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The "cutting-off method" proposed in Part I is equivalent to a field 'theory based on
Maxwell's equations supplemented by Yukawa's equations, both fields, having the same point
charges as sources. The chief result is a finite self-energy W=e~/2ro and a modified Coulomb
potential (e/r)t1 —exp (—r/ro) j, also derivable from a Hamiltonian in Fourier form. For
accelerated motions the field theory yields a finite force of inertia (—mi) together with the
universal damping term in first approximation. Small additional terms reAect the "structure"
of the electron. Radiation and self-force of a vibrating electron are discussed, and the per-
turbation problem is formulated. The exact integration of Yukawa's field equation is given in
Section 9. Our results are related to Born-Infeld's unitary field theory and Dirac's theory
of the classical electron, in particular with respect to waves of velocity larger than c. The
electronic mass m is the result of photons of rest mass sero and mesons of rest mass M =m. 2.137
=274m.

INTRODUCTION

' 'N Part I we discussed a "cutting-off method"
- ~ for obtaining finite self-energies of charged
particles. We started from the physical considera-
tion that the natural line breadth AX =4se'/3mc'
allows to determine the position of an electron
only within a range of order 5) since the electron
does not react to the phase of an external field
at its exact position but rather to the phase
averaged over the range 6). More precisely, its
vibrational energy is reduced, as compared with
the energy without damping, by the damping
factor R=L1+(vhX/c)'1 '. In Part I we then
proposed to reduce the Fourier terms in Fermi's
theory of radiation by the same factor R made
invariant by Doppler correction for particles in
motion. This reduction led to a finite electro-
static self-energy W= e'/2ro and a modified
Coulomb potential (e/r) L1 —exp (—r/ro) j where

ra AX/2s =2e'/3mc'——
In Part II we start from the remark that

this potential is the difference of Maxwell and
Yukawa potentials as solutions of two separate
sets of invariant field equations with the same
point charges as sources. The special value
ro 2e'/3mc' was——chosen in Part I so that the
Fourier reduction factor R„equals the former
damping factor R. This led to an electromagnetic
mass 4 of the total mass. However, the special
choice of ro is not essential. It would seem even

more reasonable to choose the parameter k = 1/r~
of the field theory so as to have a unitary field
theory in which the mass of the field equals the
total mass, by virtue of the formula W=e'/2ro
=he'/2 =mc', or vice versa ro= e'/2mc'. Whether
this choice is correct can only be decided by
experiments with extremely short waves. In view
of the existence of neutral particles it has be-
come doubtful whether one should insist on a
purely electromagnetic origin of the electronic
mass. On the other hand the combination of
Maxwell's and Yukawa's field equations is al-
ready a deviation from the pure electromagnetic
theory.

Our method offers a consistent and invariant
scheme of formulae for calculating the properties
of electronic charges without infinities. However,
from a physical point of view it is hard to
understand why the resulting potential, the
resulting radiation of energy, etc. , should be the
difference rather than the sum of the two inde-
pendent fields of Maxwell and Yukawa. A similar
objection could be raised against Dirac's' dier
ence of advanced and retarded potentials. We are
using retarded potentials only, although the

, retarded Yukawa potential is given a negative
sign. Apart from the lack of "physical under-
standing" of this negative sign, our method may
at least be considered as an invariant formal way
of avoiding infinities in classical point charges.
The Fourier representation of Section 7 shall

' A. Lande, Phys. Rev. 60, 121 (1941). ' P. .A. M. Dirac, Proc. Roy. Soc. 167, 148 (1938).
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prepare the way to a future application of Condensing three rows and columns to orie we
glantum theory to our classical scheme. can write for the tensor T'

2. FIELD EQUATIONS

Already in Part I we remarked that the
modified electrostatic potential resulting from
the Fourier method is the difference of two
separate potentials

U= V"—V'= (e/r) —(e/r) exp( r/r—o) (1.)

V' and V" are solutions of the differential
equations

~ U"= —4~p, Q V'= —4n. p+O'U', (2)

to be supplemented by two equations for vector
potentials

CIA"= —4s j%, C]A'= —4s j%+O'A'. (2')

p and j vanish everywhere except on the world
lines of point particles. The field derived from
V"A" is an ordinary Maxwell field. The field
of meson type derived from the potential V',
A' is

E' = —7 V' —A'/c, H' = curl A',

div A'+V'/c=0.

p„„ i5'/c O' A~„ iA' V'+-
iS'/c —to' 4' iA' V' —V"

k' (A"—U") 0

8x 0
(7)

(A"—V")

where p', S', m' are the usual expressions for
Maxwell's tensor, Poynting's vector, and energy
density in terms of Z' and II'.

Corresponding equations with k =0, called (3')
to (7'), hold for the Maxwell field E", H".
Since the potentials V" and V' are supposed to
be subtractive the same applies to the field com-
ponents Z"—E'=8, II"—II'=II. But it also
applies to the tensor components T"—T'=T.
This can be learned from the fact that the last
term in (5) is to be subtracted from the last
term in (5') in order to give the total mechanical
work fE jdv= f(E" E')jdv. —

Integration of the wave equations (2) leads to
the following general solution (see Section 9) for
the potential of a point charge at xyst:

V"—U'=ck "~~ t tR 'Ji(kR)pdgditdidr, (S)
Together with (2) (2') this is equivalent with the
field equations where p(frtt" r) is the density, and R is. the

4-distance
curl E' = H'/c, d—iv II' =0,

curl H' =E'/c+4m j/c k'A '—(4)
R'=(c «)' ($ —~)' —(~ 3)' —(i —s)' —(S'—)

—(c/4ir) )
t ds {LE'II' j +k'A '

I
= (1/Ss ) (d/dt)

The integral extends over 7. from —~ to t and
over values gqf' belonging to real values of R for

Multiplying by H' and E', and subtracting we the respective value of r (retarded poterttial). In
arrive at case of point charges e the integration over &gg

yields a factor e so that (S) simplifies to a sum
over the point charges:

X)"de{E"+H"+k'(V"+ A")}+ "E'id'. (5)

The stress-energy-momentum tensor T' therefore
has the components

—T„=m' = (1/Sir) {E"+H"+k'( V"+A")}
(6)

i T4i g' = (1/4irc)—{[E'H')+O'V'A'},

representing density of energy and momentum,

V"—V' = P eck
~

R 'Ji(OR) dr

= g eck { R 'Ji(OR)( &r/&R)dR. (9)—
~o

Replacing p by j/c and j by eg for point charges
one obtains the vector potential

A" —A'= P ek R 'Ji(kR)-
0

&(g(r)( —Br/BR)dR (9').
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The proof of the fundamenta. l formula (9) is
given in Section 9.

V' and V" can always be supplemented by
solutions of the homogeneous Maxwell and
Yukawa equations. The latter are solved by
plane waves X whose frequency is

v* = [vp'+ (c/X) ']' where vp ——kc/2tl,

so that the phase velocity c*=v*X is larger than c:

c"= [c'+ (vp), )']l.

A similar velocity larger than c occurred also in
Dirac's theory of the classical point electron' and
does not interfere with invariance. vo is the
minimum frequency of Yukawa waves.

3. APPLICATIONS. UNIFORM M OTION

The electromagnetic rest mass is therefore

m=e'k/2c' vice versa k=2mc'/e', (10")

k determines the ratio e'/m, where the "mass m"
is defined as the factor of c' in the self-energy,
and the "charge e" is defined as the factor of 1/r
in the mutual energy. The corresponding meson
mass is

3f=kvp/cP=kk/2pl=2m(kc/2prcP) =m ~ 2 ~ 137.

(II) If the electron moves uniformly with
velocity r/, /c =I3 we have

)=Per, tt= i =0,
R' = (cr ct) ' (P—cr —x—) ' —y' —s'

Ocr/BR= —.R(1 —P') &(R'+a') '*,

where

a'= (1 P') '[r' —2Pctx+t3—'(c't'+x' r')], —
(I) As our first example we consider an elec-

tron at rest at the zero point prtl = 0. At t =0 and
at the distance r'=x +y'+s we have from (8')

so that
R'= (cr)' —r', Ocr/BR= R(R'+r')—

the root with minus sign since ~ &t. According to
(9) we obtain

U" —U'=ek(1 —P') '~[ J&(kR)(R'+a') 'dR
0

=e[a(1—P') **] '[1—exp ( —ak)]. (11)

V"—V' = ek~I Jt(kR) (R'+r') *'dR

0

= (e/r) [1—exp ( kr)]—
In particular for r=0 we have (V"—V')p ——ek,
that is, the modified Coulomb potential of
Part I and the starting point of Part II. Instead
of k we may write 1/rp.

The electrostatic self-energy of an electron at
rest is

W, = (1/8pr) ~I dv{R"' (2"+O' V")I—
where

It can easily be shown geometrically that

a(1 —P')&=d (1—P cos /x)

where d is the distance between xys't and the
position $ of the particle at the retarded time r
so that d=c(t 7), wh—ereas /t. is the angle be-
tween d and the velocity, Therefore the first
part of (11) agrees with the Lienard-Wiechert
potential of a point charge V", whereas the
second part represents the Yukawa potential U'.
The vector potential is

A, —A, = (U"—V')(v, /c).

Q/l e/rp U/ (%) exp ( kr) g/ g V//gr In particular, on the moving electron itself
(a=0) we have

Integration gives

W/sst = e k/2. (10')
Vp ——( V"—V') p

——ek(1 —P') —',
A p

——(A"—A') p
——ekP(1 —P')-l. (12)

The same result could have been obtained by
the simpler formula

Energy and momentum of the field of the moving
electron are therefore

W...t ——-', e( V" —V') p ——e'k/2. W=e Up/2 =mc'(1 —P')
G=eAp/2c=mv(1 —P') ' (12')
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agreeing with relativity. An explicit proof of
(12') is given in (29) Section 8. When two like
(unlike) point charges approach to the distance
sero the finite work e'k = 2mc' is spent (gained).

4. AccEI.HRATloN. SELF-FoRcE

Next we consider an electron moving along the
x-axis with coordinates

$=ur+ ,'fr'+-',gr3,-g =|'=0.
The meaning of u, f, g is seen from the values at
v-=0:

u=(dk/d )o, f=(d'E/d")o, g=(d'5/d")0

At an external point r'=x'+y'+s' at time t we
have from (8')

R'= (cr —ct)' —(ur+ ,'fr'+ ', g-r' —x-)' —y' —s'.

For the 6eld on the particle itself at 7 =0 con-
sider t and r as small so that r' can be neglected
altogether. Also neglecting second orders of u, f, g
we obtain approximately

cr=ct R+xR '(—ur+ ',fr'+ 6gr')-. -
In the same approximation we can on the right
replace r by (t R/c), hence—

cd r/dR = —1 —xR 'I u(t —R/c)
+ ,'f(t R/c)'+-',g(t—R/c)i}-— (14)
—xR 'c 'Iu+f(t —-R/c)+-'g(t —R/c)'}

There are two special cases of (14). If t=0 and
r is.small we obtain

cdr/dR = —1+ ', xf/c ', x-gR/c—' —(14').
If t is small and r =0 hence @=0we have

(I4 If)

Ke are now prepared to calculate V near the
electron at t =0 for small r. Substituting (14') in

(9) we obtain

V"—V'= (1 ,'xf/c')ek~t J—i-(kR)R 'dR
0

+ (xge/3c') j' J'i(kR) d(kR)

= (1 ,'xf/c') ek+—x—ge/Bc',

since both integrals are unity. Therefore

BV/Bx = ,' fek/c' —eg/3c'. ——

Substituting (14") and P=u+fr+ ,'gr2-in (9') we

arrive at

A"—A'= (ek/c)~1 [u+f(t R/—c)

+ ,'g(t -R/c—)'jJi(kR)R 'dR,

—(BA/Bct) i 0 =(ek——/c) JI ( f+g—R/c) Ji(kR)R 'dR

The magnetic Beld H vanishes on the electron so
that the self-force F=eZ= eBV—/Bx eBA—/Bct
at 1=0 becomes

Ii = —(e2k/2c2) f+ (2e~/Bc') .g,
rn(d'(/—d r') + (2e'/Bc') (d'$/d r'). (16)

where m is the mass due to the two 6elds, see
(10").If the whole mass of the electron is due to
the fields, the various field centers (point charges)
move according to the field equations alone in such
a way that "the total held force is zero" on every
single particle.

Charges with different masses and radii could
be accounted for by extending the sums (9) (9')
over terms with different individual values of k.

The self-force (16) at t=0 is composed of
retarded contributions of the whole path (13)
during v &0. But only the immediate past
matters in producing the two terms of (16). In
case of a more general path

$=ur+ 2fr'+ ,'gr'-+~'~hr-'+ for r &0

it turns out that the higher terms contribute also
with their remote 'past to the self-force at 1=0.
In connection with the fact that the velocity g

on such a path would be larger than c in the
remote past, each higher term furnishes an
infinite contribution to Ii. Even if an infinite
series in v- should represent a physically possible
path $(r) (vibrating electron) an integration by
terms is not possible.

It would be an interesting problem to And an
accelerated path such that the self-force vanishes
at all times. As long as the acceleration is small

this path will coincide with that derived by
Dirac' from the difference of advanced and
retarded Maxwell potentials.



f =a s1n (nor), s= 0=1.

5. VIBRATING ELpcTRON. RADIATION (I8') are valid up to &u = a)n, and a decrease of the
emitted potential will occur only for +&~0 in

An electronic point shall vibrate about the
connection with the fact that Yukawa waves

zero point with coordinates have a minimum frequency &on ——kc (Section 2).
This result is confirmed by the Fourier method,
Section 8, III.

The amplitude e shall be small compared with
the wave-length 2)rc/&o and with the electronic
radius rn ——I jk=c/a)n so that a' can always be
neglected. At distance r' =x'+y'+s' we have (8')

R' =c'(r —t)'+2ax sin (a)r) r'—,

hence in the same approximation

cr =ct (R'—+r') &+ (R'+r') &ax sin (&or)

with the argument a)r = not {R'—+r') &a)/c when

neglecting 0 . Thus

R '8(cr)—/BR-= (R'+r')-&
+(axno/c)(R2+r2) ) cos ((or)

+ a(Rx'+r') &sin ()or)-
consisting of three terms. For large. r (wave
zone) the second term alone contributes to V,

and the 6rst term alone to A. Kith d&/dr
=aa) cos (a r) we obtain from (9) (9')

V"—V' = (eaxa)/c)J J')(kR) (R'+r') '
0

y cos((ot (R'+r—') 4)/c]d(kR),

A"—A'=(eano/c) " J)(kR)(R'+r') —
&

6. VIBRATING ELEcTRGN. SELF-FORcE

In order to 6nd the self-force of a vibrating
electron at time t it is convenient to have the
electron in the zero point r=o at time I. %e
therefore consider the position

)=a sin (a)r) a's t=)i =0

where the parameter s will later be equated to
sin (cot). With small r and neglection of r' we
now have

cr= ct 'R+xaR [sin (c0r) —s].

On the right we can replace r by (t —R/c) if a
is small. Then

Bcr/BR = —I —xaR—'[sin (a)t —&oR/c) —s]
—(xano/Rc) cos ((8—a)R/c).

Substituting in (9) (9') and neglecting a' we

obtain

8 V/Bx=eka~ J)(kR') IR '[sin()ot —a)R/c) —s]

+ (a)/R'c) cos(cot a)R/c) }dR, —

&& cos[a)t —(R'+ r') 4i/c]d{kR)

In the limit of small a) one can replace (R'+r')
by r2 not only for small R but also for large R
since the integrals give negligible contributions
for large R if a) is small. In this case (18) sim- P= e8 V/Bx —eBA/Bct, —
plifies to

X

sin�((ot

aR/c) dR. —

we separate terms with factors sin (not) and

~=~"-~'=(ea /c)(I/r) cos
I

(t-./.)],
that are the well-known Lorentz potentials. But
for larger co one.has to use the complete integrals'

(18); we have not been able to evaluate them.
From what is learned in (20') about the self-force
of a vibrating electron the Lorentz potentials

—(o'a sin (not) =d'(/dr', —a)'a cos (a)t) =d'P/dr',

and using the abbreviations kR=tt, &oR/c=qu
with

e'k/2c'=)r), ck=c/rn n)n, a)&~n=g, ——(&9)
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we obtain

F= n—t(d'k/dr') f(q)+(2s'/3~') (d'k/dr')g(q),

f(q) =2
~

Jq(u)u —'{cos(qu) —(qu)
—' sin(qu)

0

+ (qu)-'[1 -cos(qu)j}du,
(20)

g(q) = +q~t Ji(u) {(qu) ' sin(qu)
0

With these formulae we obtain in (20)

'(1/3q') [1—(1 —q')'j

+q-'L(1 —q') ' —1j+(1—q') '

—(2/3q')

g(q) =
1 —(1—q-')1

(20')

sin(qu)J (u) du=
(qu)

sin(qu) du
Jg(u)

"0 (qu) u

c0 dQ
Jg(u) cos(qu) —=

0 Q

Also

}1-(1-q-')',
-', [(1—q')1+q ' sin —'qj

}(~/4)q '

(1—q')'

0.

(qu) '[1—cos(qu)]=(qu) ' sin(pqu)dp,

(qu) '[(qu) cos(qu) —sin(qu) j
sm(pqu) pdp.

+(qu) '[(qu) cos(qu) —sin(qu) j}du.

For sma, ll q= ~/coo the factors f and g reduce to
unity so that F has the classical form (16).
In general Ii can be found with help of auxiliary
formulae in two cases 0~&q~&1 and g~&1, re-
spectively:

«« ~ q & 1 and q && 1, respectively. For large
frequencies q))1 both f and g tend toward zero
as though inertia and damping were fading out
with increasing co. The amplitude a shall always
be small compared with c/sr. If we should con-
sider frequencies co ~0 and yet amplitudes a not
small compared with the electronic radius ro ——coo/c

the result would .be quite different. The de-
pendence of the "scattering cross section" on the
amplitude for frequencies of order co0 could be
used for checking the classical theory if this
effect were not completely overshadowed by
quantum eff'ects just at these high frequencies.

It is quite significant that the decrease of the
factor g(q) begins only at the characteristic fre-

quency ~0 itself. Since the damping term with
(2e'/3c') g(q) is the counterpart of long distance
radiation, this means that up to co=~0 only
Maxwell radiation is emitted, in agreement with
the fact (Section 2) that Yukawa waves have a
minimum frequency coo

——kc. We learn from (20')
that for Go)MG the-ratio of Maxwell to Yukawa
radiated energy is 1 to (1—

q ')1. The same result
can be obtained directly by the Fourier method.

'

7. FOURIER METHOD. HAMILTONIAN

For particles at rest the 6eld theory is equivalent with the Fourier reduction method of Part. I.
For particles in motion the 6eId theory gives results differing from the Doppler correction of Part I,
but consistent with relativity.

Similar to Fermi we expand the Yukawa potential U'(r, t) into a Fourier series of standing waves
of direction n, in a large space 0 (for details compare with Fermi' ):

U'(r, t) =c(8s /0) &T,Q, '(t) cos I',„,
I'„=(&o,/c) (a, r) +phase.

Substitution into Eq. (2) gives the following differential equation for Q,

d'Q, /dt2+(co, +k'c')Q. =c(8w/0)& Q; e; cosI'„.

'E. Fermi, Rev. Mod. Phys. 4, 87 (1932}-,

(21')
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in case of point charges. For uniform motions where r, in I'„.changes with time (21) is solved by

Q, (/) =c(8ir/0) ' P; e; cosI'.~[co,(1—P cos'8. )+cooj (22)

8„ is the angle between the wave normal n, and the direction of P, , and u&0 is written for kc. The
dependence of I, is contained in r; in I'„.. Corresponding Fourier series for the Max&veil potential V"
lead to

Q"(/) = c(8m /I/) '* Q; s; cosI'„[rv, (1—P; cos'8, ~)] '. (22')

(22) and (22') can be augmented by solutions of the homogeneous differential equations. 'I'he Fourier

coefficient Q, =Q, —Q. of the resulting potential V= V"—V' can be written

Q, (/) =c(8m/1/) ' P; e; cosI'„a&. (1—/l, cos'8„)

and contains the "reduction factor"

R„=[1+(1—P, cos'i1 „)(o,/a)o 1 (24)

For P;=0 this is the factor used in Part I for particles at rest.
Corresponding calculations can be applied to the vector potential A =A' —A":

A (r, /) =c(8ir/0) & P, [cx,x, (/) +A.g. (/) ) sin r,„

with n. =longitudinal, A, =transversal unit vector. (3') is equivalent to co,x,+Q, =O. The Fourier

fl rs
coe%cients y, =x, —x, and g, =g, —g, are

"'(/) =c(8ir/I/)& g; e;p,c;„(i1,~) sinI', go. (1—p; cos'8, ~)
—'8„. (25)

with the same factor R„. In all cases one may add solutions of the homogeneous equation (21') etc.
The IIami//onian of the resulting 6eld is II=II"—II', vis.

H=g, rn;c'+P;(r';(P, +P, ))+c(8ir/f/)* Q; e.; Q, (Q, —Q.) cosF„

—c(8ir/0) P; (s;/c) g, (r'„n, (x, —x.)+A.(g, —g,)) sinl'„

+k E.E(f. +h. &' )+~.(a'—+x. Q' )j—
—

2 Z. [(P.+&. I' )+(~.+—~o)(r/. +x. Q. )j (26)—

with coordinates Q,Q, g,q, x,x, and momenta P,F', P,P. f,$, and with coo=he. (26) is verified by
the canonical equations

Q, = BH/BI', = I'„ I', = BH/BQ„— — (26')

etc. , that agree with the differential equations (21) etc. , for Q„Q, etc. , (compare with Fermi, refer-
ence 3, p. 129).

The first sum in (26) is the mechanica/ rest energy, the second sum contains the mec/iarlica/ kinetic
energy. In a unitary theory with k =2mc'/e' these two terms are to be omitted. The sum over (r',p;i'")
is identical with the whole second line of (26) so that these sums cancel one another. The energy
reduces to the two last lines of (26).
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(I) First we consider a system of electrons at
rest. Here (22) simplifies to

Q, =c(81r/ft) ' g, e, cosI"„(&v,+&u0)

t 1 P t'

Qt I8 p8 $8 g8 8

2
and similar formulae for Q, etc. , without oro.

The second line in (26) turns out to be half as
large as, and of opposite sign as the third line,
so that H reduces to

II=-',c (8'/Q)g; P; e;e; Q, cosI"„cosI'„.
2 —1 2 2 —1

X[(~.) —(~.+~o) j,
obviously a difference of Maxwell and Yukawa
terms. Instead we may write

II=-',c(8s/0) P; P; e;e; P. cosI'„cosF„.

XCd [1+(CO /Mo) j, (2/)

that is, Fermi's expression "reduced" by a factor
R=[1+(~,/~0)'j ' as in Part I. Replacing the
summation g, by an integration with Jeans'

2
factor (0/2w'c')co, des, one arrives (see Part I) at

II=g; (e;(oo/2c)

+2, ' 2, (e'e /r) L1 —exp( —r~o/c) j (2/')

in agreement with (10) (10'), representing finite
self-energies and modi6ed Coulomb energies.

(II) Our second example shall be one electron
in uniform motion with velocity r', =p;c. Here we
have to substitute the complete expressions (22)
into the last two lines of (26), In addition we have

P,= BII/BI', = —Q—,
=c(8'/0) 'e, sinI'„a&,p; cosi1.„

X [a),(1—P, cos'i1„)+(oo]

and corresponding expressions for the other
momenta. First we sum over all directions 8„by
integrating with factor —',d(cos i1) from —1 to 1,
an.d replace sin' F„.and cos' F„by 2' because of

irregular pllases. Tile secolld llile of (26) tllell

gives

c'(8s./0) (e'/2) P, Ice, P„ tgh P,

(~.p') '(~.+~o) —tgh (~.p'(~. +~o) ) I (28)

obviously a difference of Maxwell and Yukawa

terms. The latter are small compared with the
former for ~,((a&o. The last line of (26) gives

—-', C'(8'/0) (e'/2)'

XZ, ((~,) —[~.+(~0/(1 —p')) j I (28')

The tgh ' in (28) can be expanded in powers
of p, and then integrated term by term with

Jeans' factor (0/2s'c')co, der, . The result is a
series that condenses to the simple expression

2
(e'(go/c) (1—p;) . On the other hand (28')
can be integrated directly with the result

——', (e's&0/c)(1 —P;) just half as large as (28).
The balance is

H = (e'(yo/2c) (1—P;) =mc'(1 —P;), (29)

agreeing with (12') and verifying the invariance
of the method in Fourier form.

(III) The Fourier method can also be applied
to the radiation emitted by a vibrating electron
similar to Heitler's method. 4 The result is quoted
at the end of Section 6.

Our invariant "cutting og metho-d" consists in
Ising the Hamiltonian IT=H" —H' raSher than H"
alon@.

The perturbation problem of the classical
Hamiltonian is this. The electrons may 6rst
move with prescribed canstant velocities i;. The
corresponding "eIectronic" 6eld coordinates

Q, (t), etc. , are given in (22), etc. , augmented by
solutions of the homogeneous equations (21')
representing the initial "pure 6eld. " Between tI
and t2 the electrons shall move on prescribed
accelerated path [r;(t) in I'.; on the right of (21')
prescribed). The equation of motion (21')

together with the initial value Q, (ti) determines

the final value Q, (tm). Its continuation for t&t&
can again be separated into an "electronic field"
of type (22) and a "pure field" if the electrons
move with constant velocities after t2. Such a
separation is not possible during the time of
radiation t~ &t & t2. The prescribed path ought to
be such that the total force (no matter whether
it can be separated into external and self-force)
vanishes on every electron.

'%'. Heitler, Quantum Theory of RaChatioe I,'Oxford,
1936), p. 54.



A. LANDR AND L. H. THOMAS

9. APPENDIX. EXACT INTEGRATION OF

YUKAWA'8 EqUATION

The exact solution (V", A") of the Maxwell
equations produced by charges p, j is well
known. The exact solution of the combined
Maxwell-Yukawa problem shall be given here.
The exact solution of the Yukawa problem alone
might be of value for the discussion of meson
problems, irrespective of the present 6eld theory.

In order to solve the diRerential equation

Changing the order of integration we arrive at

V'(XySt) =42IC', ~ p($21t'r)JJJ „
XK'(x —P, ",t .)—d~d~did. (35)

with the kernel function

K (x, y, s, t) =
J J J~slntJPt)P

+2 V& 82V&/8c2t2 — 4~p+k2VI

we use the Fourier transformation

'(X, B, C; t) = ~"," I' V'(,

(30) Xexp[+222r(A2c+By+Cs)]dAdBdC. (36)

The same considerations applied to the Maxwell
field (wltll k =0) feslll't ill a cofrespolldlllg for-
mula for V" with kernel X" in which p is
replaced by q of (32). The resulting potential is

Xexp[ 222I(Ax—+By+Cs) jdxdyds,

f f
o(g, B, C; t,) = JI J' J p(~, y, s; t)

Xexp[ 2ilr(Ax—+By+Cs) jdxdyds.

Their inversion substituted in (30) yields for I'
the equation

41r2(A'+B—'+ C') 21' —82u'/8c2t2

= —42ro+k221'. (31)
VA'th the abbreviation

V"—V'=42rc2
~ ~l

J p(prt fr)

X(&" &')dhdvd—idr (37)

The kernel E"—X' can be evaluated in polar
coordinates. VAth

we obtain

P'= c2[k2+42I(2A +2B'+C') j,
g2 —c24~2(+2+B2+C2)

(31) reduces to

Z"—Z'=2 sin(22rrD)r '(32)

X [sin(Pt)P —' —sin(qt)q
—'jDdD, (38)

p221'+8222'/8t2 =4 &IrIC2

The solution for vanishing u' and 822'/8t at
1s

u'(A, B, C, t) =
J sin[p(t —r) $p 142rc2

Xo(A, B, C; r)dr. (33)

Reversing the Fourier transformation we obtain

V'=
J dAdBdC exp(2ilr(A2c+By+Cs) j

dr sin[p(t —.r)$p 142rc2

~d(Adl p($, s, &; )

Xexp[ 2iII(A (+Bit+Cf.))—. (34)

lll wlllcll p =c (k +4%' D ) and .g =c 42r D .
Writing

I

q=ck sinh 8, 2~a=k sinh 8,

we have

E" X'=(k2/42r2)2 ~t sin—(kr sinh 8)r '
Jo

X [sin(ckt cosh8) (ck cosh8) '

—sin(ckt sinh8)(ck sinh8) 'j
Xsinh8 cosh8d8. (39)

(39) has two forms according to ct)r, or ct&r.
If ct&r we write

ckt =x cosh n, kr = x sinh u, x2=k2(c2t2 —r').
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Associating and dissociating sines and cosines
we arrive after some transformations at the
simple value of (39):

K" K' —= (k'/4mB )J&(x).

If cE&r we write

ckt =X' sinh e, kr =X' cosh 0,,
/~2 —jP(y2 c2$2) — g2

Here A is imaginary, and the result is

X"—X' =0.

(37) thus yields the exact solution
t

V"—V'=ck' ~ t t ~J~(X)X 'p(pgiy)dydgdqdl,
J (40)

where

7,'=P'Dct, cy)—' (x——g)' —(y —g)' —(s—f.)'j
The Pg-integral is extended over values that
make X real.

Subtracting U" —U' from the well-known
Maxwell solution V" with the same charges as
sources one obtains the exact solution of the
Yukawa equation.
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Quantitative formulae for the intensities of lines from a pair of interacting states to a common
lower state are applied to perturbations in band spectra. It appears that rotational and vibra-
tional perturbations show quite a different behavior. In the former there is a direct superposition
of intensities of the two interacting states whereas in the latter interference effects give an
entirely diferent picture. The general formulae are applied to a few cases in the H& spectrum.

HE so-called per turbations in molecular
spectra are a special case of interaction

between a pair of quantum-mechanical states.
So far the energy shifts due to the perturbations
have been well studied but very little definite
information is available in the literature about
the intensities except some general qualitative
statements. The perturbations are often of great
importance for the interpretation of complex
spectra and the intensities may be just as helpful
as the frequency shifts.

In the present paper the general theory of the
intensities in perturbations is given which
follows directly from the general quantum-
mechanical treatment of interaction of states,
and is then applied to a few special cases.

)1. GENERAL THEORY

Assume that P~ and P2 are the wave functions
of two states satisfying

H'P =W 'P„n=1, 2,

and that P, and Pq are the corresponding wave
functions of the perturbed problem'

(Ho+H')f =(WP+8 )P, m=a, b.

We assume further that only the interaction
between P~ and P& is appreciable. This is an
assumption very well realized in most molecular
perturbations, ' and means that the problem can
be treated without further approximations. We
shall drop this restriction in certain cases later
on in this paper. We can express the neglect of
the other interactions by assuming all matrix
elements of the perturbation matrix to be zero'

' Throughout this paper indices 1 and 2 will refer to the
.unperturbed and a and b to the perturbed states. P corre-
sponds to p1 and pq to pg in the sense that p1 furnishes the
largest contribution to P„etc.

~We leave the influence of the electron spin out of
consideration. The results are then strictly applicable only
to singlets and to those multiple terms where the multiplet
separation is small compared to the distance of the inter-
acting states. The considerations can easily be expanded
to the more general case.' This does not necessarily mean that the other matrix
elements are actually small compared to H'». Even if they


