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electrons were not drawn in to the target but
were slowed down by the decreasing magnetic
field. Fortunately the operation of the accelerator
is not sensitive to the alignment of the pole faces.
No difference in the output can be detected when
the pole faces are placed off axis as far as a
thirty-second of an inch. It is also surprising that
vacuum requirements are not as severe as was
expected. No rigorous outgassing is necessary and
the apparatus has been run with a vacuum as
poor as 10 ' mm Hg. The tube can be opened for
changes and operated three-quarters of an hour
after sealing shut.

At present, low Aux densities have been used at
the orbit. When these are increased, it should be
possible to go to 5 million volts even with this
small model. One of the promising possibilities
for the induction accelerator as a research tool is
that the electrons from the beam can come out

through the glass walls of the doughnut after
they strike the target. They should be fairly
homogeneous in energy provided that the target
has a high atomic number. The great increase in
bremsstrahlung production with rising electron
energy in addition to the concentration of this
radiation in a cone of solid angle mc'/2 about the
original electron direction gives the induction
accelerator the possibility of providing an intense
source of x-radiation for nuclear investigations.
Since there is no evident limit on the energy
which can be reached by induction acceleration,
it may soon be possible to produce some small
scale cosmic-ray phenomena in the laboratory.

I am indebted to Professor H. M. Mott-Smith
and Professor R. Serber for many discussions of
the theoretical aspects of this problem and to
Mr. R. P. Jones for assistance in the construction
of the magnet.
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The first section gives a general account of the principles of operation of the electron induction
accelerator. The second section gives the more detailed analysis of the orbits of the electrons
which was undertaken to serve as a guide in the design of the accelerator.

I. INTRoDUcTIoN

HE construction and operation of an
induction accelerator for electrons has been

discussed in the preceding paper. ' The idea of
using the principle of electromagnetic induction
for the production of high energy particles has
been entertained by a number of investigators, '
but has hitherto met with little success in

application. It was therefore felt necessary to

*On leave at the General Electric Company Research
Laboratory.

'Also D. W. Kerst, Phys. Rev. 58, 841 (1940); ibid.
59, 110 (1941).

'G. Breit and M. A. Tuve, Carnegie Institution Year
Book (1927—28) No. 27, 209. R. Wideroe, Arch. f. Electro-
technik 21, 400 (1928); E. T. S. Walton, Proc. Camb. Phil.
Soc. 25, 469—81 (1929); W. W. Jassinsky, Arch. f. Electro-
technik 30, 500 (1936).

carry out a more careful analysis of the orbits of
electrons in changing magnetic fields for the
double purpose of determining whether such a
device was practicable, and to serve as a guide
in its design.

The basic idea of the accelerator is a simple
one. An electron started in a radially symmetric
magnetic field at the proper position and with
the right velocity will move in a circle of radius
given by

P =eHr/c.

If now the magnetic flux enclosed by the orbit,
p, is increased, a tangential electric field will .be
produced at the orbit, E„=p/27rrc, which will

accelerate the electron. If the magnetic field is
so arranged that p and II increase proportion-
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which gives
p = ep/2s roc,

P = e(@ q),—)/2'7rrpc

Using (1), with r =ro, we find

ately, the radius of the orbit will remain un-

changed; the electron continues to move in the
equilibrium orbit (r = ro), but with momentum
constantly increasing as II is increased.

The condition for the existence of such an
equilibrium orbit is readily found. The rate of
increase of momentum is

the magnetic and centrifugal forces. If the
electron is displaced from the equilibrium radius,
an unbalanced force will act, and, since the
centrifugal force is proportional to 1/r, this force
will be directed towards the equilibrium radius
provided the magnetic field falls off less rapidly
than 1/r. The electron, when displaced, will

then oscillate around the equilibrium orbit. Ke
shall see that this is a damped oscillation its
amplitude is proportional to II ". The focusing

H= (y y,)/2~r, '—. (2)

Thus the change in flux through the orbit must
be twice that which would obtain if the magnetic
field were uniform in space. To satisfy this
requirement one must have a strong central
field to supply the necessary flux, and a weaker
field to hold the electron in its circular orbit.

The energies which can be obtained by this
means are quite high. The Illinois accelerator
(ra= 7.5 cm, H,„=1200 gauss) should give,
according to (1), electrons of 2.2 Mev. It will

be observed that, since the phase of the electron
in its orbit is immaterial to the operation of the
accelerator, the relativistic change of mass with
velocity causes no difficulty for a machine of
this type.

However, the very fact that such high veloci-
ties are attained brings with it new difficulties
which at first sight seem rather formidable.
Since, during most of the time the electron is
being accelerated, its velocity is very nearly the
velocity of light, its path length in the machine
is very great. The magnet of the Illinois machine
was activated by 600-cycle a.c., and the acceler-
ation took place during a quarter-cycle. In this
time the electrons traveled nearly 100 kilometers
and made about 200,000 revolutions. It is
therefore essential, to obtain any appreciable
beam intensity and to overcome the effects of
scattering by the residual gas and of space
charge, that there be strong focusing forces to
hold the electron in its equilibrium orbit.

The focusing requirements impose additional
restrictions on the form of the magnetic fieM.
Consider first the radial focusing, that is, the
motion in the plane of the orbit. The equilibrium
Eq. (1) is just the condition for the balancing of

0 D

FIG. 1. The figures represent the developed paths of
electrons. rp is the position of the equilibrium orbit, and r,
is the position of the instantaneous circle. The injector is
at 0. (A) Path of an electron injected tangentially on its
instantaneous circle. It approaches rp without oscillation.
(8) Path of an electron with an instantaneous circle
coincident with the equilibrium orbit. Oscillation occurs
about rp. (C) Path of an electron whose instantaneous
circle does not pass through 0 at the time of injection but
is between 0 and rp. The oscillation is about r while r;
aPProaches rp. (D) A real beam from the injector showing
image formation at 1, 2, 3 and 4. The instantaneous circle
is coincident with the equilibrium orbit.

'This can be shown in the following way. The energy
of oscillation is E= Jv„, where J is the action variable,
v„ the frequency of oscillation. The amplitude of oscillation
a is given by B=~M(2+v, )'a~, with M the transverse
mass. Thus a'= J/2+'M~, . The frequency of rotation of
the electron in its orbit is v =p/2m-rM, so, writing n, = v, /v,
a'= Jr/xn;p. It follows from the adiabatic invariance of
the action variable that a~(r/n, p)& (1/n, H)&. For H~1/r",
n; turns out to be a constant.

is thus most effective at small velocities, where

scattering and space charge effects are most
important. Figure 1(B) shows such a damped
oscillation about the equilibrium radius. There
will also be vertical focusing, forces tending to
drive the electron back to the plane of the
orbit, provided the magnetic field strength is

decreasing with increasing r. The restoring force
here is due to the curvature of the magnetic
field near the median plane; the focusing action
is similar to the magnetic focusing effective in
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the cyclotron. The vertical oscillations are
similarly damped. Thus both radial and vertical
focusing can be obtained, for a magnetic field
which in the region of the orbit is of the form
H 1/r", within the limits 0(n(1

The injection of electrons into the machine is
a problem which also has its difficulties. It is
obviously not possible to inject the electrons at
the position of the equilibrium orbit. Nor is it
possible to shoot them into the magnetic field
from an external source as was attempted by
Wideroe; for, unless the magnetic field were
increasing extremely rapidly, the orbits would
be nearly symmetric around the point where
the radial velocity vanished: the electrons would
shoot right out again. Thus the electrons must
be injected at a point within the magnetic field,
either inside or outside the equilibrium orbit
(in the following we shall suppose it outside).

The analysis of the paths of the electrons is
greatly simplified by the fact that the magnetic
field increases little during one revolution of the
electron. The adiabatic theorem can therefore
be applied: it states that under these circum-
stances the motion is very nearly the same at
each instant as if the magnetic field were held
fixed at its instantaneous value. Consider now
an electron injected tangentially with a given
momentum p, at radius r. As the magnetic field
is increased from zero there will come a time
when p, H; and r satisfy the relation (1). An
electron injected at this time would, if the
magnetic field remained constant, travel in a
circle. The adiabatic theorem tells us that at
any later time, even though the field is in-

creasing, the position of the electron will still be
given by (1); at each instant the electron is
moving on its "instantaneous circle. " Since the
injection radius is larger than the radius of the
equilibrium orbit, the flux within the instan-
taneous circle is less than that necessary to
hold the electron at r. Momentum is gained less
rapidly than necessary to keep the radius of the
orbit constant, and the instantaneous circle
shrinks towards the equilibrium orbit. The
actual orbit of the electron will thus be a spiral
which approaches the equilibrium orbit asymp-
totically as shown in Fig. 1(A).

This contraction of the instantaneous orbit in
itself provides relatively little clearance for the

injection electrodes. The contraction is fastest
for small velocities, but it is inadvisable to use
too small injection energies because of relatively
large space charge forces and scattering. In the
University of Illinois accelerator (at injection
energy 180 v, injection radius 9 cm, ro 7.5——cm)
the instantaneous circle shrinks 1 mm during
the first revolution of the electron. However,
electrons injected not quite tangentially, or a
little too early or too late, so that at the time
of injection their instantaneous circle lies outside
or inside the injection radius, will, as the dis-
cussion of focusing shows, oscillate with de-
creasing amplitude about the appropriate spiral
orbit. This situation is shown by Fig. 1(C). The
period of these oscillations is different from the
period of revolution, so that the electron will,
in general, execute several decreasing oscillations
before the maximum displacement occurs near
the starting electrodes. There is thus a consider-
able range of starting angles and times which
allow capture into the equilibrium orbit, even
though the electrons are injected at constant
energy. In Fig. 1(D) the paths of divergent
rays from an injector are shown. The formation
of an image occurs at intervals of half an oscil-
lation. In addition to these magnetic effects,
the space charge spreading of the beam can also
play a role in causing electrons to clear the
injector.

After the electrons have been accelerated a
variety of devices can be employed to bring
them to strike a target, all of them based, of
course, on destroying the relation (2) at the
appropriate time. A simple method was used in

the Illinois accelerator to accomplish this. A
small amount of iron dust in an insulating
cement made up a part of the magnetic circuit
which fed flux through the center of the orbit.
These dust particles saturate before the iron

core does. When saturation sets in, p increases
less rapidly than the magnetic field at the orbit.
The electrons then spiral inward until they hit
the target.

II. THE ELEcTRQNIc ORBITs

The position of the electron will be specified

by the cylindrical coordinates (r, y, s). We shall

first consider the motion in the median plane
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(s=0), in which the magnetic field has only a
s component, II,=II(r, t). This field can be
derived from a vector potential, A„=A(r, t), by
the relation

Ig, = r 'B(rA-)/Br = A /r+BA/Br.

There is a concomitant electric field F'„= —A/c.
The Hamiltonian function is

K=c(m'c'+p '+p')1 p=p /r+eA/c.

Here p„ is the canonical angular momentum,
defined by the relation

p=mr j/(1 —
v/ c)l

and is a constant of the motion.
For any p„, the radius r; of the instantaneous

circle is determined by the condition j„=O, or,
since p, . =c'pp'/X. , by

In such a field the electron spirals rapidly
towards the center as its momentum increases.

~1 ~+ 2c pz /e+ 2p~p ix /& per~ (6)

Here ~ = c(m'c'+ pP)l is the energy of an electron
moving on the instantaneous circle.

The equations of motion are

x = c'p, /e —r'„,

j,= —c'p, p";x/e,

which, by eliminating p„give

Radial focusing

In order to take advantage of the adiabatic
theorem, we write r=r;+x, and suppose x&&r, .
If we introduce x and p, =p„as new canonical
variables, and in t'he new Hamiltonian function,
3C&

——K—p,i, , retain only terms not higher than
quadratic in x and p, we obtain

p';= —(p„/r' —eA'/c), = 0. (4) x+ fx/ +ec p~p gx/E = rj E jr/ e (8.)

We use a prime to denote partial diA'erentiation

with respect to r. The subscript i indicates that
the quantity is to be evaluated at r=r;; the
subscript 0 will be used for r=rp. Since an
electron moving on the instantaneous circle has
a momentum p;, we see, using (3), that (4) is

another expression of the relation (1).
The condition for motion in the equilibrium

circle (r;=ro, a. constant independent of time)
is then

P„=O, A'p=O,

since p~/ro' is independent of time, and we take
A of the form4 A (r, t) =f(r)It(t).

It can readily be shown that the condition
A'0 ——0 is equivalent to (2). We have

p= fH de= f curlA. dv =fA ds=27rroAO,

and from (3), HO=Ao/rp Thus on the e. quilibrium
circle, @p

——2+rp Hp.
It may be remarked that for a magnetic field

everywhere of the form H= b/r" (and thus
lacking the central field necessary to satisfy
the flux condition (2) ) the vector potential
is A =b/(2 —n)r" ', and (4) gives er;VI;/c
= (2 —n)P„/(1 n), or, f—rom (1), p;r, =constant.

The case in which there is a time independent flux @1
through the center of the orbit is also of interest. It can
be represented by A(r, t) =f(r)h(t)+@I/27fr, which necessi-
tates only replacing p&, in (5), by p&+e@1/2~c.

p";=nP p,/r,
Eq. (9) takes the simple form

=n;v/r;.

(10)

The frequency of radial oscillation is thus just
n; times the frequency of rotation of the electron
in its orbit. In general n„will be a slowly varying
function of r, but for H 1/r", n„ is independent
of r, n;= (1 n)'. We also see that —for focusing
oscillations to occur we must have p";)0,
which, on the equilibrium circle, reduces to
A "»0, in virtue of (5). The equilibrium circle
is thus the point of minimum electric field.

If we choose t = 0 when A =0, we require the
solution of (9) only for a&,.t»1, since this condi-

The forcing terms on the right represent the
nonadiabatic corrections to the motion.

If we write x= (mc'/e)lu, and omit the forcing
terms for the moment, (8) becomes

Q+cu Q=O,
cop =c pjp /l gE/I+it /c ~c pjp j/E, (9).

since the second and third terms of ~,.' are
smaller than the first by a factor of order

(cp /e)'f'/p', where f is the frequency of the
magnetic field, v the frequency of revolution of
the electron, and p is the maximum momentum
attained by the electron. If we write
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tion is already met at the time of injection of
the electron. The asymptotic form of the solution
for co„t))1 is

or

u = a(c/r»co„) ' sin (u, It+ y. ,

0

x=a(rncr;/n, ;p,r,)i sin )I ~,dt+y, (11)
0

fr;/(r, rp) = —bEI/I—I. (12)

An electron injected not on the instantaneous
circle, but in its neighborhood, will oscillate
about the instantaneous circle; its motion is
described by (11).Since the instantaneous circle
is simultaneously approaching the equilibrium
orbit, the resultant motion is that shown in
Fig. 1(C).

Both the damping of the oscillation about the
instantaneous circle and the shrinking of the
instantaneous circle toward the equilibrium orbit
are used to cause the electrons to miss the
injector on successive revolutions. In terms of
the voltage gain per revolution 6V, and the
in]ection voltage V, the damping is expressed by

with a and y arbitrary constants. I he amplitude
of the radial oscillations is thus damped by a
factor (p~/r~) t= (eEI;/c) *'.

Injection of the electron

An electron injected on its instantaneous
circle, will, in the adiabatic limit, continue to
move on this circle as it shrinks down to the
equilibrium orbit. The rate of contraction of the
instantaneous circle can be obtained by differ-
entiating (4),

r; = eA', /—cp"„= A'„/(A—";+2A';/r, )

For r, r» small this —reduces, in virtue of (5),
to r'; = —(r, rp) A p/A p—. The shift of the
instantaneous circle toward the equilibrium orbit
produced by a change bH of the magnetic field
is thus given by

We may verify that the wandering from the
instantaneous circle caused by the nonadiabatic
correction terms in (8) is in fact very small.
The term»r', /» is of order r';v'/ 'c, and will be
neglected. Let t& be the time of injection. The
asymptotic solution of (8) for a&„t»1 can be
written down with the aid of the solutions (11).
It is

(' n;(s) p, (s)r;(t)' r.;(s)

n;(t) p„(t)r, (s) cu, .(s)

n, (tr)p, (t,)r;(t) : r;(t, )

n;(t) p, (t)r;(tr) ~,(tr)'

r';(t)
Xco

ar, .(t) '

The maximum displacement is

x = 2r„(tr)/~-, (tr)'

In the interesting case, near the beginning of the
acceleration when the field is increasing linearly
with time, differentiation of (12) gives

2r';H/H. If b—H and br; are the increments
of H and r; during one revolution of the electron,
we then have

x =br;hH/ 'n H,

all quantities being evaluated at t=tz.

Vertical focusing

Near the median plane the magnetic field has
a radial component determined by »7H„/Bs
=BFI:/dr. The vector potential then takes the
form

A „=A(r, t) ——,'A, (r, t)z',
where

A &(r, t) = itH. /Br ~,=» ——(c/e) Drp)'/r7';.

For small deviations from the median plane,
the Hamiltonian (6) must be supplemented by
the terms

8a/a= ——,'8U/U, (13)
&.= kc'p '/» ——,'c'p, L(rp) '/~ 7',s'-'/'

The equations of n&otion are
where 5a/a is the fractional decrease in the
amplitude of oscillation. Similarly the shrinking
described by (12) is

' ="p*/», I *="p.L(rp)'/r7'':/»

t'rr, /(r, r») = ——.'. 8 U/ U. —
which differ from (7) only in the absence of a

(14) forcing term, and. in the replacement of p"; by
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—[(rp)'/r)'; Th. e solutions are thus the same
as (11), but with cv, and n; replaced by
=m;t(/r„and m;, defined by

Choice of the field shape

It has been shown t.hat there must be a
position of minimum electric field (i.e. , A o=0,
A "0)0) for radial stability, and that the field
must decrease with increasing distance from the
axis for axial stability of the electrons. If the
field in the region of the electron's orbit is of
the form

II,= II()(t) (r((/r) ",

the vector potential is given by

central magnetic field required to satisfy the
flux condition (2).

Evaluating (10) and (15) for this potential
we find

e "- = (1-n), m ' = n.

The conditions for radial and vert-ical focusing,
nP)0, mP)0, thus demand 0(n(i, as we
have already scen.

An electron deflected from its instantaneous
circle by a small angle scattering will execute
oscillations of amplitude proportional to the
transverse velocity imparted by the scattering
divided by the initial frequency of oscillation.
'Ihe ratio of radial to vertical amplitude will
thus be

Ho(t) r((" ro
A =—— -+(1 n)—

2 —nr"' r

The second term in the bracket gives an electric
field, but no magnetic field at the position of
the orbit; it represents the effect of the strong

Since in the Illinois accelerator the vertical
clearance was smaller than the horizontal, it was
desired to have vertical focusing stronger than
horizon tal focusing. The pole pieces were
accordingly shaped to give a field with n =-', .
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''N a paper dealing with the capture cross
- ~ section for thermal neutrons in thorium' it
was pointed out that the pure capture process in
thorium has a resonance character with a large
contribution from thermal neutrons. ' The follow-

ing experiments were carried out in order to
determine the resonance energy of this process.

As the neutron source available was only 100
mg Ra+Be, it was not possible to determine the
resonance energy in the usual way, i.e. , by
measuring the absorption coefficient of boron for
the resonance neutrons with thorium 233 as
detector. We therefore made use of a less direct
method by measuring the absorption in thorium

' L. Meitner, Nature 45, 422 (1940).
~L. Meitner, O. Hahn and F. Strassnaann, Zeits. f.

Physik 109, 538 (1938).

for various neutron resonance groups picked out
by suitable detectors. If there are found neutron
groups having absorption coefficients whose ratio
is not inversely proportional to the ratio of the
respective velocities, one can expect that a
resonance group of the thorium capture process is

lying within the range of the energies under
investigation.

Since the large contribution of thermal neu-
trons to the capture process in Th suggested that
the resonance energy might be rather low,
Au (E„=3.5 ev), ' In (8„=0.9 ev)4 and Rh, which
has the same resonance energy as In were used as

'O. R. Frisch, Kgl. Danske Vid. Selsk. Math. -Phys.
Medd. 14, Nr. 5.

4 C. P. Baker and R. F. Bacher, Phys. Rev. 57, 1076
(1940).


