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Work function is experimentally known to be different
for different faces of a crystal by amounts ranging from
one-tenth to half a volt. For tungsten the faces can be
arranged according to decreasing work function as follows:
110, 211, 100 and finally 111. The explanations so far
suggested for the differences of the work function are
discussed and shown to give either an incorrect sequence
or a wrong order of magnitude of the observed differences.
The author uses the picture of Wigner and Bardeen accord-
ing to which the work function is a sum of a volume con-
tribution and a contribution due to a double layer on the
surface of the metal. The origin of the latter can be
described in the following manner. With every atom one
can associate a polyhedron ("s-polyhedron" ) with the
atom at its center, such that it contains all points nearer
to the atom under consideration than to any other atom.
If the distribution of the electron density within these
polyhedra of the surface atoms was the same as for the
inside atoms then there would be no double layer on the
surface. However, this is not the case since the total
energy is lowered by a redistribution of the electron cloud

on the surface. There are two effects: the first is a partial
spread of the charge out of the s-polyhedra and the second
is a tendency to smooth out the surface of the polyhedra.
In consequence of the second effect the surfaces of equal
charge density are more nearly plane than in the original
picture. The two effects have opposite influences and since
they are comparable in magnitude, it is not possible to
predict the sign of the total double layer without numerical
computations. Some general formulae for the double
layers are derived and discussed more fully in the case of
a simple cubic and a body-centered cubic lattice. The
minimum problem of the surface energy is solved for four
faces of a body-centered crystal and the results are applied
to the case of tungsten. One obtains the differences between
the work functions for different directions. The results

'
agree satisfactorily with the experimental data: assuming
a reasonable density of the free electrons, one obtains the
correct sequence of faces and the correct differences of
the work function. The surface energies are calculated an d
found in agreement with the observed stability of certain
crystal faces.

'HE intensity of thermionic electron emis-
sion of metals is well represented as a

function of temperature by the formula

where A and y are constants. Many experimental
investigations have shown that this emission is
anisotropic. In particular the work function q,
representing the minimum energy necessary to
bring an electron from the inside of the metal to
the outside, is different for different crystal
faces. ' Recent photographs' of emission of single
crystalline spheres of various metals give a nice

* Now at General Electric Company Research Labora-
tory, Schenectady, New York.' R. P. Johnson and W. Shockley, Phys. Rev, 49, 436
(1936); R. B. Nelson, M. I. T. Thesis 1938; S. T. Martin,
Phys. Rev. 50, 947 (1939); M. H. Nichols, Phys. Rev. 57,
297 (1940). A probably more correct definition of work
function is: the temperature independent term of the work
required to remove an electron from the metal. The in-
fluence of temperature on the work function, if any, is still
an unsolved problem. )See, e.g. , C. Herring, Phys. Rev. 59,
889 (1941)j.

2 M. Benjamin and R. O. Jenkins, Proc. Roy. Soc. 176,
262 (1940).
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illustration of this fact. They indicate also that
the directional dependence of the work function
is mainly connected with crystallographic orien-
tation of the surfaces, and is the same for two
metals if the metals have the same crystal
lattice.

The purpose of this paper is to give a theo-
retical explanation for the observed differences
of q. A few explanations have already been
suggested. One of them assumes an anisotropic
Fermi surface inside the metal which would lead
to different values of the work function for
different directions. It will be explained below

why this idea appears to us to be incorrect.
Let us consider the k space which for electrons

in a metal is similar to the momentum space for
free electrons. The difference is that, in general,
the energy is not proportional to O'. This k space
is, as is well known, divided into regioris, the
so-called Brillouin zones, within which the energy
varies continuously. To illustrate this we use a
simple two-dimensional k lattice. We assume
first (Fig. 1(a)) that the Fermi surface, A (that
is the equi-energetical surface corresponding to
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the energy Bo of the highest occupied electron
states), lies within one zone and does not touch
nor cross any zone boundary. One computes the
number of electrons having momentum compo-
nents in a particular direction larger than a
certain minimum value po. The maximum energy
of electrons in every direction is, by definition
of the Fermi surface, the same. Thus po and
therefore the work function p is isotropic. Let
us consider now the other case (Fig. 1(b)) in

which the Fermi surface touches or crosses the
zone boundary. As we know there is a region of
forbidden energy values at the zone boundary.
Thus from the energy spectrum of the electrons
having enough energy to leave the metal certain
regions are missing and the electron emission
intensity, therefore, is lower. The minimum

energy necessary to bring out an electron is
now no longer isotropic. In formula (1) the
factor A would be multiplied by (1 r) where r-
is the so-called reflection coefficient. (For poly-
crystalline material an "average" reHection coe%-
cient r occurs. ) Since the energy discontinuity
occurs at, or at least near, the Fermi surface,
the number of electrons missing from the
emission depends upon temperature. Therefore
the ratio of the number of missing electrons to
the total current is not constant. This would
amount to a temperature dependent reflection
coefficient r(T). The experimental data, ' how-

ever, are, within the limits of error, well repre-
sented with a constant r, diff'erent for each
surface. From the Richardson plots we get the
work functions y. Certain special aspects of the
experimental data and the so-called "patch-
effect" were discussed in this connection by
Nichols. ' If the emission were disturbed by such
a boundary as discussed above, then one would

not obtain a straight Richardson line. We are
thus led to the conclusion that either such

crossings of the Fermi surface and the zone

boundary do not occur or their influence is

covered up completely by electrons occupying
other zones. If dr/dT is small it may not show

up in the Richardson plot because of the expo-
nential term. As we know there is a very compli-

cated system of zones in metal lattices and
electrons can originate in more than one zone.

' M. H. Nichols, Rev. Mod. Phys. (to appear shortly).

Also, if such crossings were responsible for the
anisotropy, there would be no reason for metals
crystallizing in the same crystal lattice to have
a similar anisotropy as is true for tungsten and
molybdenum.

Frequently one has to assume a certain r/0
in order to fit the experimental data. This is
probably connected with some surface phe-
nomena, which we do not consider here. All we
are interested in now is the work function and

FIG. 1. 0 space of
a two-dimensional
cubic lattice with
the Fermi surface
(a) contained within
one zone (b) cross-
ing the boundary.

kx

the fact that its anisotropy cannot be attributed
to a volume eKect. In other words, the presence
of an accidental anisotropy of the Fermi surface
is not supported by experiment. The anisotropy
of the work function and the necessity for
assuming r/0, if A is a general constant, must
have another origin.

It is perhaps worth including a remark, which

is, however, not an essential point in our con-
siderations. Suppose the Fermi surface in a
certain direction, say the x direction, falls just
within the forbidden region. One might conclude
that the electron emission in that direction is

impossible. This is erroneous, since one has to
consider the fact that the connection between k

and B is not unique. If the zone boundary
occurs at k, = k, k„=k, =0 and Z(k) is below the
necessary limit then another vector k(k„k„, k,)
may exist lying within the zone, such that its
momentum along the x direction is large enough

to bring the electron out from the metal.
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Miiller4 and Benjamin and Jenkins' made
calculations on the hypothesis that the condition
of the Bragg reHection of the electron wave is
fulfilled for those electrons which have enough
energy to escape across a particular crystal face.
As pointed out by the last authors, this hy-
pothesis leads to impossibly high energy values
for the electrons and has some further drawbacks.

In the present paper we want to correlate the
observed facts on the basis of another idea
brought forward by Wigner and Bardeen. '
According to these authors the work function
is essentially a sum of two parts; the first is the
volume contribution arising from the binding
energy of the electron in the metal as a whole
and the second is the energy necessary to pene-
trate the double layer at the surface. The first
part is isotropic and is equal to the difference of
the energy of a crystal composed out of an
equal number of positive and negative charges
and of the same crystal containing one electron
less. It has been evaluated for a free electron
model by these authors. Later Bardeen' made a
careful study of the double layer using self-
consistent solutions of the Fock equations. The
model used by Bardeen consists of a charge
distribution which is uniform positive inside of
the crystal and zero outside. The electronic
charge distribution, obtained by solving the
corresponding Fock equations, is found to be
uniform throughout the crystal except in the
neighborhood of the surface. There it changes
slowly and decreases to zero outside of the crystal
within a fraction of the lattice constant from the
surface. We have thus a deviation of the elec-
tronic density from the distribution character-
istic for the inside of the metal and a spread of
the charge beyond the surface of the crystal.
From the point of view of the work function
this is equivalent to the presence of a double
layer which the electrons have to penetrate on
their way to the outside.

The model in which the positive charge has a
uniform distribution is of course isotropic and
it is only if the atomic structure of the positive
charges is taken into account that any ani-
sotropy can be expected. Even in this latter

4 E. Muller, Naturwiss. 2V, 820 (1939).' E. Wigner and J. Bardeen, Phys. Rev. 48, 84 (1935).' J. Bardeen, Phys. Rev. 49, 653 (1936).

model the volume contribution will remain
'

isotropic and it is the double layer which must
be made responsible for the observed differences
in the work function or the potential differences"
between different crystal faces.

The moment of the double layer on the surface
of a metal is defined as the electrostatic potential
difference between the outside of the metal and
a point inside. Every atom in the lattice can be
surrounded by a polyhedron of which each point
is nearer to the atom under consideration than
to any other one. These polyhedra are called
usually s-polyhedra and the spheres of equal
volume surrounding the atoms s-spheres. The
inside point, in the definition of the double
layer, is chosen at the surface of the s-sphere
surrounding some atom. The point outside is
taken as usual at a distance large compared with
the lattice parameter and small compared with
the size of the crystal surface. If all the atoms
including those at the surface had the same
radial electronic distribution inside the s-

spheres, there would be no double layer since
the dipole moment of an s-sphere is zero.
However, because in the neighborhood of the
surface atom the charge distribution is appreci-
ably disturbed, a double layer may result. ' If
the double layer has a moment 3EI normal to
the surface and if we define its sign as positive
if the positive charge is on the outside and the
negative on the inside of the surface then the
work function is given by

A —4me3f,

where A is the volume contribution mentioned
before.

For a continuous positive charge distribution
the double layer is zero if the negative charge
density is constant within the metal and zero
outside.

We wish to carry out first a general qualitative,
and later on a quantitative investigation of
the conditions which occur on the surface of
the metal and to see how they depend upon the

7 H. E.Farnsworth and B.A. Rose, Proc. Nat. Acad. Sci.
19, 777 (1933);B. A. Rose, Phys. Rev. 44, 585 (1933).

'See F. Seitz Modern Theory of Solids (McGraw-Hill
Book Company, New York, 1940), p. 396.
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FrG. 2. Positive double layer resulting from the smoothing effect. Thick line represents
the equilibrium charge distribution.

orientation of this surface with respect to the
crystal lattice. Let us imagine a crystal surface
which has just been exposed by splitting the
crystal into two. If no changes of the charge
distribution of the surface atoms occur then
according to our definition there would be no
double layer. However, we might expect two
effects. First, as a result of the absence of the
next atomic layer the potential field acting on the
electrons binds them less than the potential in
the inside of the metal. Thus the wave functions
of these electrons are less concentrated within
the original s-polyhedra; their expansion into
the free space is accompanied by a decrease of
the energy. This spread should be comparable
with the difference of atomic diameter in crystal
and vapor state. Because of this spreading of the
negative charge there arises a corresponding
positive charge within the s-polyhedra, We have
thus a negative double layer which increases the
work function since it is an additional potential

preventing the electrons from leaving the crystal.
We shall consider this effect later more in detail.

The other effect occurring on the surface is the
smoothing of the surface of the electronic cloud
of the metal. This smoothing is due to the fact
that the energy of electrons when enclosed in a
volume bounded by large flat planes is lower
than when surrounded by the complicated walls
of the surface polyhedra. (Fig. 2). It means that
the charge "flows" from the "hills" into the
"valleys" formed by the surface atoms. In this
way there arises a net positive charge on the
"hills" and a negative charge in the "valleys. "
this is a positive double layer. The potential
drop here decreases the work function. Thus the
less smooth the final surface the more dificult
it is for the electrons to leave the metal. The
electrostatic energy accompanying the smooth-
ing-out limits this process. The final shape of the
surface of the electron cloud will be something
like the thick curve in Fig. 2. It corresponds to
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Fio. 3. Spreading of the electron density and the resulting
negative double layer.

the balance between the different processes. The
first effect mentioned above we shall call "spread-
ing,

" the second "smoothing. " They are both
associated with the decrease of energy and are
really not independent. However, since they
have opposite inHuence on t'he work function it
is convenient in a qualitative discussion to
consider them separately.

We shall derive now some general formulas
governing both effects making use of a very
simple model. Let us consider first the spreading
effect in the case of a uniform distribution of
negative and positive charges in s-polyhedra
throughout the whole crystal. In Fig. 3 the
ordinate is the charge density 0 (both + and —)
per unit volume, the line P —P is the surface of
the metal and at the same time the surface of
the uniform charge distribution in the original
crystal. We assume now that the electronic
charge spreads so that its density decreases
linearly to zero. One can see that this approxi-
mation is justified by comparing it with the exact
distribution as calculated by Bardeen for a
particular case. Thus up to the point 5 the
negative and positive charges compensate each
other. From 5 to P we have positive charge
increasing up to the density ~o. on the inner side
of the surface and then a negative charge
decreasing from P to N in a symmetric distribu-
tion. If the spread of the electronic charge is
small so that the disturbance does not reach the
centers of the s-polyhedra then the potential
difference is given by

p2
D = —2@0—e.

3

We introduce n, the number of electrons in a
unit cell, and put for the lattice constant d its
value b expressed in atomic units:

If however the disturbance of the negative
charge in the metal extends beyond the center of
the surface polyhedra then the positive charges
in these polyhedra will be displaced towards the
surface, by the amount 2d+y —(2dy)'. Then the
potential drop is given by

2~ne' fyy ' 3
~

—
~

——,L& —(2&y)'j' (3)
3 d Ldi d'

Both formulas give the value of the double layer
on a Hat surface for a uniform charge distribution
within the metal.

V' V'

(b}
Fio. 4. Cross section of a "pyramidal" and "truncated"

charge distribution on the surface.

Let us consider next the smoothing effect on

crystal surfaces. In most cases one finds that
the profile of the original, "rough, "crystal face is
either like Fig. 4(a) or 4(b). The plane P parallel
to the crystal face and equally distant from the
"hills" and from the "valleys" is the ideal plane
surface which would be obtained if the smoothing
were complete. The amount of negative charge
"cut off" by this plane is equal to the charge
needed to fill up the "valleys. " This is a general
statement true for all faces. The density of both

+ and —charges at this plane is —,'0-, half the
value of the density inside of the crystal. A
coordinate system is chosen so that the axis x
is normal to the plane P and the charge density
per unit volume is plotted as a function of x.
Averages over the whole crystal face are taken
parallel to the plane P. If the face is made out
of prisms parallel to the crystal face (as all hkO

faces in simple cubic lattices are) the charge is a
linear function of x. For pyramids it is a quad-
ratic function. Figure 4(b) corresponds to trun-
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cated pyramids typical for many faces of body-
centered lattices. Typical charge distributions
alc shown ln Flg. 5.

Let ~a be the distance from the plane I' to
the top of the "hill. '" We can calculate the
potential differences obtained if the face is
smoothed out completely, i.e., for all negative
charge from the "hills" moved into the "valleys. "
In .the general case of a truncated pyramid the

s(x) II

In the former paragraph the effects occurring
on the surface were discussed qualitatively and
some general formulas vrerc derived. Some
particular cases will be considered here in more
detail. Although the few metals for v hich data
are available crystallize in a body-centered
lattice &re shall begin with a brief discussion of
the simple cubic lattice. This case provides a
good illustration of our model and of the method
of approach.

In the simple cubic lattice the 100 face is
smooth (Fig. 6). Thus there occurs only the
spreading CA'ect; the resulting double layer
increases the vrork function. Next let us consider
a ako plane (Fig. 6) for which a=dao/(a'+a')&
and, in formula (4), p=m=0. We have thus

O,S

F16.5. Average charge density. as a function of the distance
from the ideal smooth surface for a simple cubic lattice.

charge distribution in the direction perpendicular
to the plane I' is given by

o (x) = (px' —ga/x/+a')
2c

for which the charge density at x= ~-,'a is equal
to

(p q )o
o'=] ——-+l. f-=m-.

fol thc potential difference which ls obtalncd fo1

complete smoothing. Similarly for a hkl plane
for wh. lch

a =2dkkl/(l1'k'+ O'P+ PI1') l

and sf =0 vM gct

zga
d2

3 I1'I1'+O'P+3'h'

If the smoothing is not complete, there remains

Thc corlcspondlng potcntlal difference ls glvcn

by

(p av=
&8

2 &d) d (8 3
+' i

(1 lo }

~ ~

0

For a quadratic decrease of charge density to
zero at x=&-,'a: m=0, p=2q —4 or for a
pyramid p =q =4; for a, hnear decrease to o' at
x= +2a: P =0, g = 2(1—m) and flllally fol" 1111eaI'

decrease to zero at x=&-',a: m=p=0, g=2.
We shall make frequent use of these formulas
for particular cases.

'' y
' 0

(loo}
0 0 0 1

FIG. 6. Simple cubic lattice. Smoothing occurs on the
110 plane, none'on the„'j.00 plane.
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a certain wave-like surface of the negative charge
distribution and a correction should be made.
This corrective term has to be subtracted from
the values obtained from (5) or (6). We shall

give an estimate for this correction below for the
body-centered lattice. It is evident, however,
that the number n of electrons per unit cell will

enter into the result. Since it occurs as a linear
factor it changes only the absolute values and
not the relative magnitudes of the double layers
for diferent faces. This is fortunate since n is
unknown for most metals.

Let us consider the body-centered lattice.
The polyhedron surrounding each atom in a
body-centered crystal lattice is a truncated
octahedron (Fig. 7) made out of eight 111
hexagons and six 100 squares. Since there are
two atoms per unit cell the volume of the
polyhedron is —,'d'. We shall consider only a few
particular faces which are actually observed on
single crystals of tungsten, molybdenum etc.
for which experimental data are known. These
are the 100, 110, 111and 211 faces. The structure
of these surfaces can be seen in Fig. 8. The most
densely packed surface is the 110 face, for which
a=v2d/4; then comes the 100 face with a=-', d
and 111 with a=v3d/3. The 211 face differs

greatly from the other three faces which have a
(truncated) pyramidal structure. On these faces
each atom has at least four nearest neighbors;
in the 211 face, on the other hand, an atom has
only three nearest neighbors: and out of these
two are in the surface layer. Thus there exists
a long row of closely packed atoms separated by

(IIO)

..' "-- (ioo)

FiG. 8. Charge distribution on different faces of a body-
centered cubic lattice.

(2II)

gn1 eV'"=———=—1.33 ev
64 up b

(7)

deep and long depressions. ' If we consider the
atoms on the 211 plane individually then
a=+6d/4 —0.61d. However, if we treat rather
the rows of atoms as elements of that sur-
face and average the charge distribution in
the 111 direction then a—0.42d. On the 211
plane, the ideal smooth surface, i.e. , the plane P,
cuts off certain volumes which fit into the re-
maining depressions. The charge distributions
along the axis x, perpendicular to the plane P,
are represented in Fig. 9 by continuous lines.
For the 100, 110 and 111 faces the charge is a
quadratic function of x, for the 211 face it is
linear up to x= ~a then quadratic till x=-', a and
finally again quadratic, with other constants,
till x=-', a.

We apply now formula (4) and obtain the
values of the potential differences as if the
smoothing were complete. We express the lattice
constant in atomic units d=bap. For the 110
plane we have m=0, q=3, and thus

for the 100 plane p=1, q=2 and

mn11 e' n
V' =— —=—4.88ev

b 192ap b

4 16
for the 111 plane P =—,and q= —and

13 ' 13

en 19 e' n
V'"=— —=—10.38 ev.

156 ap

FrG. 7. s-polyhedron for a body-centered cubic lattice,

The 211. plane has a rather complicated charge

' See S. T. Martin (reference 1), p. 957 or D. Langmuir
and R. B. Nelson, Rev. Sci. Inst. 11, 295 (1940).
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distribution and the potential difference can be
calculated by applying formula (4) separately
to each interval within which the charge varia-
tion is expressed by a simple formula. The result
1s

7m 41 e' n
V»~ =— —=-6.06 ev.

b 64X9 ao b
(10)

If we assume the charge distribution on the 211
face averaged in the 111direction, then 'we have

IY"'=—S.80 ev.
b

All these values correspond to an ideal smooth
charge distribution. Since, as mentioned before,
some of the original structure of the surface
will be left over we must correct for this fact.
As it will appear later, these corrections are very
essential, the surface charge distribution being
far from smooth.

0,05 O,I O,IS
l

0,2 0.25 0.3 0+5
2d

Fir. 9. Average charge density as a function of the
distance from the ideal smooth surface for a body-centered
cubic lattice.

So far we have considered the double layers
arising on the crystal surfaces as if the smoothing
were complete. Now we want to evaluate the
actual electron distribution at the surface and
the remaining "roughness" of the charge density.
In the qualitative discussion it was pointed out
that both spreading and smoothing are due to
the decrease of kinetic energy of the electron
gas, and are limited by the increasing potential
energy of the resulting double layers. We shall
treat now this question as a variational problem.
The kinetic and the potential energy has to be
expressed as a function of two parameters, one
correlated with the spreading, the other with p=-', o.(2 —e &*—t'*') for x(0. (12b)

o. is here the number of electrons per unit volume
inside the crystal, obviously 0. is the parameter
associated with the spreading effect and P with
the smoothing effect. For the original distribution
we have P=a,~~/2r and o. +~. If t—he smoothing
is complete we have |I=0. The charge distribu-
tion as given by (12) is convenient for the
computation of the kinetic energy. For mathe-
matical reasons a slightly different, essentially
equivalent form will be used for the calculation
of the potential energy of the double layer. In
calculating the kinetic energy it is useful to
employ an expression which depends upon the

the smoothing effect. The total energy per unit
surface has to be minimized with respect to
each of these two parameters for each surface of
the crystal. The calculations are rather involved
and we shall consider more in detail only the
211 face which is the easiest to treat.

The charge distribution on the 211 face is
rather complicated (see Figs. 8 and 9) and we
shall simplify it somewhat. It was said before
that on that face the atoms form closely packed
rows divided by relatively wide gaps. The

. approximation we want to use is that of a
prismoidal charge distribution similar to that on
the 110 face of a simple cubic lattice. However,
the angle of the prism is here not a right angle.
The width, 2r, of the base of a prism cut off by
the I' plane is equal to half the distance between
the rows of atoms. The height -', a, ff is such that
the prism contains the same amount of charge
as the part of the s-polyhedron cut off by the
plane I'. The charge density depends thus only
upon two coordinates: x—perpendicular to the
surface and s—lying in the surface and perpen-
dicular to the rows of atoms. In Fig. 10 we have
the density plotted against the two coordinates.
In the original distribution both charges fill up
the prism AAA with uniform density. The
electrons tend to form a more smooth surface
along the EBB line and finally spread along the
x axis. The final charge density is given by the
surface CCC. We put the origin of the coordinates
at the point 8 and express the electron density
in the region 0 & &1 by

p=-'oe —&* t'*& for x&0 and by (12a)
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F)G. 10.Spreading and smoothing effect on the 211 face. AHA —original
distribution of electron density, CCC—final distribution.

gradient of the density since this is an important
magnitude in our considerations. Such an
expression was given by Weizsacker. '0

with

(13)

and 8 =
32% 2'

The 6rst term is the usual Fermi energy per
unit volume, the second term is the important

term depending upon the gradient of charge
density. One has to calculate separately for x &0
and for x&0„ integrate and add both energies.
Integrating from @=0 to —~ with (12b) wou1d

give ln6nlty but since we need only the d1ffer-

ences of the kinetic energy it is enough to
calculate the kinetic energy of the charge which
is missing from the continuous distribution for
x&0. We have thus

~0
5/3)l I (1 lpga(z

—//s))5/3

which is the decrease of kinetic energy as compared with the original distribution. We can represent
the integrand as a series

)0 ~ (5/3) ( 1)k
za~~gz

~/ „k-14 $ )
and obtain

1 ~ (5/3) (—1)~ 1 /
"'(1—u)5/' —1

n~-~4 k ) k2' u~o Q

which can be evaluated. The total kinetic energy per unit length is

6r 1.5852r—o"'A +aBn(1+P') 2rIn2.o'I'A
2'i"Sa CL

~' C. F. ~on Weizsacker, Zeits. f. Physik M, 431 (1935).

(14)
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The first term is the Fermi energy for x&0, the second the same for x&0 and the third
"the Weizsacker energy" due to the gradient of density.

To calculate the potential energy we make a small change in the expression for density so that
the potential for the given charge is easy to obtain. We must compute the potential energy of the
negative charge outside of the original s-polyhedron and the same amount of the positive charge
inside of the polyhedron. This is shown by the thickly drawn lines in Fig. 10. The charge density
along the surface of the polyhedron is given by the line D'BD. Our new distribution diR'ers by re-

placing this line by a cosine curve and plotting it in a plane perpendicular to the x axis. We put the
origin of the coordinates at the point A, which is more convenient than point 8 for this computation.
The charge for x &0 is now negative, for x &0 positive. We put

cosexco O,u sino.'xm
p=~ cos(ss) ~l d&«+N

1+M ~
oo j.+M

= M cos(xs) xe «*'+—None '*' s-gnx (15)

(sgn x stands for "signum x,
" the sign + or —of x) which is shown in Fig. 11.The charge has a

pattern, in the P plane, as given in Fig. 12(a). High negative and Iow positive charge density is indi-

cated by full lines and the opposite by dotted lines. Formula (15) represents well our charge distribu-
tion (Fig. 10) and from it the potential can be obtained easily:

V T'+ cosa.xylo l
+ SinnXu

= iV cos(x—s)—~
d««+N, — dM

4m (1+a)') (s'+n'««') ~ (1+(«')a&a

I
= M cos(xs) (ne '*I 7re I»)—+N—(1 e «—») sgn—x. -

0.'—g' A

The coefEicients 3II and E must be adjusted so as to correlate the charge distribution given by
(12) with that given by (15). It turns out that we must put

with c= ~2u, ff —rP. The product rP =W determines the remaining mughness of the surface measured
perpendicular to the plane P. Equation (15) has also the advantage as compared with (12) that
the subsequent integration is easy. We have

r+" Vp s.(2n+x)—
I dk I dx =3P +N'—

~« ~ ~ 4x 2n(x+n)' n

and the potential energy per unit length, in proper units has the form

'o' 2m+1'e F2~2
r'1 1+e-(e"—2)]+ 2r'0

n (%+a)'
with k=vr/2r.

The equations of the minimum problem are obtained by differentiating the total energy with
respect to n and p (or W). One gets

B(n+0)'2ln2 na, n

oe'r'(2n+k) 2
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and

u2x'+ 3kulx'+ (u&+3k'um)x'+ (3ku&+k'u2 —4ua)x'+ (3k'u& —9kua)x'+ (u&k' —19u3k')x'

—18k'uax 6—k'ua+4u&ce*'(e*' 1—)x'+2u&P(3kc —2)e'*' —(3kc 4—)e"5x'
—kugL(2kc+3) e'*' —(2kc+6)e*']x'—k'use '(e*' —2)x'= 0 (19)

with x=n and u&=o'A1 14.7; u2 ——B(1+P')2 ln2 and u~ ——oe'r
No analytic form of the solution of these equations can be given but a solution is easily obtained

by a trial and error method. We get thus n and P (or W=rP).
Next we give a brief summary of the conditions on other faces. On the 110 face the original charge

distribution is approximated by a pyramid with a rectangular base, 2y&)&2y2, the same that is
formed on the s-polyhedron, Fig. 8. Its height is again such that the pyramid has the same volume
as the segment cut off from the polyhedron. The charge distribution used for calculation of the
kinetic energy is essentially the same as (12). For computing the potential energy we have now

~s xy
p = M cos cos x8 ~ ~+Nx'n8 ~*~ sgnx

2yg 2y2

V ss xy 1/X——=3f cos cos (ne "&*~—7rXe ~~*I)+N—(1 —e '*~) sgnx
4x 2yg 2y2 n' —x'X' A

(20)

(21)

with X= (rP+r22)l/2r&r2, which can be also expressed in an integral form like (15). The charge has
the pattern shown in Fig. 12(b) where the dots represent high negative charge for x)0 and low
positive for x(0 and the circles indicate just the opposite. We have the kinetic energy

A
K.E.= o'" r&r—q2 994—+oBu.rearm(1+2K'W')4 ln2 (22)

with W=r&P~=r2P2 and the potential energy

g'r' 2m+k ygy2 g'o-' 2ygy2k

I 1ge«(e« —2)]+.
o. (n+k)' 2X a' (23)

Diff'erentiation gives again two equations for the minimum problem from which one obtains n
and lV.

On the 100 face we have a pyramid with a square base. Thus all the formulas for the 110 face
are valid if we put y=y~=y2. The most complicated case is that of the 111 face. Here the charge
distribution is symmetrical around a threefold axis. The actual shape of the segment of the s-poly-
hedron cannot be approximated as well as in the other cases. A pyramid with the triangular base
seems to be the best choice. The edge of the base has the length dV2 where d is the lattice constant.
We have

and
p= M(sin2ss+2 sinss cossyV3) are ~'*'+N~ne '—*' sgnx (24)

U 1 7r——=3II(sin2xs+2 sinss cossy&3) (ae ~*~ —2xe ~ *)+N (1—e ~'~) sgnx, —(25)
4x 2(n' —4s') CL'

which can also be expressed in integral form. The charge pattern in the plane P is given in Fig. 12(c).
We have the kinetic energy

A 4
K.F.= —o'~'—k'V3 0.765+ oBn(k'+9W') v3ln2—

lX 3
(26)
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FIG. 11. Positive and negative charge distribution on
the 211 face as used in the evaluation of the potential
energy.

FiG. 12. Charge patterns on different faces of a body-
centered lattice, Thick lines (or dots) indicate high negative
or low positive charge density; dotted lines (or circles)
indicate the opposite.

and the potential energy

e'o-' n+ k 4%3 e'o-' 2&3
P.E.= h'[1+e '(e ' 2)]—+

u (a+2k)' 27 0! 3
(27)

with k = m+6/3d and k=d+6/2. Differentiation of the total energy with respect to W and n leads

to the equations of the minimum problem.
The solution of the minimum problem for each of the faces of a crystal gives the final charge

distribution. From this we know the values of the effective double layers and thus also the differences
between the work functions for different crystal faces. Finally having the expressions for the total
energy for each surface we can calculate the energy of formation of a certain surface. Or rather, since
we have only the relative values, we get the differences between the surface energies of a crystal. The
following is an application of all these considerations in a particular case.

5.

The first thing one has to know in order to
apply the formulas developed above is the
average density of electrons (n or 0.) which are
involved in the formation of the double layer.
In most cases this task is not easy. Among the
metals for which data on work function are
pretty well known only for sodium is this density
accurately known. For other metals its estimate
is more difficult. We are most interested in

tungsten since the anisotropy for this metal is
well measured. According to the calculations of
Manning and Chodorow" there is much less
than one electron per atom in the s band in

metallic tungsten. On the other hand some of
the d electrons might contribute to the effective
density.

With the lattice constant of tungsten d =3.16A
we get for the different magnitudes appearing in

our formulas the values, in angtrom units given in

Table I.As mentioned above, the only magnitude
which is not known is the electron density a.
For the minimum problem we assume one electron

&~ M. F. Manning and M. I. Chodorow, Phys. Rev.
56, 787 (1939).

per atom. This value has not much justification
for tungsten but is probably true for most of the
monovalent metals. The equations of the mini-

mum problem were solved for each surface
separately by the trial and error method. In
most cases it was sufficient to try a few neigh-

boring values in the full equation and to interpo-
late. The results are given in Table II. We see
first of all that n, which is the parameter of the
spreading of the charge in the direction normal
to the surface, is almost constant. This is an
interesting result and it justifies the point of
view expressed in Part 1 that the positive
contribution to the work function caused by the
spreading is isotropic. Its value depends to a
certain extent upon the analytical form of the
charge distribution assumed in Eq. (12). It
follows thus that all anisotropy is due to the
smoothing of the charge distribution and forma-

tion of the new equilibrium surface. The magni-

tude W; given in Table II is the deviation of the
surfaces of equal charge density, in the final

distribution from the ideal plane P, see Fig. 2.
We see that the conditions are very different on

different surfaces; the 110 is smoothest, the 111
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TABLE I, Values of various constants for tungsten.

a
aeff

110

r1 ——0.79
r.= 1.116

1.116
1.396

211

1.116

1.935
2.185

100

1.116

1.580
2.765

h=3, 87

1.824
3.19

is the most rough. This result was qualitatively
to be expected on the basis of comparison of the
number of close-packed atoms in these surfaces.
The last column shows what fraction of the
charge Qo which originally was outside of the
plane P still remains outside in the form of the
roughness Qq of the surface and is not "smoothed
out. " Here we see again a great difference
between the surfaces. In particular the difference
between 211 and 100 should be noted since it is
an essential point in the comparison with
experiment, as made below.

Knowing the final charge distribution we can
calculate the contributions to the double layers
caused by spreading and smoothing of the charge.
The first as we saw is almost isotropic and its
value does not play a role in our comparison
with experiment. However, we can use Bardeen's
calculations, discussed in reference 1 and apply
his result that the spread is about half the radius
of the s-sphere. This result, obtained by more
rigorous quantum-mechanical methods for a
particular case is probably more correct than
ours. This gives, with the help of formula, (2),
D—1.2 ev as the positive contribution to the
work function under the assumption of one
electron per atom.

The negative contributions to the work
functions caused by smoothing are calculated
first for the case of a perfectly smooth charge
distribution, i.e. , for P=0. Formulas (7)—(10)
give with n=2 and b=6ao the values in the
second column of Table III. These values are
undoubtedly too high since the total work
function for tungsten is about 4.5 ev. This is a
result of our assumption of one electron per atom
and P =0. It may be pointed out that P =0 gives
us the sequence of crystal faces in the order of
decreasing work function: 110, 100, 211, 111..
This is not in accord with experiment. We shall
see that it is the correction due to P/0 which
brings about the right sequence. The values of

TABLE II. Parameters of the anal charge distribution for
tungsten.

SURFACE

110
211
100
111

1 ~ 10A '
1,08
1.10
1.14

0.106A
0.600
0.518
0.910

0.15
0.55
0.37
0.46

the second column must be decreased by the
contribution of charge which did not take part
in the smoothing process. In Fig. 9 the dotted
lines indicate how much charge is left over after
the equilibrium distribution is established. The
particularly simple dependence of p on distance
from the plane P is of course the result of our
approximations. It has no appreciable inHuence
however on the results. In an actual crystal the
contours are more smooth, the amount of
displaced charge being practically the same.

From Table II we have the necessary data and
with the help of formula (4) we can calculate
the corrections. These corrected values in which
the remaining unevenness of the charge distribu-
tion is taken into account are given in the third
column of Table III. We see that the sequence
of the faces is: 110, 211, 100, and 111.This is
in accord with the experimental results of
Nichols. ' It may be mentioned here that there
were attempts to explain the anisotropy of the
work function relating it directly to the surface
density of the atoms. This density relation
however gives the same in correct sequence of
faces, which was obtained for P= 0. It appears
thus that i,t is necessary to take into account
the relative position of the atoms and the
equilibrium distribution of charge in order to
explain the observed facts.

Another comparison with experiment is the
actual numerical value of the differences between
the work function in different directions. Using
Upgo from Table III and comparing with the
last column in which the experimental data of
Nichols are given, we see that the theoretical
values are about six times too large. This is, in
the first place, a result of the arbitrarily assumed
density of one electron per atom, which is
certainly too high. The only indication is the
quoted result" that the density in the s —p band
is of the order 0.1 electron per atom. We take
here one-sixth of an electron per atom so as to
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TABLE I II. Contrzbuti ons to work functions. TABLE IV. F'nergy per unit area; ergs/cm'.

SURFACE

110
211
100
111

0.44 ev
2.04
1.64
3.48

0.43 ev
1.35
1.40
2.70

~~calc

0.38 ev
0.22
0.21
0.0

~~obs

)0.30 ev
0.30
0.17
0.0

fit the experimental data. The values 6 U„~,
given in the column before last in Table III are
obtained by making use of the fact that the
electron density is a linear factor in our expres-
sions of the double layer. This statement is not
quite true, however, for the minimum problem
which depends on the charge density in a non-

linear manner. It was checked, however, that
the dependence of lV upon electron density
justifies this approximation. Both W and 0.

decrease slowly with decreasing 0-. We see that
the agreement between the computed and
observed values is satisfactory in view of the
simple model on which our theory is based. "

One important fact must be pointed out. All

these computations were done as if the electronic
charge density were uniform throughout the
crystal, i.e. , as if the ion cores were small. This
may be a good approximation in the case of
sodium but is less good for tungsten. Studies of
the structure of the electron bands in metallic
tungsten indicate that the 6s and Sd bands are
broad and overlap considerably. About one-third
of the four d electrons in an atom lie outside of
the metallic s-sphere. Thus the ionic core is

large and even the lower energy states are
perturbed. It follows that a deformation of the
original spherically symmetric charge distribu-
tion involves an additional potential energy.
This is true especially for deep-penetrating

j' The b. V are calculated with respect to the 111 rather
than to the 110 plane. This is more satisfactory since the
observed work function on the 110 plane is probably too
low by 0.1 ev or more (see M. Nichols reference 1).

Surface
Energy

110
30

211
334

100
362

111
952

"See F. Seitz, reference 8, p. 432.

disturbances. One might expect thus that the
smoothing is less complete than would follow
from our theory. As a result the negative
contributions to the work function would be
somewhat smaller than those in Table III.

Finally as indicated before, we can calculate
the total energy per unit area for each of the
four surfaces. From formulas (13), (17), (22),
(23), (26), (27), we obtain the energy in ergs

per cm' as given in Table IV. This is not the
actual surface energy since in tungsten we might
expect most of the binding energy to be due to
the Sd electrons" which as mentioned above
extend near to the surface of the s-spheres.
However, these figures give the relative expendi-
ture of energy in formation of these surfaces.
We see that the most stable is the 110 face and
the least stable the 111 face. These results agree
with the observations on single crystals of
tungsten. In particular the stability and develop-
ment of the 110 and 211 faces is in accord with
experimental data. Since the values in Table IV
are differences of numbers of the order of about
2500 the relative error for the 110 face is large.
On the other hand for the 111 face the approxi-
mation of the uniform charge distribution is
least satisfactory since here the deeper layers
around the atom are disturbed. Therefore these
two extreme cases are less certain.
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discussion and remarks.


