RIGIDITY MODULUS

In ferromagnetic metals such as Ni and Fe, on
the other hand, the presence of small amounts of
impurities can play a dominating role in deter-
mining the total thermal expansion for certain
temperature regions. This is clearly indicated for
the case of Fe by a comparison of our results with
those of Austin and Pierce?® and of Esser and
Eusterbrock,'$ as well as results obtained by
these workers on irons of slightly different
purity. For the temperature region between
room temperature and the temperature of liquid
nitrogen the role played by small amounts of
impurities in Fe is much smaller than in the high
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temperature region, as evidenced by the rather
good agreement between our results and those of
Adenstedt? and also the older results of Dorsey.1?
Williams* demonstrated rather clearly the in-
fluence of small amounts of impurities on the
thermal expansion for the case of nickel near the
Curie temperature.
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The rigidity modulus of ten beta-brass single crystals has been measured as a function of
crystal orientation and of temperature from 25° to 500°C by the method of the composite
piezoelectric oscillator. The reciprocal of the rigidity modulus, 1/G’, is linearly related to the
orientation function. When these data are combined with Rinehart’s previous measurements of
Young’s modulus, the principal elastic parameters are found to be 3.88, —1.52 and 0.578 X 10712
cm?/dyne, respectively, at room temperature. Curves and tables give them as functions of tem-
perature up to and slightly beyond the critical temperature for order-disorder. At room tem-
perature, the rigidity modulus is a maximum in the [100] direction, G’{i00=17.3X101
dyne/cm?, and a minimum in the [111] direction, G’'[111]=1.35X 10" dyne/cm?, and at the
critical temperature, G’'[100]=13.5X 10" dyne/cm? and G'[111]=1.06X10" dyne/cm?2. The
elastic anisotropy as given by G’[100]/G’[111] is 12.8 at room temperature, decreases to 12.3
at 250°C and has a value of 13.0 at the critical temperature. The bending-torsion effect was
found to be large and in agreement with theory.
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INTRODUCTION

HE transition from “‘order” to “disorder’’ in

certain binary alloys has been studied in
terms of changes in various physical properties
during this transition.! The study of the elas-
ticity of single crystals has been particularly
interesting, although a complete theoretical
treatment has not been given. Siegel® has deter-
mined all the principal elastic constants (and
corresponding elastic parameters) for CuzAu
single crystals, from room temperature up to and
beyond the critical temperature for order-

LF. Nix and W. Shockley, Rev. Mod. Phys. 10, 1 (1938).
2 S. Siegel, Phys. Rev. 57, 537 (1940).

disorder. Both Webb?® and Rinehart* have worked
with single crystals of beta-brass. The former’s
work included a preliminary study of Young’s
modulus at room temperature and as a function
of the orientation of the crystals. A static method
was used. Rinehart, using a more accurate dy-
namic method extended the work on Young's
modulus from about —80° to 500°C (about 30°
above the critical temperature). The dependence
on orientation was very precisely determined.
Rinehart’s data established, throughout the tem-
perature range, the elastic parameter, s1;, and a
3'W. Webb, Phys. Rev. 55, 297 (1939).

( 4].)Rinehart, Phys. Rev. 58, 385 (1940) and 59, 308
1941).
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relation between the other two, s12 and s4. The
parameters s;» and sq cannot be determined
separately from Young’s modulus alone. In order
to get these, some other type of elastic measure-
ment must be made. For the present investiga-
tion the measurement of rigidity modulus was
chosen. It was measured for a set of ten crystals
of various orientations and in a temperature
interval from 25° to 500°C. When these data are
combined with Rinehart’s, there results a com-
plete determination of the three principal elastic
parameters throughout the temperature interval.

Whether ordered or disordered the beta-brass®
crystal structure is body-centered cubic. In the
ordered state the copper atoms occupy the
corners of the cubes and the zinc atoms the
centers. In the disordered state the copper and
zinc atoms have equal probabilities of appearing
in either the corner or center lattice positions as
evidenced by x-ray experiments.®

PREPARATION OF CRYSTALS

The crystal specimens were prepared from
some of the same material” which was used by
Rinehart. The crystal growing procedure differed
from Rinehart’s in two details. Dental casting
investment8® was used instead of Insalute cement
to form the mold, and a steel tube leading to the
top of the mold allowed the introduction of air
or nitrogen under pressure. This prevented pits
from forming in the freezing crystal. The crystals
produced in this way were smooth and uniform.
The rate of lowering of the specimen through the
furnace was 3.5 cm/hr. and the temperature
gradient was about 20°C/cm. The crystals were
four mm in diameter and were grown up to
lengths of six cm.

The orientation function, F(I, m, n), of the
single crystal specimen is:

F(l, m, n) =Pm*+m*n>+n’l?, (1)

in which I, m and # are the direction cosines of
the specimen length with respect to the three
crystallographic axes. These direction cosines
were determined as described by Webb? and

5 Approximately one-half copper and one-half zinc.

¢ F. Jones and C. Sykes, Proc. Roy. Soc. 161, 440 (1937).

7 Kindly supplied by the American Brass Company,
Waterbury, Connecticut. Composition was 52.8 and 47.2
atomic percents copper and zinc, respectively.

8 Ransom and Randolph Gray Casting Investment.
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Rinehart.* The orientation function may have a
value from zero to one-third. The zero value
corresponds to a direction along a crystal cube
edge, and the one-third value, along a cube
diagonal. The direction of the face diagonal has
the function equal to one-fourth, but certain
other directions also have this value.

MEASUREMENT OF RicIipiTy MODULUS

The rigidity modulus was measured by the
dynamic method of the composite piezoelectric
oscillator as used by Siegel> and others.® The
cylindrical brass specimen was cemented to a
quartz cylinder of the same diameter. The axis of
the latter cylinder coincided with the quartz x
axis. Torsional oscillations were excited by apply-
ing alternating potentials to four suitably placed
electrodes on the quartz crystal. The method
finally allows the determination of certain reso-
nance frequencies of the specimen.

The rigidity modulus, G*, of the specimen at
temperature T is given by the formula,®1°

G*=4posL2s5f*(Las/Lr), (2)

in which pgs is the density at 25°C, Ly the length
at 7°C, and f is the fundamental resonance fre-
quency of the specimen. The thermal expansion
factor Lss/Ly, has a value near unity and is
calculated from the data of Merica and Schad.!
Rinehart’s value of the density, 8.35 g per cm?
was used.

The application of an external twisting mo-
ment to a crystalline specimen of arbitrary
orientation causes bending moments in it.?? The
specific twist (twist per unit length) is different
depending on whether flexure is free to occur or is
prevented. Thus, in the torsion of a crystal there
may exist two measured or effective rigidity
moduli. One modulus (G*=G’) results when both
twisting and bending are allowed. The other
modulus (G*=G) occurs when the bending is
prevented. In the case of the cubic crystal the

9 J. Zacharias, Phys. Rev. 44, 116 (1933); L. Balamuth,
Phys. Rev. 45, 715 (1934); F. Rose, Phys. Rev. 49, 50
(1?3'612f1is is taken as the definition of G*. It is, under
certain circumstances (see later), either one or the other
of two otherwise defined rigidity moduli. Naturally for an
isotropic material, G* is the single rigidity modulus.

11 P, Merica and L. Schad, Bull. Bur. Stand. 14, 571

(1918).
12 W, F. Brown, Phys. Rev. 58, 998 (1940).
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first modulus G’, is related rather simply to the
principal elastic parameters (si1, S12, s44) and F,
the orientation function:

1
—,=s44+4sF, 3)
where

S=S11—S12— 3S4s.
A less simple formula holds for the other modu-
lus, G:

1 25 F—4F*43x]
—=syt+4sF—— 4)
G S11— 2sF
where
x =DPm*n?,

Formula (4) is seen to be the same as (3) except
for its last term, the so-called bending-torsion
correction.”® A combination of (3) and (4) gives:

1 1 2sYF—4F43x]
—‘=_+ 3 (5)
G’ G 511'—25F

which shows that 1/G’ is 1/G plus the bending-
torsion correction. The bending-torsion correc-
tion vanishes for certain directions, [1007], [110]
and [1117] in the crystal and hence in these
directions G and G’ are identical. Some previous
work" has been done with specimens of only
these orientations. The interpretation of such
data does not involve the bending-torsion effect.

Measurements have been made, in this and
previous investigations*!5 on crystals of other
than these special orientations. The question has
naturally arisen whether G, G’, or perhaps
neither, has actually been measured. It has been
found previously, and here also, that assuming
that G is measured gives more consistent and
satisfying results. Recently Brown!? in a theo-
retical treatment, has given the explanation. Ac-
cording to him, it is possible to get either G or G’
or something which is neither one. To obtain
physically significant values of G, one must use a
long enough specimen and avoid conditions for
which torsional and flexural resonances, when
considered separately, occur at the same fre-

13 If one defines G’ as the ‘“‘true’’ rigidity modulus then
the word ‘‘correction’ is fitting; if not, perhaps “bending-
torsion difference’”” would be suitable.

“F., Rose, Phys. Rev. 49, 50 (1936); M. Durand, Phys.
Rev. 50, 449 (1936).

1S, L. Quimby and S. Siegel, Phys. Rev. 54, 293 (1938).
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F1G. 1. Reciprocal rigidity modulus against orientation.
Curve 4, at room temperature. 1/G, open circles 0. 1/G’
closed circles . Dotted line, bending-torsion correction.
Curve B at 466°C, just below critical temperature.

quency. Because of the coupling between these
two types of oscillations, there results a per-
turbation in both the torsional and flexural fre-
quencies, necessitating a further correction. As
far as possible crystals having these troublesome
lengths were not used. In actual practice many
resonance responses are found and one of the
major experimental difficulties lies in identifying
the desired torsional one.

Rigidity modulus measurements were made
at room temperature on ten crystals having
orientation functions: 0.0017, 0.034, 0.035, 0.075,
0.107, 0.180, 0.248, 0.254, 0.258, 0.290. The
modulus of three crystals was found as a function
of temperature from 25° to 500°C. The electrical
apparatus, the furnace and the procedure for
carrying out temperature measurements were
substantially the same as used by Rinehart.*

REsuLTs

Figure 1 shows 1/G and 1/G’ plotted against
F (1, m, n) for the ten crystals. Curve A repre-
sents data at room temperature. The open circles
are measured values of 1/G [G=G*, Eq. (2)].
The closed circles show the values of 1/G’ as
calculated from Eq. (5). The length of the dotted
connecting line between each pair of points
represents the value of the bending-torsion cor-
rection. As may be easily seen this term is sur-
prisingly large for some of the crystals. In view
of this, the curve 4 (also B, see later) was not
drawn, as it might have been, so as to give the
best fit with the points (solid circles, @), but its
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F1G. 2. The values of 1/G’ [111] and the principal elastic
parameters, s11, S12 and s44 against temperature.

position is partially based on Rinehart’s data as
follows. He measured the Young's modulus, E,
as a function of orientation, F, and plotted the
relation :

1

—=s11—2s5F, (6)

E

which is similar in form to Eq. (3). Both (3) and
(6) yield independent determinations of s, i.e.,
the slope of (6) is —2s while the slope of (3) is
+4s. However, since Rinehart’s value of s is
determined without the introduction of the
bending-torsion term, it is believed to be more
accurate than one that might be taken from these
data. Thus curve 4 has been drawn through the
almost zero correction crystal (F=0.0017) with
twice the slope determined by Rinehart. The
other crystal (F=0.248) with a small correction
lies practically on the line so drawn. The remain-
ing points, considering again how much they
have been ‘“‘corrected,” lie surprisingly near the
curve and seem to give good justification both
for the experimental method used and its inter-

WALTER A. GOOD

pretation. It should be emphasized that the
calculation of the bending-torsion correction is
not proportional to, or simply dependent on, the
orientation function, F, but depends in a rather
complicated way on the direction cosines, I, m
and n. Two crystals may have the same orienta-
tion function, F, but differ widely in the correc-
tion (see Fig. 1, F=0.25). Moreover the ac-
curacy of determining the correction from the
measured [, m and # is not as high as the deter-
mination of F from the same data. Curve B,
Fig. 1, shows the modulus, 1/G’, at 466°C, which
is just below the critical temperature (468°C)
for order-disorder. This curve was drawn in the
same fashion as curve 4, i.e., through the point
for F=0.0017 and with the slope based similarly
on Rinehart’s data at that temperature.

The value of 1/G’ for the crystal, F=0.0017,
is practically sq [Eq. (3), F=07]. Thus the re-
ciprocal modulus of that crystal as a function of
temperature is also the value of s4 as a function
of temperature. The temperature dependence of
sa4 18 shown graphically in Fig. 2. Also shown are
s11 (Rinehart’s determination) ; and s which is
calculated from si1, 44, and s. The s44 varies little
up to 300°C where the slope starts to increase
rapidly, due to the rapid disordering, becoming
very large as the critical temperature (468°C,
indicated by dotted line) is reached. The critical
temperature is well marked by the definite dis-
continuity in the slope. This is supposed to be the
final and complete disappearance of order. Al-
though similar in shape to sii, the s4 does not
have the unusual negative slope exhibited by s1;
at room temperature. The s;2 curve, however,
does show this negative slope characteristic, as
does 1/G’ [1117]. This contrasts markedly with
the fact that Siegel’s s11, s12 and s for CusAu

TABLE 1. Principal elastic parameters of beta-brass
at various temperatures.

ELASTIC PARAMETERS (107!2 cm?/dyne)

T°C su —S12 S44

24 3.88 1.52 0.578
195 3.61 1.42 0.580
293 3.87 1.42 0.588
389 4.15 1.53 0.624
448 4.64 1.80 0.685
466 4.96 1.98 0.725
468Tc 4.97 1.96 0.727
506 5.06 1.99 0.739
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all slope positively at room temperature. The
variation of these beta-brass parameters seems to
be in general agreement with other order-
dependent quantities such as specific heat,!® re-
sistivity and the determination of Young's
modulus'” for polycrystalline beta-brass. Values
of s11, s12 and s44 are given at selected tempera-
tures in Table I.

Knowledge of the temperature-dependence of
the three elastic parameters s;1, 512 and s44 allows
the calculation of the behavior of the elasticity
in any direction at any temperature. The value of
1/G’[1117 (reciprocal of the rigidity modulus in
the [1117] direction) has been calculated from
these data and is shown in Fig. 2. It again shows
the initial negative slope before much disorder
sets in.

The ratio of maximum to minimum modulus
in the [100] and [1117] directions is taken, as
was done by Webb? and Rinehart,* as a measure
of the elastic anisotropy. Figure 1, curve B shows
greater anisotropy at the higher temperature
than curve 4 at room temperature, although
both anisotropies are large. The dependence of
anisotropy on temperature is shown in Fig. 3,
curve 4. The anisotropy in the rigidity modulus
agrees well in shape with the similar Young’s
modulus anisotropy, but has a larger absolute
value (12.8 compared to 8.2 at room temperature).

The compressibility, 2, may be found from

k=3(s11+25s12). (7

It'® was computed as a function of the tempera-
ture and plotted in Fig. 3 curve B. Unfortunately
the quantity k, depends upon the difference be-

16 H. Moser, Physik. Zeits. 37, 737 (1936).

17 W. Koster, discussion of paper by G. Borelius, Zeits.
f. Elektrochemie 45, 16 (1938).

18 S, Lussana, Nuovo Cimento 19 (1910), gives a value
1.62 X 10722 cm?/dyne for this composition of brass at room
temperature. However, his values of & for copper and zinc
do not agree with Bridgman’s; so there exists some doubt
about Lussana’s value for beta-brass.
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tween two almost equal quantities, thus making
it very sensitive to slight changes in s1; and s;2.
Therefore the accuracy of the compressibility
curve is not great, but probably sufficient to
show the general trend. The compressibility in-
creases with temperature almost to the critical
temperature where it suffers a rather rapid de-
crease, to rise again just beyond the critical
temperature. It would be interesting to check the
genuineness of this dip by a direct measurement
of compressibility as a function of temperature.

Perhaps this change may be correlated with the
thermal volume expansion* which also undergoes
a discontinuity at the critical temperature.

In conclusion, the writer gratefully acknowl-
edges his indebtedness to Professor E. P. T.
Tyndall for much helpful advice and many
valuable suggestions; to the Physics Department
of the State University of Iowa for the facilities
generously placed at his disposal; and to others
who assisted him in this work.



