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Associating and dissociating sines and cosines
we arrive after some transformations at the
simple value of (39):

K" K' —= (k'/4mB )J&(x).

If cE&r we write

ckt =X' sinh e, kr =X' cosh 0,,
/~2 —jP(y2 c2$2) — g2

Here A is imaginary, and the result is

X"—X' =0.

(37) thus yields the exact solution
t

V"—V'=ck' ~ t t ~J~(X)X 'p(pgiy)dydgdqdl,
J (40)

where

7,'=P'Dct, cy)—' (x——g)' —(y —g)' —(s—f.)'j
The Pg-integral is extended over values that
make X real.

Subtracting U" —U' from the well-known
Maxwell solution V" with the same charges as
sources one obtains the exact solution of the
Yukawa equation.
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Quantitative formulae for the intensities of lines from a pair of interacting states to a common
lower state are applied to perturbations in band spectra. It appears that rotational and vibra-
tional perturbations show quite a different behavior. In the former there is a direct superposition
of intensities of the two interacting states whereas in the latter interference effects give an
entirely diferent picture. The general formulae are applied to a few cases in the H& spectrum.

HE so-called per turbations in molecular
spectra are a special case of interaction

between a pair of quantum-mechanical states.
So far the energy shifts due to the perturbations
have been well studied but very little definite
information is available in the literature about
the intensities except some general qualitative
statements. The perturbations are often of great
importance for the interpretation of complex
spectra and the intensities may be just as helpful
as the frequency shifts.

In the present paper the general theory of the
intensities in perturbations is given which
follows directly from the general quantum-
mechanical treatment of interaction of states,
and is then applied to a few special cases.

)1. GENERAL THEORY

Assume that P~ and P2 are the wave functions
of two states satisfying

H'P =W 'P„n=1, 2,

and that P, and Pq are the corresponding wave
functions of the perturbed problem'

(Ho+H')f =(WP+8 )P, m=a, b.

We assume further that only the interaction
between P~ and P& is appreciable. This is an
assumption very well realized in most molecular
perturbations, ' and means that the problem can
be treated without further approximations. We
shall drop this restriction in certain cases later
on in this paper. We can express the neglect of
the other interactions by assuming all matrix
elements of the perturbation matrix to be zero'

' Throughout this paper indices 1 and 2 will refer to the
.unperturbed and a and b to the perturbed states. P corre-
sponds to p1 and pq to pg in the sense that p1 furnishes the
largest contribution to P„etc.

~We leave the influence of the electron spin out of
consideration. The results are then strictly applicable only
to singlets and to those multiple terms where the multiplet
separation is small compared to the distance of the inter-
acting states. The considerations can easily be expanded
to the more general case.' This does not necessarily mean that the other matrix
elements are actually small compared to H'». Even if they
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except H'~~ and H'2~ and we call

H'g2 ——H'2g ——S and S=Re'".

We take in general fi to belong to the lower of
the two unperturbed levels and P, the lower of
the two perturbed states. The correlation
between the perturbed and unperturbed std, tes
is then perfectly defined except when 8'&'= 8"2'
when it does not matter. If the distance between
the unperturbed states is

dipole moment if we are concerned with dipole
radiation to which we shall restrict ourselves.
The results for quadrupole radiations are anal-
ogous if we substitute for g the various com-
ponents of the quadrupole moment. If g is
proportional to x, I~ is the radiation polarized
in the x direction, etc.

The perturbed amplitudes can be expressed in

terms of the unperturbed ones because of (4)
and (5)

we have
25= W2' —8 g'

~
—$+ (R2+ f2)-~- (2)

R ( e

qi ——e "~q2
(R'+e') & 4 R j (6a.)

(
,I q+—.'-q I,(R'+e')'* 4 R )The absolute value of the shift for either level is (6b)

e =
i
8, i

=Zb —28 = (R'+ 8') '* —5. (3)
from which it follows that the intensities are

The perturbed wave functions are

R

(R'+e') l E R )
R t' e

A= ] 6+ e'Vi ). —
(R'+&2) ' ~ R

(4a.)

(4b)

where the amplitudes are

e/R lies between zero and one. If R«b, e/R
=R/28.

If both Pi and $2 can combine with the same
final state P" then the intensities of the two
resulting lines are4

g2 - 62 2f
I,= Ii+—I2——(IiI2)icos(cx —P), (7a)

R'+e' R' R

g2 - 62 26
Ii,= — I2+ Ii+ (I—iI2) ' co—s (n —P), (7b)

in which P is the phase difference between P2 and

gati.

This phase difference is entirely arbitrary, as
the phases of the wave functions are not deter-
mined by the wave equation and the boundary
and normalization condition, and no physical
quantity should depend on it. The dependence
of the intensities on it is only apparent, for if we
increase P by an arbitrary amount p the per-
turbation matrix element

q„=~ f„qP"dr, m=1, 2. Hi p =
) PiH'$2dr =Re'

g is proportional to one of the components of the

are not small their influence is negligible if the levels lie
far away from W&' and 8'&'. Furthermore by assuming
H'1&=H'22=0 we do not restrict the generality of the
problem as these terms have only a trivial inHuence on the
result and do not affect the interaction. Treatment of the
intensities in a more complicated case in He2 is given by
Kronig and Fujioka, Zeits. f. Physik 63, 168, 175 (1930).

4 If the g; are proportional to the coordinates thenI v4
t g; ~', where the proportionality factor now contains

only general constants. In general the perturbed and
unperturbed lines lie so close together that the factor v4

is a constant and can be left out. In comparing the in-
tensities of lines in diferent wave-length regions, however,
the factor v4 would become important. In order to avoid
carrying this factor in all the formulae we use in this paper
quantities which are proportional to the real intensities
divided by u4.

is multiplied by e+'&, i.e., 0. increased by
n —p which occurs in (7) is therefore completely
independent of the phases of the wave function
as it should be.

We shall call the terms in (7) containing the
cosine the interference terms.

A direct consequence of (7) is that

Ia+ Ib —I1+I2.

The sum of the intensities of two lines due to
the combination of two levels with a common
lower level is independent of the interaction
between the two initial states.
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The formulae (7) apply to any interacting pair
of levels in any atomic or molecular system. A
special case, for example, is furnished by the
Raman effect of C02 treated by Fermi. '

When both Ij and I2 are different from zero,
the phase 0. of the perturbation element is very
important. (We take the arbitrary phase dif-
ference P to be zero which corresponds to the
conventional form of the wave functions in
almost all cases), and we shall see that the two
different types of perturbations usually recog-
nized in spectra of diatomic molecules to which
we shall restrict ourselves from now on differ
fundamentally in this respect.

When I2 ——0, the iriterference term always is
absent and we have

I,= Ij, Ig —— Ij.
R'+»' R'+»'

We get the so-called extra line with the intensity
I~ but as the intensities are entirely independent
of the phases in this case, we cannot draw any
condusions regarding the, type of interaction
from the intensities.

As the intensities depend on»/R we can have
considerable intensity anomalies even for small
wave-length perturbations, provided ~ and R
are both small. This will happen when two very
feebly interacting states lie very close together.

In the approximate treatment of a molecule
certain terms are left out of the Hamiltonian.
Some of these terms can be interpreted as inter-
action between electronic motion and rotation,
and the perturbations caused by them are called
rotational or type A perturbations. Type 8 or
vibruiiona/ perturbations are caused by terms
which express the interaction between electronic
motion and vibration. In a typical perturbation
of either kind, the usual manifestation of the
perturbation is an irregularity in the spacing of
the rotationejlevels, From this point of view the
terms "rotational" and "vibrational" perturba-
tion are somewhat misleading, but there can be
no ambiguity if they are used in the above sense.

The two types of perturbations differ in many
of their properties' and we shall see that they are

~ E. Fermi, .Zeits. f. Physik V1, 250 {1931).
J. H. Uan Vleck, Phys. Rev. 33, 467 {1929).See also

G. H. Dieke, Phys. Rev. 4V, 870 {1935).The notation of
the latter paper is followed closely in this article.

quite radically different in the behavior of their
intensities.

H'»i =Bi ctg 8(MI+iM„Mr+iMIM„)

8 8
+2 cosec 0M„—+23f;:—,

By 80

where), iI, I are Cartesian coordinates fixed to the
molecule and 8 and p the angles which determine
the orientation of the molecule. M~, 3f„, &~=AS
are the components of the electronic angular
momentum and B=Ii'/Ss'mr'. The matrix
element for the interaction between the states
A(&&1, X, m) and f»(A, X, m) is (all others are
zero)

With the conventional choice of coordinates
and wave functions (A&1~BM„~A) is purely
imaginary, ~ which means that the interference
term in (7) disappears and we get for the per-
turbed intensities

R2 (»2
I.= jl+—1, [,R'+»' 4 R' )

R'
I,=

+2+62 E, R2

(9a)

(9b)

This has a well-known elementary interpre-
tation. The perturbed states can be regarded as
mixtures' of the unperturbed states, and the
properties of the perturbed states are accordingly
mixtures of the properties of the unperturbed

B $ B
3fg+i3fq =Ae'x

BP sin 8 By

has only real elements, if the connection between the Car-
tesian coordinates P, q, p and the polar coordinates p, p, g
is in the usual form

p sin P cos x, etc.
and the dependence on the cyclic variable y is in the form
exp {&iAz). It is easily seen that nothing is changed if the
dependence on g is taken in the form cos Ay and sin Ax
which is more suitable for molecular levels. From this it
follows that the elements of Mg are real and those of M„
purely imaginary.

$2. ROTATIONAL (TYPE A) PERTIIRBATIONS

The interaction function for rotational per-
turbations is'
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z~z rr~r, r~lI rr~il
E E+1 E—1 (E—1)(E+1)'

E+1 E E+2 E'(E+2)
etc.

Let us call these ratios f~ and f~ for the unper-
turbed lines, then

fg+(e'/R')A2f2 fg+n2fg
(10a)

1+(e'/R')A' 1+n'

f2+ (e'/AR') fg

5 10b
1+(e'/A R')

h
n = (e/R) A, A ' = I2P/IgP. (11)

These values lie between f~ and f2 If the per-.
turbation is only small f, f~ and fq f& It may.

states. The perturbed intensities are weighted
averages of the unperturbed ones and the weight
factors are the probabilities with which the
unperturbed states occur in the perturbed state,
It must be noted, however, that we get this
simple result only because the interference term
is absent.

If the interaction terms are small but the
interacting levels close together we call the eA'ect

perturbations proper. For larger values of the
interaction with the interacting levels at a great
distance we have A.-doubling. If the levels are
close together and interact strongly we get
l-decoupling. In the latter case our results are
only valid for a p-complex as, for d- and higher
complexes, the interaction of more than two
levels has to be considered.

There are many cases known where anomalous
intensities have been observed in band spectra
perturbations but quantitative measurements of
such anomalies are scarce. The interpretation of
such measurements, even when they exist, is
complicated by the fact that the actual intensities
of the lines depend often in a complicated way
on the discharge conditions so that it is dificult
to know what the unperturbed intensities should
be. Ratios of intensities of lines coming from the
same upper level have more significance. Such a
pair 'of lines in a band are R(E' —1) and I'(E+1)
and the ratio

f(E) =Is&Jr »/Ipur+»-
has a dehnite value for the different types of
bands) e.g. , for

TABLE I. Values 0f the ratio f,.

0~0
DBSERVED fa

1 —+1 2~2 3-+3

1
2
3
4
5

. 6

2.00
1.50
1.33
1,25 '

1.20
1.17

0.50
0.67
0.75
0.80 0.85
'0,83
0.86 0.74

1.35
1.55
1.08

1.51
1.00
0.84

be noted that these simple relations are only true
if the perturbation element is imaginary. Other-
wise f, and f& might have any value between 0
and

$3. EXAMPLE IN THE H2-SPECTRUM

A test of these relations is generally of value
only for small values of E as otherwise the f
values are so close to one that they cannot be
distinguished experimentally. There are quanti-
tative measurements of the f, quantities in the
Fulcher bands of hydrogen' which are sum-
marized in Table I. The Fulcher bands are a
II~X transition and the f values for this transi-
tion are given in column f~ The ini. tial 3P'II
state is known to be perturbed by the 3p'Z state
and the f values of the Z —+Z transition are given
in column f2 We see t.hat the observed f values
all lie between fI and fq except the somewhat
doubtful value for X=6 of the 0~0 band.
(Kapuscinski and Eymers give 0.92 for this
value. )

Whereas this qualitative result agrees with
what we expect, we 6nd serious discrepancies in
the quantitative results. The magnitude of the
perturbation is expressed in the A.-doubling and
from it follows' that the value of e/R=0. 041
X[E(E+1)j'. The order of magnitude of
A'=In/I& is less than 10. Under these circum-
stances we would expect only a very slight
departure from f& (For E.=1 and A. =10 we
would obtain f.=1.95 instead of the observed
1.53.)

The reason for the discrepancy can be either
that the experimental values are wrong or that
the calculations do not represent the true picture.

As far as the experimental values are concerned,
it is immediately obvious that the only source of
errors responsible for the anomalous values can

GlQSbQI g QQd G, H, DIeke Phys. Re+. 59, 632 (1941).' G. H. Dieke, Phys. Rev. 48, 610 (1935).
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be the calibration of the plate for different
wave-lengths. This involves the calibration of
the standard comparison lamp. As the meas-
urements referred to were made with all reason-
able care and agreed besides quite well with
those of Kapuscinski and Eymers' which were
made under entirely different circumstances,
though with essentially the same method, there
is very little doubt that the discrepancy cannot
be due to experimental errors.

If the anomalous values for the R/P ratios
cannot arise from the interaction with the 3p'Z
state which gives rise to the regular A-doubling,
we must look for other interactions which, though
giving rise to unnoticed wave-length perturba-
tions, may affect the intensities strongly. We
have seen earlier that the possibility for such
perturbations exists. The perturbing state can
be only a 'Z state, as a '6 state, although capable
of giving rise to strong wave-length perturba-
tions, cannot produce anomalies of the intensity
ratios in a II—+Z transition, as a 6—+Z transition
does not exist. It is easy to convince oneself that
the higher vibrational states of 3p'Z cannot be
responsible. Other 'Z states in the immediate
vicinity of 3p'll are not known. There certainly
can not be another 'Z state with the right sym-
metry in a suitable position, with the possible
exception of states with both electrons excited
about the position of which we know nothing.

The other remaining possibility is that the
abnormal intensity ratios do not arise from the
interaction with only one state but by the coop-
erating inHuence of several states, and we have
to investigate this possibility next.

where the summation extends now over all states
and the minus sign refers to the states with A —1

and the plus sign to those with 4+1. Only for
A—+A transitions do we have to consider both
terms for the R/P ratios.

We have

(12)

This makes the ratio

I

where, as before, 2'„=I„/I~ for the P lines. All

the values of f„belonging to a given sign are
identical, so that we can write also

where
n= Q(e /R )A, fg I2s/Ige, ——

(13)

(14)

where N is the normalizing factor

N2= [1+P (, 2/R ~)j—~

7t, m
I

and the first sum extends over all states below
and the second over all states above f~.

Let us take a state P~ with a definite value of
A. Then the interacting states can either have
A„=A. —1 or A„=4+1. In the former case
exp ( in—„)=i, which makes exp (in ) = i —Fo. r
A„=4+1 the signs are exactly reversed so that
we have

f4. INTERACTION WITH SEVERAL LEVELS

If more than a pair of states interact, the cal-
culations become much more complicated. How-
ever, when the inHuence of the other states on
state one is small, their contributions are additive
and we obtain in first-order approximation ac-
cording to (4)

P.=N~ Pg —Q exp ( in„)P„—
&m

for the states with A =A —1 and P and f3
the corresponding values for the states with
A„=4+1. If only one type of states needs to be
considered, as, e.g. , for a II~X transition, we have

which is identical with (10a) except for the more
general definition (14) of n.

These relations also hold when the perturbing
states are continuous. In that case we have with
the proper normalization of the wave functions

K. Kapuscinski and J. G. Eyrners, Proc. Roy. Soc.
A122, 58 (1929).
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J'
~

&I,
' ~dv is the total intensity' of the continuous

spectrum originating from transitions between
the state P" and the continuous states. A fairly
accurate numerical calculation of n can be made
if the wave functions of the three states P", f,
and P„are known.

We return now to the anomalous f, values in

the Fulcher bands of H2. We must take the con-
tributions of all 'Z„states. Those which do
interact strongly with 2P'lI and at the same time
combine strongly with the lower state (large 2„)
are most important. There is no other discrete
state known which combines strongly enough
with the lower state. If it existed, it would
undoubtedly have been discovered.

Of the continuous states, those lying above
3P'II with only one electron excited also can be
excluded, as they do not combine with su%cient
strength with 2s'Z. However, the well-known
continuous state 2po'Z, the combination of which
with 2s'5 is held responsible for most of the
strong continuous spectrum of H~, satisfies all
requirements.

It would be feasible to calculate numerically
the value of n with the wave functions of James
and Coolidge. However, only those for 2s'2 and
2P'5 are known and the calculations would be
quite laborious in any case. We can come to a
very rough estimate of the order of magnitude
by assuming the action of the continuous spec-
trum to be replaced by a single lines which has
the total intensity of the continuous spectrum
and the lower state of which interacts with 3P'II
as all the continuous levels together. We assume
this line to coincide roughly with the maximum
of the continuous spectrum at about 35,000
cm ' This means 2&& SXIO' R'=2BE(X+I)

120 for %=1.

greater emphasis to the states with smaller b.
With the present state of our information we can
therefore conclude that the anomalies in the
R/P ratios of the Fulcher bands probably cannot
be due to the interaction with the continuous
2p'Z state although that possibility cannot be
completely excluded.

There remains the possibility that a continuous
state with both electrons excited lies close to the
initial state 3P'II of the Fulcher bands and
interacts feebly with it. (2p&r)(2sa)'Z„would be
a possibility if it is continuous, as it would be
expected to combine strongly with the lower
state (Iso.)(2sa)'Z, .There is, however, at present
no experimental evidence either for or against
such a possibility.

)5. VIBRATIONAL (TYPE B) PERTURBATIONS

The perturbation function for vibrational
perturbations is given by

BC
H&4&Q=B (MI2+M„')4 2r——

Br

8'4 2r' BR 84 .—r' — —RU,
Br' R Br Br

in which r is the internuclear distance and 4,
R, U are th'e electronic, vibrational and rota-
tional wave functions, respectively. As all the
essential quantities are real, the matrix elements
are real in this case and the phase in the inter-
ference term must be either 0 or m. The formulae
for the intensities become then

(I4a)

R' 120
of'= —A = --)&10 'A =0.5)&10 'A.

482 25

In order to obtain the experimentally observed
value 0.5 for 0.2 we would have to assume that the
total intensity of the continuous spectrum would
be about ten million times that of the Fulcher
bands. No measurements exist of this ratio, but
it seems defj.nitely much too high. On the other
hand, a more exact calculation of a would

probably increase its value, as it would give

The upper signs hold if the interaction element
is positive, the lower ones if it is negative.

We have now intensity relations completely
different from those of the rotational perturba-
tions. We can have now, for instance, a case when

I& (e'/R')I2 that one of the perturbed lines is
completely absent and the other one has the
sum of the intensities of both unperturbed lines,
a state of affairs which never can occur in class A
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perturbations. In a typical perturbation case we
have two sets of rotational levels W~(E) and
W, (E) such that

Wg(E) (Wi(E) if E (Ep,
Wg(E) )W2(E) if E)Ep.

E=ED is the place of maximum perturbation.
If we regard now the intensities of the set

W, (E) which are the perturbed values of Wq,

then we see that below the maximum perturba-
tion the amplitudes are subtracted (if S is
positive) and we may get very low intensities,
whereas above the maximum perturbation the
amplitudes are added and we get abnormally
large intensities. This sudden jump in the inten-
sities is characteristic for class 8 perturbations.
We have seen that the intensities behave quite

smoothly in class A perturbations. In general we
can expect much more irregular intensities for
vibrational than for rotational perturbations.

The ratios R(E—1)/P(E+1) are not affected
by vibrational perturbations, as only levels with
the same h. interact, and we have therefore

f,= f~ f2 ——(Th.is would be true independently for
any kind of interaction between levels with the
same A.)

The only case of a vibrational perturbation in
which the intensities have been measured is that
of the interaction of the 2s'Z and (2po)' 'Z states
and the bands which are produced by the transi-
tions from these levels to 2p'Z. The intensities
which appear at first sight highly erratic are
shown in another paper to behave exactly as
predicted by the preceding formulae.
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Brady and Moore observed that certain crystals which appeared to have flaws and were not
very transparent gave a current response which started out in one direction just after the light
was turned on, decreased rapidly with time of illumination, and then flowed in the opposite
direction. This phenomenon has been investigated in detail. All clear, well-formed, single
crystals exhibit this current-reversal phenomenon when light falls on certain points of the
crystal surface. These points always lie between two regions which respond with normal current
fIows in opposite directions. The superposition of the two normal current-response curves gives
a resultant which agrees with the observed current-reversal curve within the experimental
error. The various current response curves for different illuminated faces of the crystal, in-
cluding the current-reversal effect, are correlated by assuming a particular direction in the unit
cell of the crystal for which the electrical conductivity is a maximum.

" T has been shown by Brady and Moore' that
~ tartaric acid crystals exhibit a crystal photo-

effect (actinoelectric effect). Just after the light
is turned on, the galvanometer used to measure
the amplified photo-current exhibits a deflection
which rises very suddenly to a maximum, then
decreases, and finally reaches a steady value.
This behavior will be referred to as the "normal

* Published with the approval of the Monographs Pub-
lication Committee, Oregon State College. Research paper
No. 50, School of Science, Department of Physics.' J. J, Brady and W. H. Moore, Phys. Rev. 55, 308
(2939).

effect." Brady and Moore observed, also, that
certain crystals which appeared to have Haws

and were not very transparent behaved differ-
ently from the normal response curve. When light
was turned on such a crystal, the galvanometer
deHected first in one direction, then quickly
reversed passing through zero to reach a maxi-
mum in the opposite direction. It then decreased
slowly and finally approached a steady value as
shown by curve 8, Fig. 2. This phenomenon was
investigated in detail in the present experiment.
It wi11 be referred to as the "abnormal effect. "


