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formation temperature (the experimental data
are not sufficient to determine whether the
transformation temperature is ever unique and
critical or includes always a span of a number of
degrees) a rapid increase in mobility with
resultant aggregation of atoms takes place which
produces a discontinuous, patch structure of the
61m. This film then exhibits a decrease in conduc-
tance with further temperature (and mobility)
increase. The last-mentioned decrease of conduc-
tance with increasing temperature is transient;
a stable (aged) film in which the agglomeration
process has been completed exhibits a negative
temperature coefficient of resistance as would be
expected for a discontinuous structure. Fukuroi'
gives a somewhat detailed discussion of the trans-
formation temperature.

A few tests were made of the dependence of
the. conductance on the voltage applied to the
film in measuring the conductance. For the
thinner Alms an increase in conductance with
applied. voltage was observed in agreement with
Foster's4 results with lead films but this effect
disappeared with increasing film thickness and
the aged room temperature deposited film of
Fig. 2 at 146 atom layers thickness showed no
measurable variation of conductance with applied
voltage. These results very obviously agree with
the agglomeration process explanation since a
discontinuous (thinner) film would be expected
to exhibit a conductance which is voltage de-
pendent because of the presence of gaps whereas
a film approaching bulk metal structure (thicker
film) would not.
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A Heitler-London treatment of the exchange part of the mutual energy of a neutral atom
and a metal is developed. The resulting interactions are evaluated on the basis of a simpli6ed
model of the metal and lead to a convenient and simple expression for the total exchange energy.
In Section III this expression is applied to the interaction of H..and He with metals where it is
found to represent a repulsion. By adding this exchange interaction to the attractive van der
Waals interaction between the molecule and the metal, a potential curve of the usual type
possessing a minimum is obtained for each system. The depths of these minima are compared
with observed heats of van der Waals adsorption. A discussion is given in an appendix of the
effects of some of the simplifications and approximations employed.
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T large distances from a solid surface, the
mutual energy between an atom or molecule

and the solid is predominantly determined by
dispersion forces. These forces give rise to the
usual 1/R' van der Waals law for the interaction
between an element of the solid and the molecule.
Summation of this potential over all elements of
the solid then leads to a mutual energy decreasing
as the inverse third power of the normal distance
between the surface and the molecule. This inter-

action was the subject of study in a previous
paper.

At doser distances the shorter range exchange
interaction becomes important. For neutral mole-

cules and rare gas atoms this represents a repul-
sion and its composition with the van der Kaals
interaction determines a minimum energy from
which numerical values for the heat of physical
adsorption can be inferred. This interaction is the
subject of investigation here. A Heitler-London

* A preliminary report on some of the work presented
here was given at the %ashington Meeting, April, 1939.

' H. Margenau and K. G. Pollard, Phys. Rev. M, 128
(1941}.
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treatment is developed and the exchange part of
the resulting expression is evaluated approxi-
mately for a simple free electron model of a
metal,

The calculation of the total potential curve for
a molecule near a solid surface, which is con-
templated here for metals, has been performed
fairly adequately in the case of adsorption on
ionic crystals. ' In such problems it is proper to
express the interaction of the molecule with the
whole crystal as a sum of the interactions with
individual ions in it. Such individual interactions
can be fairly accurately represented by simple
formulae and the summation can be performed
without too great difficulty in terms of the known
structure of the crystal. These calculations lead
to results which show excellent agreement with
experimentally determined heats of adsorption
at low temperatures. The procedure employed in

them is, however, inappropriate for adsorption
on metals since interactions with the outer shell

electrons of an isolated metal atom would be-
come radically altered when the atom became
bound in the metallic state.

I. HEITLER-LoNDQN TREATMENT

The visiting atom is represented by a core of
charge +e above the surface at a point r~, and
an electron with positional coordinate r„spin
coordinate s„and wave function (c+n(s,) +
c P(s,))P(r,). In the solid we take atomic cores of
charge Z~e at points r~ together with electrons
at points r; with wave functions u;(r;)(i, j=
1, 2, X) and spin functions n(s;) or p(s;). The
best antisymmetric wave function of these elec-
trons in the product of individual functions
approximation is the familiar determinant

C = ug(rg)n(si),
P7 I) 5

u„(ri)n(si), u +i(ri)p(si), , un (rl)p(sl)

u| (r~)n(s~), (rN) n(sN) u +1(rN) p (sN) ux(rx) p(s~)

The terms have been arranged so that the first n electrons have positive and the next S—n have
negative spin functions.

The system solid+atom has %+1 electrons which must be described as a single system by a
wave function completely antisymmetric in the %+1 positional and spin coordinates. Since the spin
function of the electron in the visiting atom is represented as a linear combination of the eigen-
functions n and p of the solid, the wave function for the whole system may be taken to be the same
linear combination of the two functions

1 I

k(r )n(s ),
(%+1)&

I

I

I

I

4 (rx) n(sx),

f(r.)n(s.), ui(r. )n(s.) u~(r. )p(s.)

and the function +2 which is obtained from 4 in the same way except that it is bordered on the right
with p(r, )p(s;).

~ J. E. Lennard-Jones and B. M. Dent, Trans. Faraday Soc. 24, 100 (1928); F. V. Lenel, Zeits. f. physik. Chemic
B23, 379 (1933); J. K. Roberts and %'. J. C. Orr, Trans. Faraday Soc. 34, 1346 (1938); W. J. C. Orr, Proc. Roy.
Soc. A173, 354 (1939).
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The Hamiltonian of this system is given by

h'
II= — V',2—

2m

k2 Z JZLe' e' Z Je' Z Je'
&~'+2 2' +22' l' J, L fJL L t'AL J k fJIc J fJa

e2 e2 e2 e2

The wave function for the whole system is taken to be

4=c+01+c 42,

+2 2' —+E— (3)
rAk ~Aa &~ ~jfr, & re

where c+ and c depend on the spin function of the electron in the visiting atom. The total energy
of the system is given by

E= (II)„= ~@*H+dr I +*@dr.

The determinant (2) was expanded by minors of the bordered row and column and substituted
with (3) in Eq. (4). After summation over spins is carried out in the result it is found that the cross
product terms between 4'1 and 4"2 vanish and the terms in +1*+1and 42*+2 are identical except that
the exchange summations in the former which ran from 1 to n are replaced in the latter by summations
from n+1 to N. Thus the exchange terms refer only to those electrons in the solid having the same

spin as that of the electron in the visiting atom. No loss in generality is involved in taking c+——1,
c =0 since expressions for arbitrary c+ and c can always be obtained simply by replacing each

The evaluation of the total energy (3) is rather involved but quite straightforward. The results are
best exhibited in terms of the following expressions

f(r&, r,) =g n;*(r2)u„(r~), (Sa)

, t P*(1)P(2)f(1, 2)dr, dr„
ai « 4'(1)4 (2)f(1, 2)

X,=e')' ) dx 1d72,

(Sb)

(Sc)

(Sd)

I I
t' 0*(1)4'(2)f(3 2)f(1 3)

d7 1d72d73,

G=e)t)t P*(1)$(2)f(1, 2)g(2)dr, dr2, (Sf)

where p represents the electric potential of the solid

dl .
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A number of other terms which are of order
(surface area of crystal) ' compared with these
appear but they were neglected.

The exchange part of the contribution to the
total energy (4) representing an interaction
between the visiting atom and the solid has the
form

A (rz) = (G+Zg —Zg+Zg)/(1 —6').

The potential p, Eq. (6), arises from the surface
double layer and from the polarization of' the
solid by the visiting atom. In the simplified model
used to evaluate this interaction in the next sec-
tion, both these effects are neglected so that in
this approximation the term G vanishes. From a
consideration of the relative magnitudes of the
various terms when such effects are included, it
appears that the term is negligible compared
with the others in any case. Thus we may write
Rppl OX1ITlRtely

A (rg) = (Zg —Z2+Z|t) /(1 —6').

For the case in which the u, (r) are represented
by plane wave functions, the function f(1, 2)
defined in Eqs. (5) has been evaluated by Wigner
and Seitz. ' In this case it is a function only of the
distance rI2 between points 1 and 2 and has the
form

p e ) sing —$ cos f

iv&

where&=k rg2 ——L67r'(n/V) 7lrg2. This function has
the value n/ V at (=0 and at large P falls off as
1/P. The total number of electrons represented
by the density f is Jf(1, 2)dr'&2. This integral is
unfortunately indeterminate but since the func-
tion is multiplied in all the interactions (5) by
functions of exponentially decreasing character,
it seems pmper for the present purpose to repre-
sent thIs IlUITlbel Rs

lim ~e '""f(1,2)drqq
c-+0

which is equal to unity.
The function f(1, 2) is closely connected with

the function g(1, 2) in the expression

p(1, 2) = p(1)p(2) l
1 —g(1, 2)7

' E. signer and F. Seitz, Phys. Rev. 46, 509 (1934).

for the density of particles I and 2 in terms of
their individual densities. The relation between
them is

a(1, 2) =ll f(1, 2)/(~/V)7'.

The properties of this function have been ex-
tensively studied by signer and Seitz' and we

may use their results to obtain an interpretation
of the role of f in the exchange interactions (5).
Each electron in the solid whose spin is the same
as that in the visiting atom is surrounded with a
"hole" in the total distribution of electrons of
like spin. The exclusion of charge from this hole
becomes complete as the point occupied by the
electmn is appmached and the total charge ex-
cluded is just equal to that of the central elec-
tron. The function f represents the density of this
excluded charge. The manner in which the ex-
cluded density falls off with rI2 is, however, in-

correctly given by (8) as pointed out by Bar-
deen. ' In the actual case it must still be n/V for
rI2=0 but should fall off much more rapidly,
presumably exponentially, at large r12 because
of the screening of the field of the central elec-
tron by the others in its neighborhood. The total
number of electmns excluded must of course in

Rny cRse be unity.

II. AppRoxrM@m Cxx,cvLAnoN roR x MEvxa

In this section a highly simplified and perhaps
rather crude evaluation of the interactions in
Eqs. (5) will be presented. The method is based
on certain approximations, the first of which
consists of substituting for the function f(1, 2)
a rectangular hole which is such that each of the
n metal electrons of the same spin as the visitor
is assigned a volume V/N within which the den-

sity of electrons of this spin is zero and outside
of which it has its normal value n/V In this.
scheme the density of the excluded electrons is
given by

f(1, 2) =m/V, rgg& p. ,

where p, = 2lr, is the radius of a sphere (of volume

V/n) containing one metal electron of given spin

4 J. Bardeen, Phys. Rev. 58, 727 (1940).
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TABLE I. Values and positions of the minima in the potential energy curves for the van der IVaals adsorption
of He and H2 on metals having various values of r, .

He Hg

cm X10'

1.0
1.5
2.0
2.5
3.0

ELECTRON
VOLTS X10S

33.0
14.0
6.1
3.0
1.6

CALORIES
PER MOLE

765
325
140
68
37

Dm
cm X108

1.9
2.3
3.0
3.7
4,3

ps

1.5
1.2
1.2
1.2
1,2

ELECTRON
VoI.TS X103

38.0
32.0
16.0
8.6
4,8

CALORIES
PER MOLE

865
730
375
200
110

Dm
cm X108

2.3
2.7
3.3
3.8
4.6

1.8
1.4
1.3
1.2
1.2

A substitution similar to this of the rectangular
for the plane wave form of "hole" has been em-

ployed with good success in discussing the co-
hesive energy of solids. ' Further consideration of
the effect of its use in the present problem is
deferred to Section b of the Appendix.

The presence of the function (10) in all of the
integrals of Eqs. (5) confines the variables r2 and
r2 to the range Ir& —r2I &~p, . When the visiting
atom is far from the surface of the metal, both
r~1 and r~2 will be large enough to permit the use
ef an approximate expansion of r~2 in the form

where

~'=f2(p. )F(D)

I:2 = e'P (P.)G(D),

X2 ——e2g(p, )F(D),

&2=s'f (p.)a(p.)F(D),

F(D)= "I&(r»)I'~»
M

terms in Eqs. (5) become

(12)

rA2 rA1 r12 COs| (11a) G(D) = "
I
a(r») I'dr2/r»

where 0 is the angle between r~1 and r12. When
this is the case it will often be possible to write
the wave function of the electron in the visiting
atom in the form

p(p*) (22/ V) 'P(r12)dr12
S

(13)

1i (2) =P(1)q (r22), (11b) g(P ) = ('I/ +)J 22(r12)d T12/r12
S

which will be valid in this confined region. This
procedure may seem inappropriate to the present
calculations because the magnitude and be-
havior of the exchange energy is of greatest
interest close to the surface in the region where
this approximation is invalid. However, as will

be seen, in the case of van der Waals adsorption
the minimum in the total potential energy curve
will often fall at a great enough distance from the
surface to make its use allowable and it is to such
cases that the results obtained must be confined.
The approximation is discussed further in Sec-
tion c of the Appendix.

If one makes use of (9) and (10) the various

' J. C. SlateI, Rev. Mod. Phys. 6, 209 (1934).

and the regions of integration denoted by M and
s are defined as follows: The region s is the sphere
of radius p, about the point r1 as center within
which the function f(1, 2) defined by Eq. (10)
has non-zero values. The region 2II is the region
occupied by the metal and is taken of infinite
extent in the x and y directions and extending in
the s direction from s=D to s= ~. Substituting
the expressions (12) in Eq. (7) we obtain for the
total exchange interaction

~(P., D) =s'[P(p.)G(D)

+g(p )(P(P ) —1)F(D)j/[1 —P(p )F(D)j (14)

In case the wave function in the visiting atom
can be represented by a is function of the form
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0'= [I/(sa')l]e "', the use of Eq. (11a) leads to

p(y+2) —[1/(&g3) $]s—(rA1 —r&2 cos8&/a

so that, comparing with Eq. (11b), we have

y (r ~z) = s & "&2~'& "'~

If these functions are substituted into Eqs. (13)
the resulting integrals are easily evaluated and
lead to the results

F(D) =-,'(1+D/a)e 'D'

G(D) =(1/2a)e ' &a

(15)
p(p, ) =3[(p,/a) cosh(p. /a) —sinh(p, /a) ]/(p, /u) ',

g(p, ) = (3/a) [cosh(p, /a) —1]/(p, /a)'.

III. ADsoRPTIQN QF HE AND H2 QN METALs

The total exchange interaction of both elec-
trons in He and in H2 will be twice that for one
of them when the metal contains equal numbers
of both spin varieties and when the distance from
the metal is large enough to make the double
exchange integrals negligible. In the van der
Waals case, and particularly in all cases to which
the approximation (11) is applicable, the latter
condition is fulfilled. For both gases single par-
ticle 1s functions are used here to describe each
of the two electrons. The parameter a in this
function may be chosen either from an examina-
tion of more elaborate variational wave functions
for these systems or from their diamagnetic sus-
ceptibilities g and atomic polarizabilities n calcu-
lated on the assumption of 1s functions. From the
latter method we obtain

a=[ mc'x/—Noe'5 & [k'a/S—me'5' (16).

For He the form of the variational wave func-
tion gives a=0.59ao while from Eq. (16) we get
a =0.64up. In these calculations the value
a=0.62ap was used for He. In the case of H2, the
wave function around each nucleus is best ap-
proximated by a 1s function with a=0.84ap. But
since the nuclei are 1.4ap apart, the resulting
configuration is more or less that of a spheroid
with major and minor semi-axes 1.54ap and 0.84ap.
If a is determined from the radius of a sphere
whose volume is equal to that of this spheroid, it
should be 1.03ao. From Eq. (16) we get a = 0.91ao.

The value a =0.95ap was used in these calculations
for H2.

In order to obtain the total potential energy of
the system in the field of the metal surface, the
potential of the attractive forces must be added
to the exchange term. These forces are, of course,
of the van der Waals type and so occur only in
second order. The validity of adding first-order
exchange forces to second-order dispersion forces
has been investigated by Margenau' who finds
for the He —He potential that no great error is
involved because the contribution from exchange
in second order is negligible in the neighborhood
of the minimum. Presumably it would also be
small in this case and well within the limits of
accuracy of Eqs. (14) and (15). The particular
form of van der Waals potential used in these
calculations was that obtained by Margenau and
Pollard '

On adding the exchange potential A(p„D) of
Eq. (14) computed with the functions of Eqs. (15)
to the van der Waals potential W(r„D) of
reference 1, curves possessing minima of the
usual type are obtained. In Table I the depths
of these minima, 9, and the corresponding dis-
tances D at which they occur are shown for He
and H2 at various values of r, . The ratio D„/p, of
this equilibrium distance to the radius of the
sphere in the metal to which the vector r~~ is
confined is also shown. In order for the approxi-
mation of Eq. (11) to be valid, this ratio should
be large; a condition which unfortunately is not
very well fulfilled. This situation will be discussed
further in the appendix where it will be shown
that the results in Table I are somewhat more
reliable for small r, than this indicates.

The minimum energies expressed in calories
per mole are also tabulated in Table I and may
be compared roughly with observed heats of
adsorption at low temperatures. Such a compari-
son neglects the vibrational energy of the ad-
sorbed molecule but this will be smaller than
the limits of accuracy of the present treatment.
Very little experimental data relevant for this
comparison is available. Since a large number of
investigations of the adsorption of gases on
metals have been made (most of them concerning
"activated" adsorption or chemisorption), this

' H. Margenau, Phys. Rev. 56, 1000 (1939).
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situation suggests that the binding forces in van
der Waals adsorption of H2 and He on metals are
very weak; a condition reHected by the results
in Table I ~ Only one case suitable for comparison
with the present results has been found. This is
a measurement of the heat of adsorption of H2
on Ni at 20'K by Eucken and Hunsman. 7 They
obtain values of 1200 cal. /mole in the initial
stages of adsorption which decrease to 400 in

the final stages. They give 800 cal. /mole as a
mean value. With r, =1.38 for Ni, a potential
curve for H2 having a minimum of 0.032 electron
volts per molecule corresponding to a heat of
adsorption of 795 cal. /mole is obtained.

It is of interest to note here the order of magni-
tude of the heats of van der Waals adsorption of
He and H2 on non-metals, For H2 it is 1100
cal. /mole on Acheson graphite' and varies from
1300 to 1700 cal. /mole on various charcoals. ' For
He a value of about 140 cal./mole is given by
Stout and Giauque" for the heat of adsorption
on NiSO4 7H20 at 4'K. These values are com-
parable with those in Table I for metals.

In conclusion I wish to express my gratitude
to Professor Henry Margenau for his continued
-interest in this work and for a very helpful
criticism of the manuscript.

APPENDIX

The evaluation of the exchange integrals (5) which is

performed in Section II is based on several approximations
and simplifications which are in need of some justification.

TAaLE II. V alues of the coefficients M(p.) and N(pz) in Eq. (81) shoveling
the egect of the modification (a) on the exchange interaction.

use of the rectangular form, Eq. (10), of the
f(1,2) may introduce considerable error when
integration with an increasing function of r12.,
approximation represented by Eq. (11) is valid
reasonably large values of the ratio D /p, . We
these aspects separately.

function
used in

(c) The
only for
consider

a. EfFect of boundary conditions on metal wave functions

This effect may be roughly accounted for by choosing
the wave functions u;(r) for a region of constant potential
within the metal bounded somewhat beyond its surface
by a barrier of infinite height. If the z axis is chosen, as
before, normal to the surface and the barrier is taken at
z=0, the wave functions are given by

u;(r) = (2/ V) d sinkze'&~. *+~»5, (17)

where k, =27rv, /L, k„=27rv„/L, and k=27rv/L with v„v„
taking all integral values and v positive half integral
values. If the positive ions in the metal are replaced by a
uniform charge distribution of constant density extending
from z0 to infinity, the metal can be made electrically
neutral by choosing z0= 3'/8k where krn is the maximum
wave number in the Fermi distribution. " This gives rise
to a surface double layer which produces a potential p(z),
Eq. (6). The resulting exchange interaction G, Eq. (5f ), is,
however, negligible compared with the others.

The density f(1, 2) computed with the wave functions
(17) when there are equal numbers of both spins in the
metal is given by Lcf. Eq. (5a))

n

f(1, 2) = Z u;*(2)u; (1)
i=1

2 2$
= [2V/(2z)'5 f dkf "

zdzf u;*(2)u;(1)dg

= (zi&z2&/27r p12) Jit (km' —k') z p12)
0

XJ$(kzl) J)(kz2) (k '—k') &kdk

pi2=t (» —x2)'+(yi —y2)2$&. This integral may be
evaluated" through the substitution k =k cose with the
result

p, /a
f (1, 2) FROM EQ. (10)

M(pz) W'(p )
f(1, 2) FROM EQ. (20)
M(p.) &(p ) f(1 2) 3

sin) —$ cosg sing g cosy

1.5
3.0
6.0

12.0

0.34
0.17
0.12
1,34

0.065
0.062
0.090
1.35

0.088
0.011
0.00027
0.000011

—0.021—0.0023—0.000039—0.000001

where g = k r12 has the same meaning as before and
g = km(p12 + (zl+z2)'$&. At r» =0 the function is still equal
to the density at the point ri but this is no longer n/V;
it is replaced by

Some of the aspects of the problem which seem to require
the most attention may be listed as follows: (a) The metal
wave functions u, (r) obey boundary conditions at the
surface so that all electronic densities are much smaller

near the surface than in the body of the metal; (b) The

7 A. Eucken and W. Hunsman, Zeits. f. physik. Chemic,
B44, 163 (1939).' R. M. Barrer, Proc, Roy. Soc. A161, 476 (1937).' R. M. Barrer and E. K. Rideal, Proc. Roy. Soc. A149,
231 (1935)."J.W. Stout and W. F. Giauque, J. Am. Chem. Soc.
50, 393 (1938).

f(1 2) 3
+

1
sin2k„zi —2k zi cos2k zi

The density (18) integrates to a total excluded charge of

ff(1, 2)dzgz ——(2/z)si(k~z, ), (19)

where Si(x) = sinxdx/x denotes the integral sine func-
0

tion.

» J. Bardeen, Phys. Rev. 49, 653 (1936).» G. N. Watson, Theory of Bessel Functions (Cambridge, 1922),
p. 377.
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An indication of the effect of this form for f(1, 2) on the
results of the present calculation may be obtained by
employing an approximation similar to (10) as follows

f(1, 2) = (n/ U) (2/x)Si(k zI)h(zI/p, ), rI~ & p,
(20)

=0, &I2)Ps
where

~(. /. .) =4/L2+3(. /. .)- (. /. .) j,

The sphere of radius p, about the point zI does not extend
beyond the barrier and the purpose of the function h(zI/p, )
is to correct for that part of it which is cut off.

Equation (20) has been used in place of Eq. (10) to
evaluate the interactions (5) . In either case the total
exchange energy (7) can be written as

A (p„D) = [3f(p, )+ (D/a) N(p, )) exp L
—(2D —p„)/ug. (2 1)

The coefficients elf and N have been evaluated for several
values of the quantity p, /u with both forms of f(1, 2) by
numerical integration in this case and the results are given
in Table I I ~ It is clear that the introduction of metal wave
functions obeying boundary conditions at the surface has
a profound effect on the exchange interaction. If this effect
were the only one operative, it would completely invalidate
the results of Section I I I but as we shall see in what
follows another equally strong effect is present which very
nearly counteracts it.

b. Exponential form of f(1, 2)
As pointed out at the end of Section I in this paper and

in reference 4, the correct form of f(1, 2) should show an
exponential decrease with rI2 at large values. Deep in the
body of the metal both of the plane wave forms of this
function, Eqs. (8) and (18), are equivalent. In this region
a simple function showing the same behavior as these for
small rI2 and representing the same total excluded charge
but exhibiting the desired behavior at large r» is given by

f(1, 2) = (n/ U) Le ""»'p. + (6.4rI2/p )e 3 3"»tp. g. (22)

In any scheme employing the approximation of Eqs. (11),
this function cannot be used for values of p, )3. The
functions P(p, ) and g(p, ) as defined in Eqs. (13) on the
basis of f(1, 2) being given by Eq, (10) may be written for
use with Eq. (22)

P(p, ) =fp(rn)f(1, 2)dr]2, g(p, ) =fy(ry2)f(1, 2)dry2/ry2,

where the integration now extends throughout space. These
integrals are easily evaluated with the form q (r»)
=exp t (r I~/a) cos8j. If it is assumed that the ratio of
values so obtained to those given by Eqs. (15) may be
used throughout the metal, including regions near the
surface, these new functions may be used in the calcula-
tions performed in (a) above to give a new set of exchange
interactions. The exchange energy so obtained represents
in a rough way the combined effect on the original results
of both the modification introduced in (a) and the present
one. The coeffrcients in Eq. (2 1) obtained in this way are
compared in Table I I I with the original ones. It is evident

TABLE III, Values of the

coefficients

M(p, ) and N(p&) of Eq. (81) showing
the combined effect of modifications (a) and (b) on

the exchange int eractions.

f(1, 2) FRQM EQ. (10)
f(1 ~ 2) FRQM EQ. (20) wITH

p AND q I RQM EQ. (22)

ps/a M

1.0 0.47
1 ~ 5 034
2.0 0.26
2.5 0.21

N

0.062
0.065
0.065
0.062

M

0.34
0.25
0.26
0 ~ 57

0.003
0.032
0.058
0.162

that the use of Eq. (22) in this way almost cancels the
effect of (c) shown in Table I I .

c. The approximation of Eqs. (11)
It was pointed out in the discussion of the results of

Table I that the smallness of the ratio D /p. made the
use of the approximation (11) questionable. However, if
one takes the refinement introduced in (a) above into
account, the situation is somewhat improved. As a result
of the behavior of the density f(1, 2) in Fq. (20), the main
contribution to the exchange interaction does not come
from a sphere centered at the surface and extending beyond
it, as in the simple theory, but from a sphere centered
within the metal at a depth of order 1/k, and cut off at the
surface, This effect adds about 0,4 to the ratios D /p,
given in Table I so that the use of the approximation
seems somewhat better justified,

It is to be noted that all of the difhculties discussed in
this appendix are least important at small p, . Thus it
appears that the simple theory developed in the body of
the paper represents the limiting case of metals with high
electronic density fairly reliably but should be used with
caution in the case of metals having large values of p, .


