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A detailed study has been made of the lattice imper-
fections which are assumed to account for plastic de-
formation. Calculations of the strain energy associated with
these dislocations have been made in the following cases: a
dislocation in a uniform shear stress, two dislocations in an
infinite medium, and a dislocation near a surface. The force
acting on a dislocation is found by taking the gradient of
the strain energy. A force is found which tends to attract
dislocations toward the surface of a specimen. It is shown
that about twice as much energy is required to produce a
certain amount of slip inside a solid as is required to produce

the same amount of slip at the surface. The energy required
to produce a dislocation is found to be several electron volts
per atomic plane, the exact amount depending on where it is
located and how it was produced. Finally the energy stored
in a material during work hardening is calculated by
assuming that the dislocations are arranged in a regular
two-dimensional lattice in the material. The density of
dislocations found for severely work hardened material
agrees with the predictions of other investigators. Numerical
values found for the energy stored during work hardening
are in agreement with experiment.

INTRODUCTION

F a single crystal is subjected to a small
tensile stress it will elongate according to
Hooke’s law. If the component of the shear
stress acting along a definite crystallographic
direction exceeds a certain critical value the
crystal will also undergo considerable plastic
deformation. For most crystals the value of the
critical shear stress is about 107 dynes per cm?.
The permanent deformation apparently results
from a sliding of sections of the crystal over one
another. The sections are bounded by certain
close-packed crystallographic planes and the
slip takes place along the direction mentioned
above. This slip direction is usually a direction
in which the atoms are closely packed. A micro-
scopic examination of a single crystal which has
been elongated by several percent shows clearly
the step-like discontinuities produced at the
surface when slip occurs. The sections bounded
by slip planes are several microns thick at room
temperatures.

In a series of articles appearing in the Journal
of Applied Physics, Seitz and Read! consider the
various theories which have been used to discuss
plastic deformation. They conclude that the
theory of “‘dislocations’ as developed by Taylor?
yields the most satisfactory description of plastic
phenomena which has been given to date. The
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present paper represents a further attempt to
develop and to test the validity of dislocation
theory. The predictions of dislocation theory
which are considered in this paper are in good
agreement with experiment.

According to Taylor, slip in a solid results
from the motion of a certain type of lattice im-
perfection through the crystal. Taylor has used
these ‘‘dislocations’ to discuss qualitatively the
hardening which occurs when crystals are
plastically deformed. Recently Mott and Na-
barro® using dislocation theory have discussed
precipitation hardening.

In order to make clear the nature of a disloca-
tion we consider a line dislocation in a simple
cubic crystal. In Fig. 1 we have indicated the
positions of the atoms in a crystallographic
plane which is normal to the slip plane. The
axis of the dislocation is perpendicular to the
plane of the figure. Thus parallel atomic planes
above and below the plane of the figure will have
the same distribution of atoms about the center,
or axis, of the dislocation. If a dislocation moves
along its slip plane across the entire specimen,
then Taylor has shown that the material above
the slip plane will be displaced relative to the
material below the slip plane by an amount
equal to the lattice constant of the material.

An examination of Fig. 1 indicates that the
distortion is just that which would be produced
by inserting extra half-planes of atoms into

3N. F. Mott and F. Nabarro, Proc. Phys. Soc. 52, 86
(1940); F. Nabarro, Proc. Roy. Soc. 175, 519 (1940).
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an originally perfect crystal above the slip
plane. Following Taylor we shall call this a
positive dislocation. If the additional half-planes
are inserted below instead of above the slip plane
we shall call the dislocation which results a
negative dislocation. Thus, if we are dealing
with a positive dislocation we shall find that the
material above the slip plane is compressed while
the material below the slip plane has been
dilated.

In the first section of this paper we shall
calculate the force which acts on a dislocation
when the material containing the dislocation is
subjected to an external shearing force. Next,
we shall consider two dislocations in an infinite
medium. We shall determine the energy of the
system and we shall evaluate the force acting
between the dislocations. In the third section
we shall discuss the case of a dislocation near a
surface. Here too we shall calculate the energy
of the system and the force acting on the dis-
location. Finally, we shall evaluate the energy
stored in a material when it is work hardened.
All calculations made in this paper will use the
theory of an elastic, isotropic continuum.

DisLocATION IN UNIFORM SHEAR STRESS

According to dislocation theory an annealed
specimen contains only a few line dislocations.
If we apply a sufficiently large external shearing
force to the specimen it will deform plastically.
This deformation may take place either by the
motion of existing dislocations or by the forma-
tion and motion of dislocations. In either case
the force produced on an isolated dislocation
by the external shearing force would be of in-
terest. We shall, therefore, consider a line dis-
location in a material which is also subjected to
a uniform two-dimensional shear stress. This
uniform shear stress is produced by the external
force.

We shall first calculate the strain energy of the
system. In order to calculate the strain energy
we must know the stresses acting. It can be
shown that the solution of certain two-dimen-
sional problems of elasticity can be obtained by
finding a suitable Airy stress function,* x. This
stress function must satisfy the differential

¢S. Timoshenko, Theory. of Elasticity (McGraw-Hill
Book Co., Inc., 1934), p. 25.
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and must yield stresses or displacements which
satisfy the boundary conditions of the problem.
The stresses are given by the following relations:
0:=0%x/0y?; 0,=0%x/0x%; Tmy= —0d%x/dxdy. (1)

The Airy stress function appropriate for this
problem is®

F1c. 1. Dislocation lying in a simple cubic crystal.

x= —Bxy—Dy log(x*+y*)*. (2)

The first term represents the uniform shear
stress; the second, as one can see from the dis-
placements given below, represents a positive
dislocation. The stresses resulting are

o.=—Dy(3x>+y)/ (x*+5°)?,
oy=~+Dy(x*—y*)/(x*+5%)?, 3)
Tay=+B+Dx(x*— ")/ (x*+%)

The stresses due to the dislocation die off
inversely as the first power of the distance from
the center of the dislocation. The displacements
can now be calculated from Hooke’s law. They
are

m—1 D «xy
u=( )D tan‘l(g) +— ,
mG x 2G x2+y?
(4)
(m—Z)D1 (x2-hyt)) D x?
v=— og(x - .
2mG s Y 2G x*+y?

5 This dislocation differs from the one used by Taylor.
Dislocations of this type were probably first used to discuss
plastic deformation by J. M. Burgers and W. G. Burgers.
J. M. Burgers, Proc. K. Akad. Amst. 42, 263, 378 (1939).
We shall discuss the differences between these two types
of dislocations near the end of the next section.
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Here # is the displacement in the x direction
and v is the displacement in the y direction. G
is the shear modulus of the material, and m is
the reciprocal of Poisson’s ratio. If we measure
the angle appearing in the equation for % from
the plus x axis then the displacements are dis-
continuous along this axis. The material just
below the positive x axis is displaced in the x
direction with respect to the material just above
the axis by an amount

A=27(m—1)D/mG, D=mG\/2x(m—1). (5)

According to Egs. (3) and (4) the stresses and
the displacements are singular at the center of
the dislocation. Physically this means that an
elastic continuum theory is not capable of
describing the situation near the center of a
dislocation. We shall, therefore, in all problems
surround the axis of each dislocation by a
cylinder of radius 7. We shall choose 7y so that
the maximum strain at the surface of the cylinder
is one-tenth. We shall consider only situations
in which all dislocations, impurity atoms,
precipitates and other singularities are separated
from the dislocation in question by distances
which are large compared with 7,. For such
systems the stress at 7y will be, to a good ap-
proximation, just the stress produced by the
dislocation. Furthermore, the interaction ener-
gies and the forces exerted by other singularities
on the dislocation will depend upon the strain
energy in the material outside 7, since the strain
energy inside 7, will not change appreciably if
the dislocation is moved relative to the other
singularities.

Let us calculate 7o in the case of copper. We
shall take N of Eq. (5) to be the translation
which would carry an atom of copper from a
cube corner to the center of a cube face. This
unit slip distance is 2.55X10~% cm in copper.
Using G=4.53X10" dynes per cm? and m = 2.941
we find from Eq. (5) that D=2.78 X10* dynes
per cm. The shear strain is found to be the
largest strain. Using Hooke’s law -and substitut-
ing from Egs. (3) we find

Yoy = Tay/G=+Dax(x*— %) /G(x*+¥%)?,

where v,, is the shear strain. Putting in the

limiting value of one-tenth for v, and inserting
the maximum value that the expression on the
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right has on the surface of the cylinder we find
70=D/Yzy max G=6.154+10"8 cm for copper. (6)

The strain energy of a slab of material of
unit thickness in the 2z direction is®

e e

—21710'2‘["27’122 ] (7)

where m is the reciprocal of Poisson’s ratio and
where we have assumed that the material is in
a state of a plane strain. Equation (7) gives the
strain energy in any orthogonal two-dimensional
coordinate system. In this equation ds is the
element of area and o1, o3, and 715 are the stresses
in the coordinate system chosen. Substituting
from Eqgs. (3) we find

1 D?
W=,—ffdxdy{32+
2G x24-y?

2BDx(x*—y?)
(x2 +y2)2 ’

It is apparent from Eq. (8) that if either the
uniform shear stress or the dislocation is present
in the specimen it will contain strain energy.
If both the uniform shear stress and the disloca-
tion are present simultaneously, the strain energy
is not simply the sum of the strain energy due
to a uniform shear stress and the strain energy
due to a dislocation. In addition to these self-
energies we have a cross term, an interaction
energy. The first two terms of the integral (8)
are self-energy terms while the last term is the
interaction energy in which we are interested.
In order to get a sensible result one must be
careful about the limits of integration. The inter-
action energy can be written as

2BD —"o x(x2
LY o e T
—ott (96”-1-3’2)2

+ f J ﬂexif;y?)? xdy|. (9)

In this expression C is a large distance which is
6 E. Trefftz, Handbuch der Physik, Vol. VI, p. 79 (1928).
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allowed to approach infinity after the integra-
tion has been carried out. The result then
becomes

KOEHLER

The force acts in the plus x direction on this
positive dislocation.
Using the value of D for a unit dislocation in

Win=—2BDE/G. (10)  copper and assuming that the uniform shear
stress is 107 dynes per cm (i.e., the value of the
critical shear stress for copper) we find the
force to be 2.22X10~? dyne for a segment whose
length is the distance between successive atomic
planes which are perpendicular to the axis of the
dislocation. This force is very small compared

with chemical forces.

The distance ¢ essentially measures the position
of the dislocation with respect to the field of
uniform shear. The force acting on the disloca-
tion is given by the negative of the derivative of
this expression with respect to £.

F=+2BD/G. (11)

Two PARALLEL LINE DISLOCATIONS

In this section we shall calculate the strain energy associated with two parallel line dislocations
in an isotropic, continuous medium. Quantitative values of the strain energy and of the force acting
between the dislocations will be given. Finally, Taylor’s treatment of dislocation theory will be
discussed.

The Airy stress function for two unlike dislocations of equal strength in an infinite medium is

x =D {y log(x?+y%)}— (y—yo) log[ (x —x0)24 (y — y0) 2]¢}. (12)

We have assumed that the negative dislocation has its center at the origin of our coordinate system.
The positive dislocation has its center at x¢yo. Each dislocation has associated with it a slip plane
which passes through the center of the dislocation and is parallel to the xz plane (z is normal to the
plane of Fig. 1). The stresses obtained from (12) are

H y(3x2+y?) _(y~yo)(3{x—xo}2+{y—yo}z)}

T @ty ({x—x0}2+ {y—30}%?

S Y& =) (—yo)(lx—x}®— {y—y0}2)} .
(x24y?)* ({x—x0) 24 {y—y0}2)?

e _D{x(x2—y2) _(x—xo)({x—xo}2— {y-yo}z)}.
(x*+y%)* ({x—x0 )2+ {y—0}?)?

From Egs. (12) and (13) one sees that if the two dislocations coincide they will neutralize one another
leaving an unstrained crystal.

Substituting the stresses given in Eqs. (13) into expression (7) we obtain the strain energy for an
infinite slab of material which is of unit thickness in the 2 direction:

D2 2m—1)[ ¥ (y—90)? 29(y—y0)] *x2—y> {x—x0}2— {y—0}*
Wz—ffdxdy‘ [ 27 °]+ TR
2G m I.7'14 1’24 7’121’22 7'14 7'24

2x(x—x0) (x> —y2) ({x—2x0} 2= {y—0}? _y(y—:vo)(xz—y“’)(3 {e—x0} 24+ {y—20}?)

7’147’24

r1irat
_y(y~yo)(3x'2+y2)({x—xo}z— {y—=50}%

7141;24

ra=[(x—x0) 2+ (y—0)* 1%

v (14)

where
ri=(x2+y9)?,
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Let us surround the axis of each dislocation by a cylinder of radius 7o and proceed with the integra-
tion of Eq. (14) over the portions of the slab which lie outside these cylinders. The terms in Eq. (14)
can be divided into two classes. First, there are the self-energy terms which contain 7; or 7. Second,
there are the interaction terms which contain both 7, and 7,. The self-energy terms canbeintegrated
immediately and yield
2rD*(m—1) L
———log—,
mG 7o

(15)

self =

where L is essentially the radius of our cylindrical specimen which has the two dislocations near its
center. We introduce new Cartesian coordinates into the interaction terms taking the origin midway
between the two dislocations. The new coordinates ¢ and # are given by

x={ cos¢— 7 sing+3iR coso,
R=(xo*+y0%)},
The interaction terms can then be written:
— ——Effdg“dn{ll(m‘ 1)[;‘2 sin%p+7? cos?p — L R? sin2¢p ]
26 m o Lett2et(nr— 1R+ (r2+1RY):?
£8 cos2¢+ r4(n? cos2¢— 2 R? cos2¢) + £2(— 7% cos2¢ — n2R2[4+2 cos2¢ |+ [3R4cos2¢/16])
" (642022 — 1R + (1 + 1RO
) (—n° cos2¢+ '3 R2[ — 442 cos2¢ |+ 25 R[4+ cos2¢ | — [ RS cos2¢/647])
+ .
(62827 — 1R + (rt+ 1R

y={¢ sing+n cos¢+3R sing,
tang =1yo/xo.

(16)
where

(17

In Eq. (17) we have omitted terms that are odd in ¢ or 4 since these would obviously not contribute
to the integral. If we now integrate Eq. (17) over the region outside the cylinders we obtain the
interaction energy. Adding this interaction energy to the self-energy we find that the total, elastic,

strain energy of the positive and negative dislocation in an infinite medium is

mGA? R

i — log
27['(’”1"1) 27’0

Expression (18) is approximate since we have
neglected small terms of order (m2G\2/4x(m —1)?)
X (7¢¢/R?). The force acting on the positive
dislocation at x¢yo has the components

mGA? 1
2r(m—1) R’

(19)
m2GA\2  sin 2¢

“2r(m—1)? R

Numerical values of the strain energy and the
force acting between dislocations have been
calculated for various distances of separation in
copper. The results are given in Figs. 2, 3, and 4.
In Fig. 2 we have given the strain energy in a

dr(m—1)2

mAGA?

[cos2¢—%7] (18)

slab whose thickness is the distance between
successive atomic planes which are perpendicular
to the axis of the dislocation. In Figs. 3 and 4
we have given the force acting on a dislocation
segment whose length is equal to the thickness
of the slab just mentioned. In Fig. 4 we have
given that component of the force between two
dislocations which acts along the slip direction.
We have assumed that the slip planes of the two
dislocations being considered are separated by
by 10-% cm.

We are now in a position to discuss some of the
differences between the dislocation theory de-
veloped by Taylor and the dislocation theory
used in the present paper. Imperfections of the
type shown in Fig. 1 can be obtained in elastic



402 J. S.

ELASTIC ENERGY (EV PER ATOMIC PLANE)

mIO? 2x10°* 3107 4x107* 5x10°* 6x10°* 7xI0* @xiot
DISTANCE OF SEPARATION (CM)

F1G. 2. Strain energy for various distances
of separation in copper.

theory if one uses the following stress function:
x=Ay log(x*+y*)+Bx tan~*(y/x). (20)

The strength and nature of the dislocation repre-
sented by the above function are determined by
the values assigned to the constants 4 and B.
If we put A=B=—\G/m then we are dealing
with a positive Taylor dislocation whose slip
distance is \. If we take 4= —mG\/27(m—1)
and B=0 we are dealing with a positive Burgers
dislocation whose slip distance is also A.

We have not used Taylor dislocations for the
following reason. Suppose we have a block which
is finite in the x and y directions and which
contains a dislocation. Let us take the surface
of the block to be free from external forces.
Then it can be shown that the boundary condi-
tions which apply to this problem can only be
satisfied if one takes the dislocation to be a
Burgers dislocation.

In any dislocation theory it is important to
decide how a dislocation will move along its
slip plane under the influence of various stress
fields which may be present in the material.
Taylor treats the problem in the following way.
Consider a positive dislocation located at the
origin of a coordinate system. The xz plane will
be taken to be the slip plane and the x axis the
slip direction. Taylor, Burgers, and Mott and
Nabarro assume that this positive dislocation
will move in the plus x direction if the total
external shear stress acting at the origin in that
direction is greater than zero. If the above as-
sumption is valid it would be most reasonable

KOEHLER
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2x10™% 4x10°® 6x10™ 8x10° 10x10°® 12x10°® 14x10°® 16x10°%

DISTANCE OF SEPARATION (CM)

F1G. 3. Force acting on dislocation segment.

to assume further that the force tending to
move a dislocation in a given direction is pro-
portional to the external shear stress which acts
in that direction at the center of the dislocation.
This last assumption can be shown to be in
error in the following way. If the assumption is
used to calculate the force acting between two
Burgers dislocations the result found does not
agree in form with the force obtained by calcu-
lating the strain energy of the system. If one
considers Taylor dislocations in various stress
fields then the assumption gives the correct
form for the forces, but the constant of propor-
tionality seems to depend upon the particular
stress system being considered. For example,
one finds that

ZFA/TA=FB/TB.

Here F, is the force acting on a positive Taylor
dislocation in a uniform shear stress; 74 is the
value of the uniform shear stress at the center of
the dislocation. Fg is the force acting between a
positive Taylor dislocation and an equal nega-
tive Taylor dislocation; rp is the shear stress
produced at the center of the positive disloca-
tion by the nearby negative dislocation. These
forces are obtained by calculating the strain
energy of the system considered.

In spite of the discussion which we have just
given it can be seen that the results of Taylor’s
theory are qualitatively correct. This is true
because Taylor assumed an interaction between
two dislocations which is essentially of the correct
form (i.e. the force dies off inversely as the first
power of the distance between the dislocations).
The error resulting from the usé of the wrong

21
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Fi1c. 4. Force be-
tween two dislocations

in direction of slip.
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type of dislocation causes Taylor to overestimate
the critical shear stress by a factor of about
4(m—1)/m. For copper this factor has the value
2.64. Our discussion indicates that Taylor’s
method of determining when a dislocation will
move may also be in error. If this is true then
Eq. (21) allows us to estimate the error made.
Such an error would cause Taylor to under-
estimate the critical shear stress by a factor of
about two. Thus Taylor's results are not in
error by more than a factor three.

A DisLocATION IN A CYLINDER

There are two ways in which dislocations
could be formed. First, dislocation pairs could
be created inside the specimen. Each dislocation
pair would consist of a positive and a negative
dislocation. Secondly, single dislocations may be
formed at the surface of the material. In order
to consider these possibilities in detail we shall
calculate the strain energy and the force acting
on a dislocation near a surface. Finally we shall
discuss briefly the annealing process in metals.

Let us consider a dislocation in a circular
cylinder of radius p. We shall suppose that the
dislocation is not in general at the center of the
cylinder. We shall take the axis of the dislocation
parallel to the axis of the cylinder. The sym-
metry of this problem is that of two eccentric
cylinders. Problems of this type can be con-
veniently treated using bipolar coordinates.
G. B. Jeffery” has used this orthogonal system

7G. B. Jeffery, Trans. Roy. Soc. 221, 265 (1920). See

also E. Coker and L. Filon, Photoelasticity (Cambridge
University Press, 1931).

of coordinates to treat two-dimensional elastic
problems and we shall use many of his results.
The curvilinear coordinates are defined by the
relation )

x+i(y+c) } 22)
x+i(y—c)

where ¢ is a real positive constant and x and y
are Cartesian coordinates. Solving for x and y
we find

a-i-iﬂElog{

x=c¢ sinB/(cosha—cosp),
y=c¢ sinhea/(cosha—cosg). (23)
The points 0,+¢ and 0,—c¢ are the two poles of
the system. It is clear that if we keep 8 fixed
and change @ by an amount da we shall traverse
a distance '

da/h=cda/(cosha—cosp)

similarly if we keep « fixed and change 8 by dg
we shall move through the distance dgB/h.
Figure 5 shows the two orthogonal families of
circles that form this curvilinear coordinate net.

Let us suppose that the dislocation is at the
pole which lies at 0,4¢. The surface of the ma-
terial will be represented by the circle on which
sinha=¢/p. If the surface of the cylinder is to
be free from external forces the boundary condi-
tions which the stresses must fulfill are

(24)
on the cylinder having sinha=c/p. We shall try
a stress function which we believe to be ap-
propriate for this problem. We put
D sing
X:
h

go=0, Tap=0

{atiexp[—2(a—a)]}, (25)
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where a; is defined by sinhaj=c/p. If the first
term of this expression is transformed into
Cartesian coordinates we find that it represents a
positive dislocation at 0,4¢ and a negative,
“image’’ dislocation at 0, —c. This stress function

{2(cosha — cospB) exp[ —2(a—a1) ]—sinha[ 1 —exp[ —2(a—a1) ]},

KOEHLER

is a linear combination of terms which Jeffery
has shown satisfy Airy’s equation. Jeffery has
also given relations which enable one to calcu-
late the stresses in bipolar coordinates once the
stress function is known. Using these we find

(26)

D sinha sinf
Gu= — —{1—exp[ —2(a—ay) ]},
c
D sinf
o= +
c
D cosp
Tap= — (cosha—cosB) {1 —exp[ —2(a—ay)]}.
c

It is at once evident that these stresses satisfy the boundary conditions given above.
We can now calculate the strain energy. Substituting the stresses into Eq. (7) we obtain

D2 ag T
WZEJ; J:Tdadﬁ[Z(m——l) sin?B exp[ —4(a—a1) ]+m cos?B {1 —exp[ —2(a— 1) ]}?2

_2(m——2) sinha exp[ —2(e¢—a1) ] {1 —exp[ —2(a—a1) ]} sin?B

cosha — cosf

N (m—2) sinh?a sin?B {1 —exp[ —2(a—a1)]} 2]

(cosha— cosB)?

In this equation we do not integrate « to plus infinity because, just as in our previous problems, we
find that elastic theory is not able to describe the distortion of the material near the center of the
dislocation. Instead we put sinhao=c¢/ro. Carrying out the integrations we find

mGA?
4r(m—1)?

— (3m4—4) exp[—4(a—fa1)]— (m—2—2

Let us rewrite this equation in a more useful
form for the special case of a dislocation inside
the plane face of an infinite block of material.
We find that, to a good approximation,

mGA2 2R
=———— log—+surface terms,
4r(m—1) 7o

(28)

where R is the distance of the dislocation from
the surface of the cylinder. The first term is the
leading term in this expression. This term repre-
sents the strain energy in the block due to the
stresses produced by the dislocation and the
“image’’ dislocation which is a distance R outside
the plane face. The use of an ‘image’ dose not

3
[(m— 1)a+3(m—2) sinha {sinha — cosha } +(

) expl —4a+2a; ]+ (m

) exp[ —2(a—ay)]

) exp[—6a+4a1]]ao. (27)

F1aG. 5. Bipolar coordinate system.
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FI1G. 6. Strain energy
as a function of dis-

tance from surface.

ELASTIC ENERGY (£v PER ATOMIC PLANE)

I 1
I B ———y o
pLANE FACE—, L — |
|
/ /————‘—_
L—] — T\
P CYLINDER
2 ~7 -
15
107% 2x10°°  3x107° 4x10™°  5x107°  6x107°  7x10°  8x10™°

DISTANCE FROM SURFACE (CM)

completely satisfy the boundary conditions at
the plane face and the additional stresses used
produce the “‘surface terms” in the strain energy.
These ‘“surface terms’’ are almost independent
of the distance of the dislocation from the sur-
face except at small distances. Because of this
the first term increases in importance as the
dislocation moves away from the surface. If we
consider a very large copper block which has a
dislocation 5X10~7 c¢m inside a plane face we
find that the surface terms are 26 percent of the
image term. If the dislocation is 10~* cm from
the surface, the surface terms amount to 8 per-
cent of the image term. The force acting on the
dislocation is obtained by taking the derivative
of the strain energy with respect to the distance
from the surface. The result for the case of a
dislocation inside a plane surface is

mGA? 1
—————— —-surface terms.
4r(m—1)

2 (29)

The curves drawn in Figs. 6 and 7 give the strain
energy and the force acting on a dislocation
as a function of its distance from the surface in a
copper block. We have considered two cases,
one in which we have a dislocation near the plane
face of a semi-infinite block, another in which we
have a dislocation in a cylinder of radius 10~

cm. In the second case the strain energy reaches
a maximum when the dislocation is at center of
the cylinder. The strain energy curve is sym-
metrical about this maximum. Instead of plotting
the elastic energy of a slab of unit thickness, we
have given the elastic energy in a slab whose
thickness is the distance between successive
atomic planes which are perpendicular to the
axis of the dislocation.

We can now decide whether it is energetically
easier to form dislocations at surfaces or in
pairs inside the specimen. In order to make a
comparison we shall suppose that slip of one
atomic unit has occurred in both cases along a
distance R in the slip direction. For a dislocation
near a surface, R is the distance from the center
of the dislocation to the surface. In the case of
two dislocations inside an infinite block, R is the
distance between the dislocations. By comparing
the curves of Fig. 6 with that of Fig. 2 one finds
that, in general, it requires about twice as much
energy to produce a pair of dislocations as it
takes to form a single dislocation near the surface.
This does not necessarily mean that most of the
dislocations are formed at the surface of the
specimen. One must also remember that there is,
in general, a much larger volume in which dis-
locations can be formed inside the material
than there is near the surface.
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If dislocation theory is correct, then the forces
investigated in this section and in the previous
one will be of great importance for any theory of
annealing. Taylor has shown that a substance
containing a large number of dislocations is
hard. However, if we have a specimen which
initially contains a large number of dislocations
per cm?, then the image force acting toward the
surface will cause dislocations to move out of the
specimen. If we have positive and negative
dislocations inside the specimen which are on
the same slip plane, they can attract and an-
nihilate one another. Unfortunately, the experi-
mental data in this particular field are not
sufficient for a quantitative test of the theory.
Further data on resoftening temperatures for
single crystals, on the effect of small amounts of
soluble impurities on the resoftening tempera-
tures of single crystals, and studies of the effect
of the size of the single crystal on resoftening
would be valuable. Measurements of the in-
ternal friction as a function of the time for
material having a decrement of about 10~* on

small single crystals of various sizes would also
be of interest.

THE ENERGY STORED DURING
WoRrK HARDENING

Experimentally it is found that if a metal is
severely cold worked a certain amount of energy
is stored in the metal. This energy can be re-
leased by heating the material. Taylor and
Quinney® have made measurements on the
amount of energy stored in this way. In this
section we should like to see if we can check
their results using dislocation theory.

We shall assume that a work hardened ma-
terial contains many positive and negative
dislocations which are arranged in a two-di-
mensional lattice. We shall first calculate the
total energy of a dislocation pair in the rectangu-
lar lattice shown in Fig. 8. The elastic energy
required to form a dislocation pair whose distance

8 G. I. Taylor and H. Quinney, Proc. Roy. Soc. 143, 307
(1934); 163, 157 (1937).
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F1G. 8. Rectangular lattice and slip planes.

of separation is R is given by Eq. (18) as
mGA? R
= —— Og———
2r(m—1) 21
m2GA\?

—_—  Tcos2é—17.
47r(m——1)2|:COS -

(30)

The energy of a dislocation pair in a lattice is the
energy required to form an isolated pair minus
the binding energy of the pair in the lattice. The
interaction of two dislocations is given by a
logarithmic potential such as is shown above.
The above relation includes not only the inter-
action between the two dislocations, but also
the self-energy of the dislocations.

Let us calculate the interaction energy between
the dislocation pair located at the origin and the
pair located at x=0, y=2nb (see Fig. 8). We
shall assume that the members of each pair are
separated by a distance b. The energy which the
system acquires because of the presence of the
positive dislocation at 0,—b/2 in the field of
the pair at 0, 2%b is

mGN? | (2nb+b)
= O .
Y mm—1) °\ 2mb

The energy which the system acquires because
of the presence of the negative dislocation near

the origin in the field of the pair at 0, 2#b is

mGA? 2nb—b
W_= log( )
2r(m—1) 2nb
Thus the interaction energy of the two pair of
dislocations is

mGA? 4n?
Wy=— log( )
2r(m—1) 4n2—1
It is evident that W; vanishes when # ap-
proaches infinity. W is therefore an interaction
energy, not a self-energy. Using this expression
we can calculate the interaction energy between

the pair at the origih and all other pairs in the
plane x=0. We find
. (32)
)

W mGA? = | 4n?
’ w(m—1) nz=:1 og(4n2—

We should like to calculate the interaction
energy between the pair at the origin and the
dislocations in the plane for which x=+ra.
In making this calculation we shall use Eq. (30)
to obtain the interaction energy of two disloca-
tions. In using Eq. (30) for any two dislocations
of the lattice we shall assume that ¢ remains
constant although R may change. When the
lattice of dislocations is considered we may there-

(1)
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F1G. 9. Dislocations in rectangular lattice.

fore vary the distance of separation of the dis- has calculated the potential due to a plane lattice
locations, but not the angles of the lattice. The of positively charged lines. Using his result we
resulting interaction potential has exactly the find that the interaction energy between the
same form as the electrostatic interaction of two positive dislocation at x=0, y=—%b and the
long,'parallel, uniformly charged rods. Madelung® positive dislocations in the plane at x= +ra is

mGN2 o e—wiralb ‘wl(—%b+%b)} mGA2Ta
cos -
2r(m—1) =1 | b - (m—1)b

Wa‘-'—‘

where K is a constant. Similarly the interaction energy between the negative dislocations in the
plane x= +17a and the positive dislocation being considered is:

mGA2 o gmireld wl(—3b—3b)) mGN*ra
Wi=— > cos ; }

2r(m—1) =1 ] (m 1)b
The total interaction energy of the positive dislocation with dislocations in the plane x=ra is
MG\ w Qg—wlralb '
27r(m 1) “szodd l (33)

With this result we find the total interaction energy of the positive dislocation with dislocations in
all planes except the plane having x=0 is

® 2mGA\2 w e mira/b

We=% 2Ws=——3_ Z (34)
=1 1r(m 1) =1 =1 !

li 1s odd
The sum over [ can be carried out and we find that Eq. (34) becomes
W mGA? i | (1+e""“”’) (35)
= og{ —— ).

’ m(m—1) r=1 1—gmrald

® E. Madelung, Physik. Zeits. 19, 527 (1918).
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TaBLE 1. Data used in calculations. TaBLE I1. Results of calculations.
NaCl Cu Al Ni Fe Cu Al Ni Fe
Slip direction (110)  (110) (110) (110) (111) Spacing (a) . 3472  32.38 3575 29.99
C . (Rectangular lattice)
Modulliflof rxgldlty2 1.872 4.53 2.665 7.69 8.114 Spacing (a) 2024 27.26 30.18 25.03
X 1071 (dynes/cm?) (Diagonal lattice)
Poisson's ratio 0.2053 0.340 0.343 0.309 0.280 En(eﬁgytstorefi (tial.t/_g)) 0.518 1.013 0.851  0.963
ectangular lattice
ro(A) 7969 6.15 690 571 5.48 En(ergy stored (cal.)/g) 0.507 1.130 0.832 0.942
AMA 3.979 2.552 2.855 2.480 2.478 Diagonal lattice
( ), Energy stored (cal./g) 0.5 1.1 0.78 1.2
Density (g/cm?) 2165 8.93 2.699 8.80 7.865 (Experimental value)

We now note that the interaction energy of the negative dislocation at x =0, y = + b with dislocations
in all planes except the plane having x=0 is equal to the interaction energy of the positive dislocation
as given in Eq. (35). Thus using Egs. (30), (32), and (35) the total energy required to form a pair of
dislocations in a rectangular lattice is found to be:

mGA2 b 3m © 4p? ® 1+ gnreld
Woair= [l g 2y log( )+4 > log(—-——————)]. (36)
1 =1

o + -
2r(m—1) 2ry 4(m—1) = 4n?—1 1 —emrald

This is not yet complete since we must add to this twice the energy required to distort the material
inside a cylinder of radius 7o around the center of a dislocation. This cannot be calculated from
elastic theory. However, H. B. Huntington!® has made a calculation of this energy using atomic con-
cepts. He found the energy inside a cylinder of radius 7, to be about 0.8 ev per atomic plane in the
case of sodium chloride. We can estimate the value of this energy in other materials in the following
way. It is assumed that the strain energy inside the cylinder of radius 7, is proportional to the strain
energy outside the cylinder in the case of an isolated dislocation. The constant of proportionality is
taken to be the same for all materials and is determined by using Huntington’s value for the energy
inside the cylinder in the case of sodium chloride. For a dislocation at the center of a cylinder of
material of radius 10~* cm, there is about four times as much strain energy outside 7, as there is
inside.

It will be noticed that the rectangular lattice of dislocations is not stable. The lattice planes parallel
to the x=0 plane repel one another and the lattice tends to spread out in the x direction. This is not
a really serious difficulty for two reasons. First, there exists a small periodic potential of atomic
origin which probably prevents dislocations from moving along the slip planes unless some external
stress is present. Second, the actual lattice of dislocations cannot be very stable because resoftening
takes place in some materials at room temperature. Extensive resoftening can be brought about
in a single crystal of aluminum by heating it to 600°C. The lattice cannot decrease its energy by
making b smaller because dislocations can only move along slip planes, not perpendicular to them.
Thus b is determined by the way in which the dislocations are formed.

We have also made calculations for a lattice which is more stable than the rectangular lattice.
The arrangement of dislocations in this lattice is shown in Fig. 9. The calculation of the energy
required to produce a pair of dislocations in such a lattice is performed in exactly the same manner
as the calculation for the rectangular lattice. The energy of a pair of dislocations in this case is

mGN? b 3Im ®© 4n2 o 1 +e—1rra/b
Woair= [log——L -2 3 log( )+2 > log(—————)

(m—1)L 2y 4m—1)  az2 - \4m2—1 =t o\ 1— et
neven © 1 + e—?rsa/Ab
23 log( ———— )| @7
sz=:1 Og( 1— 6_"‘1/“)] ( )
s odd

10 H. B. Huntington, Phys. Rev. 59, 942A (1941).
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The above equation gives a pair energy which is least when @ and b are small. A decrease in a is
presumably prevented by the periodic potential mentioned above.

Calculations of the energy stored in various materials during severe work hardening have been
made using Eqgs. (36) and (37) together with values for the energy inside 7o. The experimental informa-
tion used in these calculations is collected in Table I and the results are given in Table II. We have
assumed in these calculations that @ equals b. The calculations are made in two ways. First, one can
determine that separation distance @ which will give agreement with the experimental value of the
energy stored. It is most convenient here to use as the unit of length the distance between nearest
neighbors measured in the slip direction. The unit of length will thus be different for each substance
considered. The results of these calculations are given in the first two rows of Table II. These results
indicate that, in the most thoroughly work hardened state, dislocations are separated by about the
same number of atomic spacings in different materials. A second way to make the calculation is to
assume that dislocations are separated by the same number of atomic distances in different work
hardened materials. The energy stored during work hardening can then be calculated and checked
against the experimental value. The results of this calculation are given in the third and fourth rows
of Table II. The experimental values are given in the fifth row of the table. The dislocations were
assumed to be separated by 34 atomic distances in the rectangular lattice and 29 atomic distances
in the diagonal lattice. These results are in remarkably good agreement with experiment except in
the case of iron. The large error found for iron may be due to the fact that this metal has a differ-
ent structure and a different set of slip planes. We have assumed that the axes of all line disloca-
tions of the lattice are parallel. This is probably not the case in iron.

It might be well to point out that the results obtained with the rectangular dislocation lattice
do not differ markedly from those obtained with the diagonal lattice. It is probable that neither of the
lattices considered here exists in a work hardened material. We are, therefore, fortunate in finding
that the results of the calculation do not depend much on the particular dislocation lattice used.
The energy stored during work hardening is determined mainly by the elastic constants of the
material, its density, and the value of the unit slip distance. We do not yet understand why disloca-
tions are separated by the same number of atoms in different work hardened materials.

The separation distances of dislocations in severely work hardened materials are about 10~¢ cm
according to our calculations. For example, for copper in the case of the rectangular lattice a=0.89
X10~% cm; in the case of the diagonal lattice a=0.74 X 10~% cm. This general result agrees with values
for the density of dislocations in highly work hardened materials found by using other information.

The author is much indebted to Professor F. Seitz for suggesting several of these problems and for
many valuable discussions during the progress of the research.

4W. F. Brown Jr., Phys. Rev. 59, 528 (1941); F. Seitz and T. A. Read, J. App. Phys. 12, 178 (1941).



