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Theory of Internal Friction Introduced by Cold Working
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(Received July 9, 1941)

Experiments indicate that those changes in a cold worked metal which give rise to internal
friction are distinct from those changes which give rise to hardening and to the broadening of
x-ray lines. It is suggested that this internal friction is due to the inability of certain areas on slip
planes to maintain shearing stresses. The theoretical consequences of this suggestion are carried
out, and are found to be in agreement with present experimental data.

' T is well known that internal friction is
'- introduced into metals by cold working. The
changes in the metal which give rise to this
internal friction are apparently not related to
the changes which give rise to an increase in
hardness, and to a broadening of x-ray lines.
For this internal friction is removed by annealing
at temperatures so low that neither the hard-
ness'' nor the breadth of the x-ray lines' is
affected. Such low temperature annealing does,
however, remove to a large extent the residual
macroscopic stresses introduced by cold work. '
Perhaps for this reason, the opinion has fre-
quently been expressed that the internal friction
introduced by cold work is caused by these
residual stresses. ' ' ' No mechanism has been
suggested, however, whereby residual stresses
would give rise to internal friction measured at
small strain amplitudes. An alternative explana-
tion has been advanced by the author. 7 In this
theory the internal friction is due to the thermal
currents flowing between the microscopic stress
inhomogeneities introduced by cold work. If this
were the case, the internal friction should vary
in a characteristic manner with frequency.
However, recent measurements' have shown this
internal friction to be independent of the fre-
quency of measurement over a wide frequency
range.
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The view has been advanced' " that the
elastic after-efFect may be explained in terms of
a two-phase system, a continuous elastic phase
and a discontinuous plastic phase. If the proper
assumptions are made so that the observed
elastic after-eBect is reproduced, the associated
internal friction automatically becomes inde-
pendent of the frequency of measurement. "
This theoretical result, combined with the
observed invariance of cold work internal friction
with frequency, leads us to suspect that the
same physical changes in a cold worked metal
are responsible for both the elastic after-effect
and internal friction, and that these changes
may be described, at least phenomenologically,
in terms of a disperse plastic phase.

The essential characteristic of a disperse
plastic phase is that it cannot permanently
sustain shearing stress. If a constant load is
applied, the initial shear energy in the plastic
phase is gradually relaxed, resulting in a further
elongation of specimen. The theory of the
influence of such relaxation centers upon internal
friction is developed in )1. In (2 we apply this
theory to cold worked metals.

The same problem may, in principle, be
attacked from the viewpoint of the dislocations
introduced by cold working. " However, until
we know the laws which govern the movements
of the dislocations, and in particular, until we
can calculate the consequences of their inter-
action with each other, more insight is to be
gained from the phenomenological viewpoint
here adopted.
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)1. THEORY OF RELAXATION CENTERS

A detailed discussion of the relation between
relaxation centers and creep phenomena has
been given by Becker. ' His approach was not,
however, well suited for the calculation of
internal friction. This calculation was carried
out only for one particular type of distribution
of relaxation centers. It is thus necessary to
give a.more general discussion of the relation of
relaxation centers to internal friction.

we substitute into Eq. (1)

ei t

where |.'and 8 are complex constants. The ratio
8/e is called the complex modulus. We write it
in the form M+iN Th. e ratio Q '=X/M is a
common measure of internal friction. "We find

Q '= (Co C )happ/(Cpti'+ C &'). (2)

We now assume, as is usually the case, that Co

is only slightly larger than C, and so shall
replace Co by C„ in the denominator.

When we add the eEects of all the relaxation
centers, it will be convenient to have the contri-
bution of each center in the form of a strength
factor times an influence function. This is
possible if we regard lnp and In~ as variables
in place of p, and co. Thus we may write

pcs/(pP+&u') =
p sech(lnp —In&a).

Equation (2) may thus be written as

FIG. 1. InAuence function -', sech(lnp —1nco).

The method here adopted will be to calculate
first the internal friction due to a single relaxation
center. We then assume the centers to be
sufficiently far apart so that their contributions
to the internal friction are additive.

We consider an isolated unit volume con-
taining a single relaxation center. We denote the
macroscopic strain and the corresponding macro-
scopic stress by e and S, respectively. There are
two elastic constants corresponding to the ratio
e/S. One, C„, is the constant measured so
rapidly that no appreciable relaxation takes
place. This is the constant measured by very
high frequency vibrations. The other, Co, is the
constant measured by a quasi-static method.
It is necessarily larger than C„.

If there were no relaxation, the time rate of
change of e would be C„dS/dt The relaxati. on
contributes an additional term p(CpS —e), where
p, is called the relaxation constant. The general
relation between stress and strain is thus given by

(d/dt+ p)e = (C„d/dt+ Cpp)S.

In order to calculate the internal friction
associated with a definite angular frequency ~,

Q-'= I(Cp —C )/C„I -', sech(lnp —lnco).

This is the desired form. A plot of the influence
function is given in Fig. 1.

We now define a weighting factor W(luau) as
the contribution to (Cp —C„)/C„of all the
relaxation centers lying within a unit logarithmic
range at in@. The total internal friction is then
given by

Q '= t f4 (lng) —', sech(in' —1npp)d 1ny. (3)

If W is only a slowly varying function of its
argument, a useful formula is obtained by
expanding W about lnp= ln+. This expansion
gives the series

Q-' = (pr/2) W(in(g)

+( prP1/6) dW /ding'~„„+ . (4)=

f12. RELAXATION CENTERS IN COLD

WORKED METALS

It is commonly accepted that, in plastic
deformation, the individual grains do not deform
homogeneously, but that a finite slip occurs

» C, Zener, Phys. Re&, 52, 230 (1937).
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across certain planes. After slipping the two
sides of a plane do not join together perfectly.
The crystal structure may be broken down to a
depth of several atomic distances. At best there
are regions of misfits along the plane. Whatever ~

the imperfections, it is reasonable to suppose
that they render it impossible for certain areas
permanently to maintain a shearing stress. But
the relaxation of shearing stress across an area
must also be accompanied by a partial relaxation
of stress on either side of the area, and hence
throughout a finite volume. Each area which
cannot permanently maintain a shearing stress
therefore constitutes a relaxation center.

The theory developed in )1 may be applied
to these relaxation centers as long as the applied
stresses are so small that the linear relation of
Eq. (1) between stress and strain is valid. This
is the case in those measurements of internal
friction which are independent of the amplitude
of vibration.

Cold working has a greater effect upon the
internal friction of a metal the greater its purity.
Thus, for a given elongation, 99.99 percent pure
aluminum has an internal friction nearly twice
as large as 99.5 percent pure aluminum. ' The
internal friction of the most drastically cold
worked 70—30 alpha-brass' is, after recovery at
room temperature for several days, not more
than 10 4. Values for pure copper of more than
10 times this have been reported. ' ' It is to be
expected that, as the homogeneity of a metal
increases with increasing purity, the larger will
be the areas of the weak places along the slip
planes, and hence the larger the effective volume
of the centers of relaxation.

In many cases the internal friction has been

found to increase rapidly with increasing
temperature. This is not the case, however, for
that part of the internal friction introduced by
cold working. In the case of 70—30 alpha-brass,
cold worked and then annealed at 100'C, it even
decreased slightly in the range from room
temperature to 80'C. According to the theory
of relaxation centers, this independence with
temperature is correlated with the independence
with frequency. If the relaxation centers have
the same heat of activation, an increase of
temperature will increase the log of all the
relaxation constants by the same amount, 6 lnp.
By Eq. (3), this has the same effect as a decrease
of log angular frequency by the same amount
61np. Hence, if a change of frequency has no
effect upon the internal friction, it is to be
expected that a change in temperature will have
only a slight effect.

Without further information, we cannot
predict the frequency dependence of the internal
friction. It depends upon the variation of the
weighting function W(in@) in the vicinity of
In p = incr. If, as in alpha-brass, the internal
friction is independent of frequency in a certain
range, we conclude that the weighting factor is
independent of p for the same range of p/2s. .

A decrease of the elastic modulus always
accompanies cold working, ' provided it is not
carried so far as to introduce fiber structure.
Conversely, low temperature annealing raises
the elastic modulus. These effects are, of course,
required by the theory of relaxation centers.
For the introduction of such centers, as by cold
working, must lower the elastic modulus;
removal of the centers, as by annealing, must
raise the modulus.


