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The Theory of Cascade Showers in Heavy Elements
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The one-dimensional equations of the cascade theory of showers are solved, account being
taken of the variation with energy of the cross section for pair production, as well, of course, as
ionization and bremsstrahlung effects. This modification is necessary for the discussion of
cosmic-ray showers and bursts in elements of high atomic number since, for such elements, there
is a region of energy (10 Mev —200 Mev for Pb) in which the pair production process is important
while the cross section usually assumed for the process is greatly in error. Introducing the usual
units t of length and p of energy, both characteristic of the material traversed (t, P =240 m,
95 Mev and 0.4 cm, 6.5 Mev for air and lead, respectively), one finds that the maximum number
of particles arising in lead from an incident particle of energy Ep= pe varies between E0/11p
and E0/10p as Eo varies between 10' ev and 10"ev, For a given e, the maximum number of
particles occurs at a distance (in units of t) slightly less for lead than for air, . and for large
distances the effect of the variation with energy of the pair production cross section is to in-

crease the number of particles and p-rays to be expected.

A LTHOUGH the nature of the penetrating
component of cosmic radiation is at present

not completely understood, the theory of the
multiplication of the soft component in the
atmosphere is well established. Indeed, at high
altitudes, where the theory is apparently contra-
dicted by experiment, it is, in fact, used as a
basis for determining the important part played
by protons as primary constituents of cosmic
radiation. ' Treating the process as taking place
in one dimension, and making simplifying as-
sumptions for the cross sections for bremsstrahl-
Ung by electrons and positrons and pair produc-
tion by y-rays, Carlson and Oppenheimer' and
Bhabha and Heitler' have been able to explain
the general nature of the variation of the electron-
positron intensity with height in the atmosphere,
and refinements of this work by Landau and
Rumer, ' Snyder' and Serber' have given the
theoretical multiplication curve quite accurately.
It is found that, owing to energy losses of the
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particles by ionization, the number of particles
arising from a single electron incident on a block
of material does not increase indefinitely with

depth but reaches a maximum value at a depth
characteristic of the incident energy and of the
nature (atomic number and density) of the ma-

terial. The important role played by ionization
losses is, therefore, apparent. Now the energy
below which such losses begin to become greater
than the average energy loss of a particle by
radiation is approximately 1600mc2/Z, where Z
is the atomic number of the material traversed.
It is, therefore, apparent that, for showers multi-

plying in elements of high atomic number, loss of
energy by ionization ceases to be the dominating

process at much lower energies than for showers

in the atmosphere. At such energies, however, the
approximate expression for the pair production
cross section used in all treatments of cascade
showers in the atmosphere is quite incorrect,
being, in the case of lead, for instance, three or
four times the value obtained from the quantum-

mechanical formula. The assumed form for the
cross section for bremsstrahlung, on the other

hand, is in error only by a factor 1.4 at these

energies. Thus the direct application to heavy
elements of the theory of the multiplication of
cascade showers in the atmosphere is inadmis-

sible, for in the case of elements of high atomic
number there is a wide region of energy (10 Mev—

200 Mev for Pb) in which the pair production
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process is important, while the assumed form for
the cross section for the process is greatly in
error.

In view of recent experiments7 in which cas-
cade showers and bursts have been observed in
an ionization chamber surrounded with lead, and
because of the importance of such an experi-
mental arrangement for the purpose of under-
standing the behavior of the mesotron, ' it is of
interest to apply the cascade theory to the pro-
duction of showers in elements of high atomic
number. In the following pages the theory of
cascade showers is therefore developed, with the
assumption of a cross section for the production
of pairs by y-rays which approximates closely to
that calculated. As before, the whole problem is
regarded as uni-dimensional and Huctuations and
the Compton effect are not considered. The
calculations are developed in detail for the pro-
duction of showers in lead.

Let us consider an electron of energy Eo, large
compared with its rest energy, incident on or
formed in a block of material, such as lead, of
atomic number Z and nuclear density e. Let
y(E, x)AE denote the probable number of y-ray
quanta with energy between E and E+AE at a
thickness x, and E(E, x) the probable number of
particles (electrons and positrons) at x with
energy greater than E.We define P„(E,E')AE'hx
as the probability that a particle of energy E
radiates a y-ray of energy between E'and E'+DE',
and P„(E', E)DEhx as the probability that a
p-ray of energy E' creates a pair of energies be-
tween E, E' —E and E+dE, E' —E—AE, in

traversing a thickness hx. Then

P~(E, E')hE'hx = (K/E'E') LE'+ (E E—')'

X=4nZ'r 'n ln(191/Z'*),

'A =51/90 In(191/Z'), ~~ for Pb,

(&)

(5)

and f(E) and g(E') are practically constant for
E, E' greater than 10' mc', and below this energy
vary critically with E, E', respectively, and very
slowly (a variation we neglect here) with E', E,
respectively.

The ionization loss per unit distance may be
written

( —BE/Bx) collision =Xp

where p is an energy characteristic of the ma-
terial traversed. For lead, p=6.5 Mev whereas
for air P=95 Mev.

The Compton scattering of the p-ray quanta
by the atomic electrons produces two effects,
both of which are relatively unimportant and
will be neglected. For high energy quanta most
of the energy is transferred to the electron, which
continues on in the shower, producing practically
the same effects as if the original y-ray had con-
tinued unscattered. Low'energy quanta and the
electrons with which they collide may be
scattered out of the beam, but the loss of energy
per unit distance arising from this process is
small compared to XP.

and

P„(E',E)AEhx= (X/E")+'+(E' —E)'

+ (l &)E—(E' E))a—(E')~~x (1)
where

If we write Xx =t, the diffusion equations therefore become

By 1 r" BN(E') dE'
7g(E) ' f(E')——

, Ã"+(E' —E)"—(3 —l )E'(E' —E)]
Bt E ~g BE' E/2

BN BN " "dE"
=p +2 i" «' ~ „v(E")g(E")LE"+(E"—E')'+(3 —~)E'(E"—E')j

Bi', BE ~z ~z

(4)

QEI IBX(E') f
s

+ f(E') dE' il [8"+E'" (-' —X)E'E"j. (5—)'
HEI J (E/ Elf)E12
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have been solved by means of a Liouville-Neumann series with variable lower limit. As their calculations were es-
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The total cross section for energy loss by radia-
tion'0 is

E'P~(E, E')dE'

=X(1+X/2)f(E)
(6)

from which it follows that, for E)20 mc', f(E)
varies slowly between 0.75 and i. Below E=20
mc', as pointed out in the introduction, the
energy loss by radiation in heavy elements be-
gins to be smaller than that due to ionization.
We shall, therefore, write f(E) =1, for it differs
appreciably from this value only for energies for
which the bremsstrahlung process is unimportant.

The total cross section for pair production is
given by

El

ppo,„,—— t P„(E', E)dE
p

(7)= oXg(E') where o = (7/9) —(X/6).

For E' = 20 risc', g(E') =0.33 and even for
E'=100mc', g(E') 0.7. It is just the effect of the
variation of g(E') with E' that it is our purpose
to investigate. Since ionization losses are the
dominating processes for air showers for energies
up to 200 mc' it is patent that for such showers
this variation may be neglected.

We therefore fit the calculated function y„;,
as given by Heitler" by means of the empirical
foi inula

g(E') = 6,+ fip lnE' —6(lnE')'. (8)

The coefficients 8~, 82 are given in terms of 6

by the condition that, for E' =Eo) 10' me'-,

t;(E') =1 and dg(E')/dE'=0. Thus we ensure
that for E' Ep Fq. (8) yields the correct value
and energy dependence for q„;,. We then have

g(E') =1—h ln (Ep/E)'. (9)
In the limit il—+0 it is clear that g(E')—+1 and the
equations go over continuously into those solved
by Serber '
sentially. for showers in air, the variation with energy of the
pair production cross section was not considered, although
their method could be extended to include this refinement.
I am indebted to Professor G. Uhlenbeck for informing me
of this work. I am also indebted to Dr. H. J. Bhabha for
informing me that he and Chakrabarthy have recently
obtained a solution of the cascade problem for air, cor-
rect to within 5 percent. The method adopted by these
authors could also be extended to the present problem.
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The coefficient 5 is chosen to give the best fit
of (9) to the theoretical curve of reference 11.
It is practically independent of the material
traversed, but is critically dependent on Ep. In
fitting (9) to the calculated curve, it is important
to obtain a correct fit for high energies and an
approximate fit for low energies, since for most of
the shower the average energy of the particles is
greater than 100 mc'. To do this it is necessary
to take different forms for the dependence of b

on Eo for diRerent orders of magnitude of Eo.
One finds that

it=0.30/(InEp —4.50)p for Ep 10' mc'

=0.21/(lnEp —5.30) fot Ep 10 me

=0.14/(lnEp —6.24)' for Ep 10 mc'. (10)

from which it follows that

ln(E/Ep)y(E, t)

r
'+'"

I
Ep~" ~f(y t)

E 2pri &.— E E 3 By

(ln(EIEo)) 'v(E, &)

1 '+' f Epp p B~f(y, t)
I
—I—

E 2pri ~.—~ E E) By'

This choice of the coefficients makes g(E') a
slowly varying function of Eo, the initial energy.
While from the point of view of the physical
interpretation of g(E') this is meaningless, from
the mathematical viewpoint this trick introduces
an enormous simplification into the right-hand
side of the fundamental Fq. (12). Moreover,
the theoretical curve is represented quite ac-
curately by (9), with it given by (10), for
20 mc'&E&~ED-10' mc' and extremely accu-
rately for Ep/50 (E~&Ep.

As usual, we first solve the equations neglect-
ing the inhomogeneous terms in p arising from
the eRect of ionization. The advantage of the
choice of a form (9) for g(E') involving the energy
dependence logarithmically, now becomes ap-
parent, for in a sense these logarithmic terms do
not destroy the homogeneity of. the equations.
This is seen most easily by writing

e-" 1 '+'" (E,)
y(E, &) = . I

—
I f(y, &)dy,

E 2~'~,—;- EE)

(
T+LQO (E ) p

Z(E, t) =e-",
I

—
I g(y, t)dy

2~i~,—;- EE)
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Using the relation (9) and omitting, at first, the where Isi is the positive root and Iss the negative
terms in P, one finds that Eqs. (4) and (5) become root of the equation

f (—~ ~—(y))f &—(y) C(y) f
p' —(~—~(y))p —&(y) C(y) =o

in which a dot and a prime denote differentiation
with respect to t and y, respectively, p= ba; and

Inserting (15) on the right-hand side of (12), we
&(yC )

I &
~ ~ y y ~ .rr, , find that, because of the aPPearance of terms

) '
involving the second derivative of fo with respect
to y, the exact solution fi(t, y) of the equation

f pf =yC(y)R (18) involves terms of order pt pt pt the pts terms
cancelling because of (16). More precisely,

f(t, y)= 2 (—1)"-'2 -t" e p(.t) (1&)

~ (y) = (4/3+&) (4(y)+ v) —(5/6+&)

+(1+3~)/3(y+1)+1/(y+2)

&(y) = 2/(3+ 1)—(8+6&)/8(y+2)
(14)

+(8+6K)/3 (y+ 3),

C(y) =(4+»)/3y —(4+»)/3(y+1)

+1/(y+2).

Since X is a small slowly varying function of Z,
the functions A(y), B(y), C(y) and o are prac-
tically independent of Z. For convenience in
comparing the results for lead showers with those
already calculated for air, we shall neglect this
slight variation, introducing thereby an error of
less than 1 percent.

Consider the equation obtained from (12) by
neglecting the right-hand side, which depends on
the small parameter p. The solution of this
equation corresponding to the initial condition
of one electron 'of energy Eo and no y-rays inci-
dent at t =0 is

fo(t, y) = [C(y)/ti pj[ex—p(ts t) —exp(p, t) J (15)

where

a„o= (—1)' 'C(y)/D—„
ff ff f f

os„i ——I [pu„eo,+is„n,o+2Is,.os,.o]—20.„s}/D„

isrs =
I p[ttr(sir rsro+2tsrrsro)+2ts~ isro$ 6osrs} /2Drr

(18)
~ro = ptir &rser/3Dr~

D.=2p.—~+~ =(—1)' '(pi —ps)

ft. = p ~+~(y) &(y) C(y)l/~. —

Inserting (17) into the right-hand side of (12)
we obtain the second approximation

fs(t y) = 2 (—1)" ' 2 tt-t" exp(p. t), (19)

involving terms of order (pt')', and in general the
leading term of the nth approximation obtained
in this manner is of order (pts)". The significance
of this will be discussed after we have taken into
account the effects of ionization. To do this we
follow exactly the calculations of Serber. To ob-
tain an exact solution of the equations, even in
the form of a contour integral, is a difficult pro-
cedure, but to a 6rst approximation we have

p ~ &
-"

p~ I'( —)I'(y+ ) r& ~+(t, g) =- Z&.(y )(—1)" '
4~rs &cyC(y) (Eo& &s 1"(y) E P )

3 () a2
XQ —(n,„t"exp[ts„t j)—p n, o exp(ts„t), (20)

n=o Bt A/2

I p. (~(y+~) —~(y)) —[&(y+s)C(y+~) —&(y) C(3)3}&(3, ~) =»&.(y ~ —1).

X,(y, 0) =1.

As before, the main contribution to the shower arises from the terms corresponding to the positive
root of Eq. (18), r=1. The total number of electrons and positrons at a depth t in the shower, as
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estimated from (20) by the method of steepest descents, is, therefore,

f f ff
2

f2 &13
N(c, f) =No(e, t) 1+ (pyngy+2ny2 2pyngp p neo)+ (ptnn+3nl3 pniogt )+& (22)

geo'ap P, ]0,'] p 0!Qp

where

e= In (Ep/P),

in detail, one finds that

N,„=(No),„, [1—0.578(e —1)(&+0.18)

TABLE I. The maximum number of particles arising in
lead and in the atmosphere from a single electron of energy
E0 is given for various values of the ratio E0/p, where p is
an energy characteristic of the material traversed. (P =6.5 lllev
for Pb, 95 Mev for air. )

jV0/P
(~0)pb
(&max) Pb
(~0)air

155
10' ev
13,5

1.5X10"ev
21.9

1550
10"ev

148
1.5X10"ev

200

15500
10" ev
1550

1.5X10"ev
1940

"Reference 6, Eq. (7).

and No(e, t) is the number of particles at t, calcu-
lated by Serber neglecting the variation with
energy of the pair production cross section. "

Expression (22) has been obtained from the
first approximation Eq. (17) involving terms of
order pt'. In a similar manner an expression for
N(e, t) could be obtained from the nth approxi-
mation and it is found to involve terms of order
(pt')". For large thicknesses t, therefore, the ex-
pansion has little meaning. At the point y=1,
however, which is near the maximum of the
shower, 8—and hence n~3—vanishes. The leading
term in the nth approximation is then of order
(pt')", a quantity which is small compared to
unity and which decreases as e increases. The
successive approximations, therefore, form a
rapidly convergent series, and for Ep~104 mc2

the maximum of the shower is given in terms of
(No),„to within 5 percent. For Eo 10' mc' it is
necessary to consider the second approximation,
which for this energy differs from the first ap-
proximation by 8 percent.

From (22), and estimating the second approxi-
mation which is too cumbersome to write down

+0.16'(e—1)'] (23)

with 8 given by (10), and

(Np) =0.4Ep/P(1+ 1.6(e 1))''.

It is clear that the maximum value of Xoccurs
for a value of t and hence of y, slightly less than
that which makes Xp a maximum. The difference
is very small, however, and the error involved in
taking N,„=(N)„& is of order 1 percent.

For a given value of e, the value of 8 given by
(10) is much smaller for air than for lead. The
corresponding correction to N, for air is, there-
fore, much smaller, being of order 7 percent and
decreasing with increasing ~. With present calcu-
lations of the multiplication of cascade showers
in air, which are possibly in error by as much as
20 percent, this refinement is therefore negligible.

For all thicknesses the number of p-ray quanta
predicted from the above calculations will be
greater than that' given by the application of the
usual cascade theory, but for t &3t, the number
of particles predicted is less. Owing to the uncer-
tainty of these and previous calculations, how-
ever, we give numerical values only for the
maximum of the particle multiplication curve in
lead (Table I), calculated from (23) for various
values of the initial energy Ep. The maximum
number of particles is seen to vary between
Ep/11P and Eo/10P as Eo varies from 10 ev to
10" ev, i.e. , between Eo/8E, and Eo/7E, where
E,=p/ln2 is the critical energy, at which the
average rates of energy loss by ionization and
radiation are equal.
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