleus is given by

$$
\begin{equation*}
\Delta E=\left(-g_{I} M_{I}+g M\right) \frac{H e}{4 \pi m c^{2}}+A M_{I} M, \tag{6}
\end{equation*}
$$

where M and M_{I} are the components along the field of J and I, respectively, A is the same constant as in (1), g is the usual g factor for the extra-nuclear electrons, and g_{I} is the nuclear g factor. Since g_{I} is usually small compared to g, one can take

$$
\begin{equation*}
\Delta E=g M \frac{H e}{4 \pi m c^{2}}+A M_{I} M . \tag{7}
\end{equation*}
$$

The first term in the right-hand member corresponds to the ordinary Zeeman effect, the

[^7]second gives the h.f.s. In this case, the width of the h.f.s. is given by
\[

$$
\begin{equation*}
\Delta \sigma=(\Delta E)_{M_{I}}=+I-(\Delta E)_{M_{I}}=-I . \tag{8}
\end{equation*}
$$

\]

Hence in a Zeeman pattern, the sharpest lines should be found near the center of the p and of each s branch, for which cases $|M|$ is a minimum. An example of this is to be seen in Fig. 2, which shows the no-field line 4368.327A and its Zeeman pattern. A diagram of the h.f.s. for the lower parent level of this line, $a^{5} I^{\circ}{ }_{4}$ without and with a magnetic field, according to Eqs. (1) and (7), is given in Fig. 3, where the h.f.s. spacing has been exaggerated in comparison with the separations of the Zeeman components.

Calculation of g Sums

In Table VII are given the g sums for Pr II levels arising from the configuration $f^{3}\left({ }^{4} I^{0}\right) \cdot s$. It will be noted that the agreement between the measured and theoretical sums is usually within a few tenths of a percent, though perturbations much greater than this cause deviations of the individual terms. In Table VIII, which gives the g sums for even levels, the agreement is not quite so satisfactory.

We desire to acknowledge the able assistance of workers on the M.I.T.-W.P.A. Wavelength Project, and of Mr. W. J. Hitchcock. A grant from the Rumford Committee of the American Academy of Arts and Sciences in support of the work is gratefully acknowledged.

On the ${ }^{2} \Pi_{u} \rightarrow{ }^{2} \Pi_{g}$ Bands of $\mathrm{CO}_{2}{ }^{+}$. Part I
 S. Mrozowski
 Ryerson Physical Laboratory, University of Chicago, Chicago, Illinois

(Received September 18, 1941)

Abstract

The band spectrum appearing in emission in the region $\lambda 2900-4300$ and believed to belong to the $\mathrm{CO}_{2}{ }^{+}$or possibly CO_{2} molecule has been studied and the excitation conditions found to be in substantial agreement with the former results of Duffendack and collaborators and of Smyth. The bands have been obtained with great intensity and photographs of most of them have been made in the second order of the 30 -foot grating (actually obtained resolving power of 350,000). The rotational structure and the excitation conditions show that most of the bands belong to an extensive ${ }^{2} \Pi \rightarrow{ }^{2} \Pi$ system of bands of the molecule $\mathrm{CO}_{2}{ }^{+}$. The molecule is linear in both states; the lower ${ }^{2} \Pi$ appears to be the ground state ${ }^{2} \Pi_{g}$ and the upper ${ }^{2} \mathrm{II}$ is the first excited state ${ }^{2} \Pi_{u}$ of this molecule predicted by Mulliken. The complete rotational and vibrational analysis of this band system is still in progress; in this

Introduction

WHEN a gas through which a discharge is passing contains carbon dioxide (or CO), in addition to the bands belonging to CO and CO^{+}a great number of bands appear in the spectrum in the region $\lambda 2800-4500$: the most
paper the analysis of 5 double bands of the $v^{\prime \prime}{ }_{1}=v^{\prime \prime}{ }_{2}$ $=v^{\prime \prime}{ }_{3}=0$ progression of the symmetrical vibration $\left(v^{\prime}{ }_{1}\right.$ varying, $v^{\prime}{ }_{2}=v^{\prime}{ }_{3}=0$) is presented. The results of the analysis are: $\nu_{0}{ }^{(0,0)}=28,532.60\left({ }^{2} \Pi_{3 / 2} \rightarrow{ }^{2} \Pi_{3 / 2}\right)$ and $\nu_{0}{ }^{(0,0)}$ $=28,468.48\left({ }^{2} \Pi_{\frac{1}{2}} \rightarrow{ }^{2} \Pi_{\frac{1}{2}}\right)$. The vibrational intervals (i.e., the distances between the origins of successive bands in the progression) are: $\Delta G_{1}^{\prime}=1126.71 ; ~ \Delta G^{\prime}{ }_{2}=1122.66 ; \Delta G_{3}^{\prime}$ $=1120.22 ; \Delta G^{\prime}{ }_{4}=1120.04\left(\right.$ all $\left.{ }^{2} \Pi_{3 / 2 u}\right)$ and $\Delta G^{\prime}{ }_{1}=1125.97$; $\Delta G^{\prime}{ }_{2}=1120.79 ; \Delta G_{3}^{\prime}=1116.09 ; \Delta G_{4}^{\prime}=1111.76$ (all ${ }^{2} \Pi_{\frac{3}{3} u}$). Further for ${ }^{2} \Pi_{3 / 2 g} B^{\prime \prime}{ }_{0}=0.3796$; for ${ }^{2} \Pi_{\frac{1}{2} g} B^{\prime \prime}{ }_{0}=0.3812$; for $\quad{ }^{2} \Pi_{3 / 2 u} B^{\prime}{ }_{0}=0.3485 ; \quad B^{\prime}{ }_{1}=0.3475 ; \quad B^{\prime}{ }_{2}=0.3465 ; \quad B^{\prime}{ }_{3}$ $=0.3457 ; B^{\prime}{ }_{4}=0.3453$; for ${ }^{2} \Pi_{12}{ }^{1} B^{\prime}{ }_{0}=0.3501 ; B^{\prime}{ }_{1}=0.3492$; $B^{\prime}{ }_{2}=0.3483 ; B^{\prime}{ }_{3}=0.3475 ; B^{\prime}{ }_{4}=0.3466$. The Λ-doubling is observable only in the ${ }^{2} \Pi_{1}^{1} \rightarrow{ }^{2} \Pi_{\frac{1}{3}}$ sub-bands in this progression; in ${ }^{2} \Pi_{u}$ it is bigger than in ${ }^{2} \Pi_{g}\left(p^{\prime \prime}{ }_{0}=0.004\right.$ for $v^{\prime \prime}{ }_{1}=0$) and increases fast with the vibrational energy.
prominent of these is the double band at $\lambda 2883$ 2896, which appears whenever the smallest traces of CO_{2} (or CO) are present. All these bands have been observed by many investigators (some of them as far back as 1802), but there was considerable uncertainty about their emitter,

Fig. 2. Zeeman patterns of Pr II line showing hyperfine structure. Below, no-field pattern; middle, n components; above, p components. The strong line at the left is $\lambda 4368.327 \mathrm{~A}$.

[^0]: ${ }^{13}$ L. B. Loeb and J. M. Meek, Mechanism of the Electrical Spark (Stanford Press, 1941), pp. 82, 87, 99, 170.

[^1]: * Now at University of North Carolina, Chapel Hill, North Carolina.
 ${ }^{1}$ H. E. White, Phys. Rev. 34, 1397 (1929).
 ${ }^{2}$ (John Wiley and Sons, New York, 1939.)

[^2]: ${ }^{3}$ G. R. Harrison, Rev. Sci. Inst. 4, 581 (1933).
 ${ }^{4}$ G. R. Harrison, J. Opt. Soc. Am. 28, 290 (1938).
 ${ }^{5}$ G. R. Harrison and F. Bitter, Phys. Rev. 57, 15 (1940).
 ${ }^{6}$ G. R. Harrison and J. Rand McNally, Jr., Phys. Rev. 58, 703 (1940).
 ${ }^{7}$ J. P. Molnar and W. J. Hitchcock, J. Opt. Soc. Am. 11, 523 (1940).
 ${ }^{8}$ G. R. Harrison, J. Opt. Soc. Am. 25, 169 (1935); Rev. Sci. Inst. 9, 15 (1938); G. R. Harrison and J. P. Molnar, J. Opt. Soc. Am. 30, 343 (1940).

[^3]: ${ }^{9}$ A. S. King, Astrophys. J. 68, 194 (1928).

[^4]: ${ }^{10}$ G. R. Harrison, W. E. Albertson, and N. Hosford, J. Opt. Soc. Am. 31, 439 (1941).

[^5]: ${ }^{11}$ M. I. T. Wavelength Tables.

[^6]: ${ }^{12}$ McNally, Harrison, and Albertson, to be published shortly.
 ${ }_{13}^{13}$ S. Goudsmit and R. F. Bacher, Phys. Rev. 34, 1501 (1929).

[^7]: ${ }^{14}$ E. Back and S. Goudsmit, Zeits. f. Physik 47, 174 (1928).

