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A reformulation of the Lorentz transformations for an observer in a refracting but non-dis-
persive medium is suggested. In this statement of the transformations, the speed (¢ =c¢/z) of light
signals in the medium replaces the free space speed (¢) which appears in the usual form. It is
shown that the Fresnel drag coefficient takes the same form in the new formulation that it did
in the old. Other consequences of this assumption are discussed and, in particular, the mechanics
of the photon are shown to lead to correct expressions for Snell’s law and for the pressure of

radiation at the boundary of the medium.

IN spite of the successes of special relativity
in dealing with the problems of the velocity
of light, such as the Michelson-Morley experi-
ment, the Fresnel-Fizeau drag coefficient, and
the results of Airy on aberration, the more recent
attempts to base the treatment of optics on the
theory have not been very successful. These
attempts have followed two distinct lines. In the

first, various workers! have developed a rela-’

tivistic electrodynamics. While this work is of
interest in the interpretation of many effects, it
is admittedly incomplete and has led to few new
optical predictions. Working along a second line,
several authors? have attempted to deduce the
laws of geometrical optics from a photon hy-
pothesis. In general, it has been necessary in
such attempts to introduce some ad hoc assump-
tions regarding the velocity or the momentum of
the photon. The difficulties which have arisen
seem to make it desirable to attempt another
approach to the subject, in the hope that this
may lead to suggestions for the development of
a more complete electrodynamic theory.

In the present treatment, we shall assume that
the discrete distribution of matter which com-
prises a medium may be replaced, to a first
approximation, by a continuum characterized
by phenomenological constants, such as a dielec-
tric constant, a refractive index, etc. Under this
assumption, a treatment of such optical phe-
nomena as diffraction and scattering would be

1For example see W. Pauli, Enc. der Math. Wiss. 5,
Part 2, 539 (1922); H. Bateman, Bull. Nat. Res. Council
‘(}igl:z’%t 6, 96 (1922); W. Gordon, Ann. d. Physik 72, 421

2L.-Brillouin, Comptes rendus 178, 1696 (1924); S.
Serghiesco, Comptes rendus 202, 1563 and 1761 (1936).

impossible. It should, however, be quite adequate
for the treatment of geometrical optics and the
optics of the photon. We shall further assume
that the medium is refractive but non-dispersive.

Since there are no sufficiently precise experi-
ments which involve an observer embedded in a
refracting medium, we cannot say whether such
an observer could detect, by optical experiments
not involving the boundaries of the medium, his
motion through the medium. It is certainly true,
however, that an observer at rest with respect
to the medium could not detect any absolute
motion in space, since this would be a violation
of the relativity postulate. Were he able to
detect such motion, an observer outside the
medium could also detect such motion by ex-
change of signals with him.

If we consider the role of the speed ¢ in the
mechanics of special relativity, we find that it
acquires its special importance simply because
it is the signal speed in free space, and as such it
must be used in making the measurements of
length and time necessary for the discussion of
a mechanics. In a medium of constant refractive
index #, the signal speed is c=c¢/n, and it is not
unreasonable to suppose that it is this speed
which must replace the ¢ of free space in the
discussion of mechanics in the medium.? In
studying the consequence of such an assumption,
it will be necessary for us to refer to six different
observers. Two observers, O and O, move freely

3 H. Weyl has considered the possibility of this assump-
tion, but has discarded it because of the success of the
conventional theory in the deduction of the Fresnel drag
coefficient [Raum, Zeit, Materie, fifth edition, Springer,
Berlin, 1923, pp. 180-1817]. We shall see later that the

present assumption gives rise to the same expression for
the drag coefficient.
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in free space, while a third Oy makes his measure-
ments in free space, but is at rest with respect
to the medium. Within the medium, the two
observers O and O’ are free to move, while the
third O, is fixed with respect to the medium. In
discussing transformations connecting the ob-
servations of these various observers, we shall
use boldface type for observations made within
the medium, and italic type for those made in
free space. The diacritical marking of the symbols
used for the observed quantities will correspond
to that of the symbols used for the observers.
The complete notation, together with a state-
ment of the relative velocities of the various
observers is given in Table I. For simplicity, we
shall take all velocities as parallel.

If now the velocity of the observer O’ with
respect to O is U, the velocity addition theorem
will take the usual form:

v'=(@w—-U)/(1—Uy/c?). (1)

The corresponding theorem for any two ob-
servers O and O’ within the medium will then be

v =(v-U)/(1-Uv/c?). 1)

There is one very important consequence of this
formula. If O observes a signal of velocity
v=c=c/n, then O’ will observe the same velocity,
i.e., vV=c=c/n. This indicates that an observer
in a continuous medium cannot, by measure-
ments of the velocity of light alone, determine
his velocity with respect to the medium. It, of
course, follows a fortiori that an observer in the
medium will be unable to observe any absolute
motion in space.

At first glance, it would seem that Eq. (17)
was in contradiction with the experimental
results on the Fresnel drag eoefficient, but it is
to be noted that in every experiment which
verifies this coefficient, the observer is located
outside the medium. In order to discuss experi-
ments of this kind, we must therefore obtain
transformations connecting the results of ob-
servers in two different media. So far, however,
we have made no assumption connecting obser-
vations within the medium with those made
outside. The simplest assumption of this nature
which we can make is that measuring rods and
clocks are unaffected by transfer between two
observers Oy and Q,, both of whom are at rest

W. C. MICHELS AND A. L. PATTERSON

TABLE 1. Notation. Observers Oy and Oy are at rest with
respect to the medium.

IN FREE SPACE IN MEeDIUM
OBSERVER o’ (6] Oo 0o o o’
SPEED OF LIGHT c c=c¢/n
x coordinate x’ x X0 = Xo X x’
¢ coordinate t ¢ o = to t t
Velocity v’ v % = Vo v v’
Velocity of O’ 0 U — —_ —_ —
‘ ‘“0 -U 0 Uy — v —
6« “ 00 _ —_ UO O 0 — _—
113 ““ 00 . . 0 0 "Uo .
¢ ‘“0 — 14 — U, 0 -U
“ “ o . . - . U 0

with respect to the medium. Thus the kinematic
observations of these two observers will be
identical and we shall have xo=xXq, fo=to, and
0=Vy. We must now establish the velocity
addition theorem for the two observers O and O.
To do this we make use of the proper observers
0O and O,.

If the observer O observes a particle of
velocity v, the observer O, will observe a velocity
v, given by

vo=(v+Uo)/(1+4vUo/c?),

in which Uy is the velocity of O with respect to
the medium. In accordance with the above
assumption, however, vo=v, and we can find,
for the velocity v observed by an observer O, the
formula:

v(1—UoUy/c?)+ (Uy— Uo)
T A= UgUo/e) +v(Uo/ci— Us/c?)

in which U, is the velocity of O with respect to
the medium. Similarly, by interchanging bold-
face and italic type, it follows from symmetry

that
1}(1 - U0U0/62) + ( UO_UO)

VT L= UsUs/e?) +o(Uo/c—Us/c?)

From these formulae, we can obtain directly the
observed relative velocities of the two systems.
The observer O finds for the velocity of the
system O a value V given by
V=(Uo—Uo)/(1—UsUo/c?), (3)

and with an interchange of observers we find

VZ(UO—U()>/(1—U0U0/C2). (3’)
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There is thus no simple way of expressing the
formulae (2) and (2) in terms of the observed
relative velocities of the two systems.

If now the observer O observes a light pulse
of velocity c=c¢/n, then the velocity v of this
pulse with respect to O will be obtained by
making the substitution v=c in Eq. (2). We then
obtain

v=(c—U,)/(1—cUy/c?),
which may be rewritten in the form

v=_(c/n— Uy)/(1— Uy/nc)
=c/n—U(1—=1/n)+---. (4)

to give the usual form for the Fresnel drag coef-
ficient in special relativity for a medium whose
velocity is — U, with respect to the observer.

It is interesting to note here that there should
be an inverse drag effect on light traveling in
free space as seen by an observer moving in the
medium. An observer O should find a velocity
v for a light signal in vacuum [cf. Eq. (27)]
given by

v=(c—Uy)/(1—cUo/c?,
which may be rewritten in the form

V= (C—Uo)/(l—'nQUo/C)

=c—Uy(l—n)+---. (&)

We notice that this velocity depends only on the
velocity of O with respect to the medium, just
as, in the previous case, the observed velocity
depended only on the velocity of the free space
observer with respect to the medium.

If Uy=U,, the velocities of the observers O
and O with respect to the medium are the same,
and the transformation (2) takes the form:

v=v(1—Us?/c?)/[(1— U/c?)
+Uw(c?—c2], (5)

with an inverse transformation obtained by an
interchange of type face. We notice that in the
present case V=V =0, i.e., both observers agree
that they are at rest with respect to one another.

From now on we shall be concerned only with
the observations of the proper observers Oy and
O,. We shall therefore drop the use of the sub-
script zero, except as it is required in the normal
usage for the rest mass and rest energy, and in
the labeling of the observers.
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We shall be particularly interested in the
expressions for the energy and momentum of a
particle as observed within the medium. These
follow from an argument exactly analogous to
that used in the conventional treatment.* For the
proper observer Oy we then find that

E=mc?=m,c?/(1 —v?/c?)}

(6)
™

We thus obtain, for the ratio of energy to
momentum in the medium, the expression

E/p=c*/v. (8)

If we expand the expressions (6) and (7) in
terms of the proper rest mass my, we find that

E=m,2+3im v+ 3mev?/8c2+---,  (6')
and that

and
p=mv=myv/(1—v2/c?)}

(7)
Thus the Newtonian terms are left unaffected by
the proposed assumption. The most serious dif-
ference between the present and the conventional
treatment is that the rest energy in the medium
is now Eo=moc®=mo?/n% At first glance this
result may seem strange, as it indicates that a
particle passing from one medium to another
must change either its rest mass or its energy. If
we remember, however, that the energy neces-
sary to build up an electric charge configuration
is inversely proportional to the dielectric con-
stant of the medium surrounding it (i.e., in this
case to n?), the new result seems in complete
agreement with classical electromagnetic theory.

We now have the necessary equations for the
consideration of. geometrical optics. It is com-
monly recognized that the result of a measure-
ment of the velocity of light yields the group
velocity, but there remains the question of
whether this quantity is identical with the
velocity of the photon in a refractive medium.
If we limit ourselves to true velocity deter-
minations, such as those of Fizeau, Foucault,
and Michelson, rather than interference experi-
ments, there seems to be no doubt that the
measured velocity in a non-dispersive medium is
that of the photon, since the detecting device in

p=mov+imev®/c®4-- - -,

¢See for example: R. C. Tolman, Relativity, Thermo-
dynamics, and Cosmology (Oxford, 1934), Chapter III.
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the measurement is one which responds to
photon energy. Consequently, we shall suppose
that the photon velocity in a refractive medium
is given by c¢=c¢/n. Substitution of this value
into Egs. (6) and (7) shows that the rest mass
of the photon must be zero for a proper observer
in the medium. Equation (8) then becomes, for
the photon:

E/p=c=c/n. 9)

When a photon passes from one medium to
another, it is almost certain that its energy
remains unchanged. We may reach this con-
clusion either from the consideration of the con-
stancy of frequency of a wave in passing from
one medium to another, or from the photoelectric
effect. In the former case the energy must
remain constant if the Einstein frequency rela-
tion is to hold. In the latter case, the actual
absorption of the photon takes place within the
medium, and it is very hard to see how the
Einstein photoelectric equation could hold if the
photon energy changed at the boundary. Con-
sequently, for a given photon in vacuum, we have

E/p=c;
and for the same photon in the medium, we have
E/p=c=c/n;

with the condition that E=E. It then follows
that

p=np. (10)

This equation indicates that the momentum of
the photon increases as it passes from free space
into the refractive medium. If we suppose that
the change of momentum is normal to the
surface, as is indicated by the lack of a tangential
light pressure; and if we let I and R, respectively,
be the angles of incidence and refraction; we then
have
p/p=n=sinl/sinR,

so that Snell’s law follows directly from the
photon mechanics.

Use of the component of the momentum per-
pendicular to the surface enables us to calculate
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the radiation pressure on the interface. If N
photons per second pass unit area of the surface,
and none are reflected, the pressure will be

P=(Nhv/c)(cos] —n cosR),
which reduces for normal incidence to
P=(Nhv/c)(1—n).

While Eq. (10) eliminates the difficulty which
has been present in earlier particle treatments of
optics, namely that the momentum must increase
when a photon passes into a more refractive
medium, it seems strange that it ascribes to the
photon a momentum which is inversely propor-
tional to its velocity. This, of course, follows only
because of the constancy of the energy, which
requires that the effective mass of the photon
increase by a factor »? in passing the boundary.

If the usual de Broglie relationships are derived
for an observer in the medium, the relation
between the velocity of a particle G and the
phase velocity of the associated wave W becomes

GW =c2=c2/nt. (11)

In the case of the non-dispersive medium this
equation reduces to a trivial identity for the
photon and the electromagnetic wave.

The treatment of dispersive media would be of
considerable interest, but it presents many dif-
ficulties. It seems clear, however, that the
mechanics of an observer embedded in a dis-
persive medium may depend on the exact nature
of the signal which he uses in making his ob-
servations and in synchronizing his clocks.

We present this paper, with an alternative
formulation of the special relativity postulates,
with considerable hesitation. The difficulties of
performing direct experiments to test its validity
seem insurmountable, since such experiments
would involve precise measurements with the
apparatus moving in a refracting medium. The
only justification for the proposed system seems
to be the experimental determination of the
ratio p/p given by the interpretation of Snell’s
law on a photon hypothesis.



