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(Williams) for a foil of 0.157 g/cm' and 71
percent for a foil of 0.362 g/cm'. The lead
perchlorate solution gives approximately the
same results as the polycrystalline lead foils.

The best agreement between theory and
experiment is obtained for the case of the
cadmium scatterer, an element in the middle of
the periodic table.

In conclusion, we believe that it is possible to
state that there is evidence that the scattering
for light and heavy elements is appreciably less
than the theoretical values, while the middle
elements appear to be in good agreement with
theory. Although we have no theoretical pro-
posals to make concerning these discrepancies,
it might seem reasonable to expect the best
agreement for the middle elements, because here
the number of orbital electrons is large enough
to justify the use of a statistical treatment of
their distribution and also the atomic number
is not so large that there is doubt as to the
validity of the Born approximation.

Our attempts to detect an effect of crystal
structure gave negative results within our rather
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FIG. 7. Scattering of electrons by a solution
of lead perchlorate.

broad limits of error. This, of course, does not
preclude the possibility that a small effect exists.

We wish to thank Professor Goudsmit for
his continued interest and for the opportunity
to discuss with him various aspects of the
problem. This work was made possible by a
grant from the Horace H. Rackham Fund.
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Theory of the Magnetron. I
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University of Wisconsin, MaCison, Wisconsin

(Received June 4, 1941)

A complete calculation of space charge and field repartition is given for a magnetron working
under steady conditions. Electrons leaving the filament gradually acquire an angular velocity,
and for distances greater than a certain length I., these electrons describe spirals around the
filament. This very important length I is defined by

L,' = —eI/rnco03.

I=current per unit of length of the filament, coII =Larmor's angular velocity. Under critical
conditions, that is, when the magnetic field is just high enough to cut the anodic current I, the
electron cloud rotates about the filament almost as a solid body with an angular velocity co~. A
study of small oscillations with cylindrical symmetry shows that these oscillations have a proper
frequency V2co~, and that the magnetron is able to yield an internal negative resistance for
f'.ertain frequency bands near v2or&, this explains how a magnetron with one cylindrical anode
can sustain continuous oscillations in an electric circuit.

1. INTRODUCTION. GENERAL OBSERVATIONS ON

THE PART PLAYED BY THE MAGNETIC

FIELD—LARMOR S THEOREM

FOLLOWING Hull's original work on magne-
trons, a large number of theories have been

formulated; the majority, however, appear inade-

quate or inexact. Certain authors considered the
electronic motion while neglecting the space
charge; others used the space charge computed

by Langmuir for a diode without a magnetic



386 LOON B RILLOU I N

BV BVy
mj = —e —ppev, II= —e ——ppexH,

By Br r

where pp is the magnetic permeability in vacuum.
By multiplying the first equation by —y and the
second by x, adding and integrating, the integral
of the moment of momentum is obtained:

g =m(xj yx) +—', IJoeHr'= c". -

Let us introduce cylindrical coordinates r, 8, s
around the s axis

hence
Q/m = r'8+ 2IJD(e/m) Hr' = C;

field. Such studies necessarily are highly inaccu-
rate, since a powerful magnetic field considerably
modifies the electronic paths and, consequently,
the space charge. Contrariwise, authors who have
endeavored to evaluate the space charge in the
presence of a magnetic field do not appear to have
provided practicable solutions. It therefore ap-
pears necessary to consider the problem afresh
and to compute directly both the space charge
and the potential distributions in the magnetron;
without these essential data, the development of
a coherent theory is impossible.

As a preliminary study to the theory of the
magnetron it is interesting to state some general
results about electronic paths in an electrical
field repartition with central symmetry, when a
magnetic field is acting on the system. Let us
assume an electrical device where the potential
V(r) is a function of the distance r to the s axis,
while the magnetic field II lies parallel to the
same axis. The equations of motion follow:

BV BVx
mx = —e +ppev„II = —e —+p, pegII,

Bx Br r

FIG. 1.

=+5.3 X 10"e.s.c.g.s. since e is negative then

coII =0.884 X 10 IIgauss&

BV
mi = —e +p, peIIr~+mr8',

Br
(6)

where the electric, Lorentz, and centrifugal forces
will be recognized. If we replace ppeH by the
equivalent expression, —2mcolI, it is found that

e BU
r' = —— —2co~8r+ r8',

m Br

a result which may be expressed in this way:

mr Bf

Comparing Eqs. (3) and (8) we notice that the
angular velocity comes in both formulae with the
difference 8 —co~ which justifies the following
treatment: In the xy plane, let us use a rotating
axis OA, the angular velocity of which will be
equal to ~&., then the angle g between OI' and
OA as shown in Fig. 1(a) is

which, for a field of 500 gauss, gives an angular
velocity of 4.42 X10'.

If we revert to the equation of electron move-
ment in polar coordinates r and 8, for 8, the
simple result of (3) has been derived; for r,

where
8 = (u~+ C/r',

a)s ————',go(e/m) H

(3)
q = 8 —or~t,

g = 8 —orlJ,
(9)

represents Larmor's angular velocity. To de-
termine the orders of magnitude, if II be meas-
ured in gauss while all the equations are written
in e.s.c.g.s. units, it is necessary to take:

)

r2

e BU
+'Q —rr

r mr Br

and Eqs. (3) and (8) yield

Pp=C II =cII The second equation contains only j', whiche.s.c.g.s. = & gauss'
means that two opposite values, ~C, giving

c =velocity of light; on the other hand, —e/m opposite angular velocities &j for each value of r
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will yield similar orbits in the r, g plane. The
general solution is then represented by one orbit,
rotated around the center 0, Fig. 1(b), with
Larmor's precession ~~, and by allowing the
electron to run on this orbit (in the rotating r, rl

plane) with opposite velocity. This is the most
general statement for Larmor's theorem. The
usual case considered in atomic structures refers
to problems in which the angular velocity j on
the orbit is very much greater than Larmor's coII,

so that the coH' term in Eq. (10) can be neglected;
the rotating orbits are then similar to the
unperturbed orbit obtained when the magnetic
field is zero.

In the problems connected with the theory of
the magnetron, such an approximation will not
be allowed, and it will prove necessary to take
care of the ~H' term. Let us, for instance, suppose
that we want to study the motions of electrons
inside of a cloud of constant density, p. The
potential distribution V is given by

18 f'BU)
&U= ——

~
r

~

= —4s.p e.s.c.g.s. , (11)
r Br ( Br )

U= —~pr',

electronic cloud is rotating as a solid body
around the 02' axis.

A constant linear velocity along the s axis may
be added without any change in the preceding
solutions, thus giving a possible type of electronic
motions in the form of "magneto-cathodic rays. "

At the limit p=0 one finds the well-known
result that free electrons in a magnetic field may
either stay at rest (8=0, sign —) or describe
circular orbits with an angular velocity twice the
Larmor rotation (8=2aorr, sign +).

Stable electronic clouds in magnetic fields are
possible when their density p is smaller than a
certain maximum value

0~& p~& p„, p„=(m/2se)coH'. (14)

If a cloud of higher uniform density had been
artificially created, it would expand according to
Eq. (12) (r')0), until it reached the limit p„.
Clouds of density smaller than p may be stable
or expand or contract to the limit p, the type of
solution depending on the initial conditions of the
cloud.

It will be found that electronic clouds of such
types play a very important role in the theory of
the magnetron.

where U and 8 U/8r are zero for r =0. Equations
(10) yield

j= C/r', r'/r = (e/nN) 27rp+ rj' ~~r'. (12)

The first condition gives the angular velocity as a
function of r on each orbit, but different orbits in
the cloud may correspond to different values of C,
according to the initial velocity distributions for
each special problem.

For instance, we may suppose circular orbits,
each of them corresponding to a certain C value.
Such circular orbits will keep the electronic
density p of the cloud constant; P being zero, the
angular velocity is given by

(13)

In each of the two ~ solutions the angular
velocity is constant, independent of r, and the

2. CYLINDRICAL MAGNETRON —STATIC CASE

The magnetron is assumed to consist of a
filament of radius a and a cylindrical anode of
radius b, the magnetic field II accurately paral-
leling the filament (axis Os). It is assumed that
electrons without appreciable speed are emitted
from the filament, and that the electric field on
the filament is zero, provided the anode current is
below saturation; hypotheses which have both
been generally accepted since they were formu-
lated by Langmuir. Distribution of the cylindrical
space charge can thus be obtained; the potential
V is solely a function of r. The equations of
motion are Eqs. (1), (2), (3), and (4) of the
preceding section.

The static case, which will first be considered,
is characterized by the fact that V does not
depend on time.

The constant C of (3) is determined by the fact
that electrons are emitted without speed from the
filament, so that 8 is zero for r =a:

8 = AH�(1 a'/r')—
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~ a +earn ww mrnanre
FiG. 2. Critical

conditions, I=0.

coordinates. Making use of Eq. (15) we find

mr = e8 V—/Br mr8—(2&os 8)—
eB—V/Br mp—»ir'r (1 —a'/r 4)

= —(8/Br) [eV+-,'mp»HP(r' a%—')] (1. 9)

The radial acceleration i' is accordingly governed
by an apparent potential function P(r):

The Lorentz force, due to the magnetic field H,
does not inAuence the velocity since it is perpen-
dicular to the latter. Energy conservation ac-
cordingly may be written:

-', mv'+eU=-', m(r'+r'8')+e V= C'

and this new constant is zero if

hence

V(a) =0 on the filament;

r'+ p»n'r'(1 —a'/r')'+ (2e/m) V =0. (1'7)

The equations of movement, therefore, may be
integrated directly from (15) and (17) without
determining the potential distribution as a func-
tion of r.

In (17) one result is at once evident: since the
velocity of rotation e is determined by the
magnetic field, the kinetic energy at the distance
r cannot be less than:

mr = e(BP—/Br),
P = V—Vp ——V+ (m/2e) piiiP(r a'/r)'. —(20)

In the function P(r) a constarit —mpiirPaP has
been added in order to reduce P(a) to zero on the
61ament r =a; thus the same function is made to
appear as in the energy equation (17). A fact
worthy of emphasis is the following:

With the apparent potential P(r), the radial
movement of the electron may be studied by
means of Eq. (20) without considering the
rotation & around the filament. These general
results are valid in all cases either with or
without space charge.

3. Srxnc SpwcE CHxRoE: CRn'IcAx. Pommur.

To obtain a potential distribution in a static
state, it is necessary to introduce the space
charge p(r), a function of the radius r and inde-
pendent of time. From the cylindrical symmetry
of the system we have:

18 tB V)
A V= ——

/
r

/

= —4irp I=2irrpv, . (21)
r Br 0 Br )

Hence, if the potential V(r) does not suffice to
give the electron greater kinetic energy, the
radial velocity i is annulled and the current is
interrupted. Consequently

The current I, per unit length of filament, is a
constant independent of r; v,. is taken from (17)
and the following is obtained:

r' =0, —(2e/m) Vp =p»iiPr'(1 —a'/r')'. (18)

V(a) =0 on the filament.

This is Hull's limiting value of tke potential Vp at
the distance r, where the anode current is just cut 2e ( a)P
off by the magnetic 6eld. This limiting value ——V—~s'] r

Vp(r) is thus defined without the necessity of
dete™n~ng the distribution of the sPace charge The conditions are the following:
or the potentials between the anode and cathode—a remarkable fact which discloses the possi-
bility of 6nding the correct value of the critical

jBVy'Brj, . ,=0 no saturation.
potential Vp(r) without considering the space
charge. Since the non-linear Eq. (22) would require

Let us now come back to Eq. (7) in polar detailed discussion, it is preferable to start with
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the simpler cases where the current Iis sero. Two conditions:
methods are available, according to Eq. (21):

(A) p/0, v„=O,
m (' a') '

——~nP~ b' ——
I

=aiogb'+C
2e i b'3

which yields

m ( a'q '
Up(r) =—~a'I r- —

i P(r) =o (23)
2e ( r)

Expression (23) completely satisfies the two
limiting conditions of (22).

p=O, v,./0;
hence,

V=8 logr+C, (24)

which corresponds to a definitely electrostatic
potential without space charge.

Let us now examine the distributions of the
charges and potential in a magnetron when the
potential of the anode (r=b) is rather low so
that no current flows.

The limiting case corresponding to the maxi-
mum possible potential on the plate, with no
current flowing, is obtained by taking

Vp(b) = —(m/2e) pilr'(b a'/b)'— (18)

as shown in preceding section, Eq. (18);it is the

criticaL potentiaL. The density is not zero, and
space charges are present throughout the medium
between the filament and anode; Eq. (21) gives
their value:

p p(r) = (ripe&H'/2pre) (1+a'/r') (25)

The radial velocity is zero throughout; the
electrons follow circular trajectories, centered on
the filament. The Lorentz and centrifugal forces
are in exact equilibrium with the electrostatic
force in Eq. (19), as is also evident from (20),
since the distribution (18), (25) completely
annuls P(r).

In the case of a potential Up(b) below the
critical potential, there is obtained a charge
distribution (25) extending from the filament
(r=a) up to a certain cylinder r=b' This par-.
ticular form of distribution then stops abruptly;
the potential distribution continues in the form of
a logarithmic field at the cylinder b', and the two
constants J3 and C may be determined by the

m p a'y 8——cuir') b ——
~

=—. (26)
e E b') b'

P= V—Vp

according to (20). The behavior of this function
is easily described and is important to recognize
inasmuch as the apparent energy P governs the
electronic radial movements.

In the critical state (Fig. 2), P is identically—
zero. The electrons of the cloud forming the space
charge have no radial velocity.

When the magnetron is below its critical state
(Fig. 3), the apparent potential Prises betwe—en
b' and b in front of the anode. The critical
distribution shown in Fig. 1 seems to be that
described by Hull' in a brief note, for which he
claims to have found good experimental evidence
from space charge density measurements.

, ~p(bl

V(b)

—p(b)

n o' b

FIG. 3, Potential dis-
tribution, U(r) for anode
potentials lower than the
critical value.

b

Fio. 4. Values from
Langmuir's solution for
the diode.

' A. W. Hull, Phys. Rev. 23, 112A (1924).

When the potential V(b) of the anode is pro-
gressively lowered, the space charge is corre-
spondingly restricted to a decreasing cylinder b'

around the filament; and, when U(b) is zero, the
space charge disappears.

Figure 2 illustrates the case of critical potential
Vp(b); the dilferent curves represent the space
charge density p, the electrostatic potential U(r)
and the apparent radial potential P(r)

Figure 3 shows the potential distribution, U(r),
for anode potentials lower than the critical value.
The apparent potential energy of the electron is
eP or —eP, e designating the absolute value of an
electron charge. Hence,
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4. DIRECT-CURRENT CONDITION %WITHOUT

SATURATION

Since the fundamental equation (22) has just
been considered for the various cases where the
current is nil, it is now desirable to determine the
direct-current conditions. Equation (22) will be
transcribed, with the unknown function taken
as the apparent potential P(r) defined in (20)
instead of the electrostatic potential V(r)

ci ( BV) rl rl ( 2m)' 1
I=—.—(P+ v.) =-II—

arl ar) ar rlr ( e )

This solution is valid only in the immediate
vicinity of the cathode, while r —a remains very
small. At increasing distances from the cathode,
account must be taken of the fact that BP/Br is
no longer zero; and the magnetic term in arH

must be dealt with. Let us 6rst determine what
happens at a short distance from the 6lament
where the magnetic term still remains very
small; the problem of the ordinary diode is
re-encountered.

The diode without a magnetic field has been
dealt with by Langmuir the potentials V and I'
are identical and Eq. (27) reduces to

If we replace Vs by its value (20) we have 8 BI f 2''t '

ar ar & e ) (29)

I r+ I+—r-
e ( r') ar ar For r»a, far from the 6lament, a solution is

2m' ' found in r: and the complete solution may be
(27) written:

e & (30)P,= ,'( m/e)-'(9—IPsr)*,

P{a)=0, BP/Br =0, r =c

This equation is rigorous. The solution P(r) h ps f t f /
must be such that conditions (22) will be satisfied
on the 61ament.

/ 5 5 175 2 5

on the filament (27).
The solution of (27) can only be derived

approximately; two distinct regions must be
considered as limiting cases:

A. Proximity to 61ament

The second member remains constant and, on
the 61ament, I' is nil; the term in brackets must,
therefore, be inhnite. The required solution is of
the type:

p2 0 0.045 0.116 0.2 0.275 0.405 0.512

0.665 0.775 0.818 0.867 0.902 0.925 0.94 0.978 1

Equation (30) presents tile same stTllctllre as
{28)and correspondence is thus established in the
vicinity of the 6lament. The potential I' is
obtained by replacing P'r by (r —ri)'/a. With r
close to 6:

p' = (r a) '/ar. —
P=A{r c)", —

Comparison with (30) shows that this ap-
proximation is valid only up to r =1.25a; that is,
in the immediate vicinity of the filament. This
indication gi's the limit of validity of (28),
which should be replaced by Langmuir's Eq. (30)
when distances beyond the immediate vicinity of
the cathode are involved.

Figure 4 shows the shapes of the various curves.

which gives

28$(dH
2a+nA (r —a)"—'

25$$ ~

+aAn(n —1)(r—a)" ' = II—ei
If we take n =4/3, the two first terms are zero; in
view of the factor (r —a)"i' the last term remains
6nite and it is found that:

' I. Langmuir, Phys. Rev. 2, 458 I'1913}.An approximate
solution may be found:

'I' (r —g)4"z=-,yl)~I
mph'(9I q' ' s

=a
I I I (r +)

I
r ~~~1' {28) it yields". correct results for very small or very large r, the

error is about 20 percent near r = 4a.
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(32)
2m' 84r'

It is now necessary to discuss how to.join these
two extreme cases with a view to ascertaining the
corresponding values of r and the form of
function P(r) obtained.

By comparing the equations, an expression
—eI/memoir' appears, homogeneous to a certain
length L squared. The following gives an indi-
cation of the order of magnitude:

—ejm =5.3 X10" (e.s.c.g.s.),
I=3 X 10'J (J in milliarnperes; I in e.s.c.g.s.

units).

If we calculate cuir according to (5) and express H
in gauss:

I.' = eI/m~a' 2—.3 X 10'I/II——'.

The role played by the characteristic length I.
is very important and has now to be discussed.

First, the condition stated at the beginning of
Section 3 must be satisfied in order to justify use
of the solution (32); this necessitates:

8 ( BP„'i
r

ar & ar )
212@ 2m

, NII t ~

m(o~4r' e

By neglecting u, this condition reduces to

r» I..
For weak fields, which scarcely disturb the

diode, the length I is much greater than the
dimensions of the bulb; if the field increases,
however, the length I decreases considerably to
the order of magnitude of the interior dimension
of the bulb and may even drop to very low values;

B. Distant from 61ament

At a considerable distance from the filament
the Langmuir equation gives low values for the
term (8/Br) Pr(BP/Br) j. Contrariwise, the mag-
netic term within the brackets of (27) increases
indefinitely. A moment therefore arrives when
this first term becomes preponderant. At the
limit, the second term may be neglected and the
first term kept. An asymptotic solution I'„,valid
at a great distance, is:

~v

I
p Sr

Ps «-P

' Saturation

Fr 6. 5. Value of the
apparent potentia1 P„ for
various values of I.

Frc. 6. Magnetron
characteristic.

hence

-', (9IP'r) &( —m/e)1= I2e/2m—(os 4r'; (34)

The curve representing the apparent potential
P(r) is consequently known by the expressions
Pi, (for r((I) and P„(for r))I); it can, in any
case, be plotted approximately. Figure 5 shows
curves for various values of L, between the
cathode (r =a) and the anode (r =b).

If the anode radius b is appreciably greater
than the length I., the formula P (R) of (32)
gives the anode voltage, calculated from the
critical voltage V, (R); if, however, the length I.
is very great, the magnetic field being weak,
Langmuir's curve I'I, is used. Figure 6, ac-
cordingly, shows the magnetron characteristic;
the internal resistance R is zero in the vicinity of
the critical point.

Reverting to the curves of Fig. 5, it should be
noted that the electrons, after leaving the fila-
ment (r =a), first reach the Langmuir region and
then travel toward r =L, through a region of low

apparent potential energy, thereafter rebounding
(approaching the anode) toward higher potential
energies only slightly below the potential energy
of the cathode. The expression P(r) represents, —
but for the factor e =

~

e ~, the apparent potential
energy of the electrons, controlling their radial

for some hundreds of gauss, I. is of the order of
some tenths of a mm.

The length I, then gives the magnitude of the
distance where the Langmuir solution Pr, (always
valid in the immediate vicinity of the filament)
has to rejoin with the solution P„which is valid
at a great distance.

As a rough criterion of the distance of coinci-
dence, we take the condition:

Pr, (r) =P (r),
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movements (Eq. (20)). The speed of rotation
around the filament is defined by (15). The
curves P(r—) show that the electrons are ac-
celerated from a to I and retarded from I. to b.
The space charge thus is increased in the second
region; close to the filament, Langmuir's space
charge applies, and, at a great distance, the con-
stant space charge of (25) applies approximately

r))L, p=mcos'/2se.

Haynetron
fA

Plug+ Field
Anomie=Y

T

/achro
fVJgfgPP

FIG. 8. Oscillator circuit.
Fic. 7, Electronic paths
from 61ament to anode.

This space charge density far away from the
filament is just the density we have found in Eq.
(14) as being the greatest possible density of
electrons in a given magnetic held. A more
detailed study would require calculation of the
junction of the curves in the region I.. The
following, however, is pertinent:

The electronic paths start radially from the
filament; they are slightly curved in the region
r =I. and then turn around the hlament for r»L,
as shown in Fig. 7. This can be understood
readily from the following considerations: Let V„
and Vft be the radial and rotational components
of electronic velocity; Eqs. (15) and (21) yield:

Ve r8
2Ãrp =

V, I
2~r'p

t
u'q

-~+I 1——I.

Instead of computing the ratio Vq/V, ., let us
calculate

pV„2sr'po r'mcoH' ( a'q ( a')
-I 1 ——

II 1+—
I

poVg I sI ( r'2 L r')

where po is the space charge density (25) in the
region r» I.. If the radius a of the cathode is
neglected, as a first approximation, it is seen that
the ratio p V„/poVq equals —1 when r =I., which
proves that V„and Vg are of the same order of
magnitude at a distance I. from the filament. It
appears from this discussion that the junction
between the two asymptotic solutions A (near
the filament) and 8 (far away from it) has to
take place about the distance I. from the hla-
ment. Series of approximations starting from
both sides can be obtained and have already been
published in a former paper. '

5. OSCILLATE&ONS IN A MAGNEVRON Vrn'H CVLrN-

DRICAL ANODE: SOME GENERAL REMARKS

Diferent types of magnetrons are practically
used for generating electromagnetic oscillations;
some of them possess one anode, of cylindrical
shape. Oscillations of large amplitude are often
obtained from these devices, but large oscillations
are rather difhcult to discuss theoretically and
the calculations will be given only for the case
of small oscillations, which do not introduce too
great a perturbation in the original charge
density distribution.

The theoretical discussion will be conducted
with the following approximations: The formula
giving the electric current has to be completed
with an additional term, taking account of
Maxwell's displacement current. In more general
problems, one should also take account of the
magnetic helds induced by the current Rowing

inside the magnetron, but we shall assume the
cylindrical symmetry to be obeyed for all

quan titles, ln wh1ch case thci e 1s no induced
magnetic held for a magnetron of inhnite length.
Magnetic helds would appear only outside of a
magnetron of hnite length and result in radiation
of electromagnetic waves from the magnetron.
This is, of course, a very small and secondary
effect, causing some damping to the oscillations
in the magnetron.

Equations of Sections 1 and 2 will thus be
modified in the following way: The charge
density p and the radial electric held 8 will be
considered as functions of r and 5, an assumption
which secures cylindrical symmetry at any time.
Equation (11) becomes

3 L. Brillouin, "Theory of the magnetron, " Elec.
Commun. 20, No. j. (1941).
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The current I, including displacement current,
will be written

( 1 BZ) rBB
I=2~rl » + 1=2 sle"r+ (38)

4s. Bt ) 2 Bt

d/dt =et/Bt+s, 8/Br following the motion
of an electron mov-

ing with the velocity
'Vt, Vg.

All quantities being independent of 8, because
of cylindrical symmetry, a term in se8/Oft has
been omitted in formula (39). Equation of
motion (20), for instance, has to be written

d'r/dt' = eaP/ar. — (40)

A well-known integration method, which has
proved very useful in most electronic problems,
was omitted on purpose in the preceding sections
for the reason that it leads to some difficulties
which will be discussed now. The method con-
sists in taking the derivative d/dt of the product
rE, following the motion of an electron:

8 8
(rE) = (rE)+—r' (rE)— —

dt Bt Br

The dielectric constant eo in vacuum, has been
taken 1 in e.s.c.g.s. units. As is well known from
general proofs, introduction of the displacement
term secures the constancy of I along the whole
circuit, which means here that I is independent
of the distance r, and a function only of t. All

other formulae from Section 2 still apply, and
especially Eqs. (15), (19), and (20). Time
derivatives may be taken either at a given place,
or following the motion of an electron; these two
definitions will be distinguished this way:

derivative at r con-
stant or ordinary
partial derivative,

(39)

to is the time at which one given electron has left
the filament, and t the instant when it reaches the
distance r.

Let us now show the difficulties involved in the
use of this formula, by applying it to the static
case. 8 is independent of t; hence

E(r) = 2Ir/r, (43)

where 7-=t —to is the transit time for an electron
going from the filament to the distance r. Sup-
pose the magnetic field to be such as to cut the
s.nodic current, according to condition (18); I is
naught, but electrons in this case are moving in

circular orbits about the filament, with no radial
velocity at all; hence the transit time r is infinite,
while 8 keeps a finite value. Many theoreticians
attempting to use (43) without a, former knowl-

edge of the solution were led to entirely wrong
conclusions.

6. SMALL OSCILLATIONS IN A MAGNETRON WITH

CYLINDRIcAL ANQDE

V= V.(r)+eU, (r, t) electric potential,
I=I,+eI,(t) electric current in-

dependent of r,
r =r,(t)+er, (t) position of the elec-

tron at the time t.

(44)

Because of the supposed smallness of e, all terms
in e', e'-. will be neglected. Let us now rewrite
the most important formulae, starting with (20):

After the magnetron has been studied in its
static condition, without oscillations, all we need
do now is to superimpose small oscillations on the
static quantities. The amplitude of the oscilla-
tions will be specified by a factor e, static con-
tinuous quantities are characterized by a sub-

script c, while alternating quantities will be given
a subscript c.

BB
=r +$4vrpr =2I

Bt
(41) d'r. d'r. e (8Vp et U.) e elU.

(45)
dt' dt' m i etr Br ) rrt Br

rE(r, t) =2~I I(t)dt.
t0

(42)

and in using Eqs. (37) and (38). As noticed
before, I(t) is independent of r, which allows easy
integration:

Potentials Vo and V, have to be taken at the
point r,+sr, where the electron is located; hence
the expansion V, (r) = U, (r,)+er,[BU,(r,)/Brj.
Constant terms and oscillating terms are easily
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d'r. e (B'Vo B'V.) e B V.
a~,

dP m ( Br' Br') m Br

(46)

(47)

Treating Eq. (42) in the same way, one gets

BV, B'V. BV)
rB = (r,+or.) (

— or. ——o

Br Br' Br )

separated, and yield the following relations:

d'r. e (BVo(r.) B V.(r,))
d.' m & Br Br )

equation with a right-hand term. As is the rule
for such equations, we have to study erst the
linear differential equation without the second
member; it is of the ordinary oscillating type, and
indicates a proper frequency &o(r) as a function
of r.

e (B'Vo 1 BV,I
+

m& Br' r Br)
(50)

Let us study first the order of magnitudes of these
internal proper frequencies. In a magnetron on
critical conditions, the potential repartition is
given by Eq. (23)

hence two relations are derived

BV.
2I.(t t—,), —

hence

V, = V.= (m/2—e)+„'(r a'/r)—';

aP(r) =2ooir'(1+a4/r'), co(r) =v2(orr. (52)

Equations (46}and (43}between static quantities
have already been obtained in the preceding
sections and bring nothing new; this is the result
of our hypothesis of infinitely small oscillations.
If oscillations of greater amplitude should be
considered, terms in &', e' ~ ~ could not be neg-

lected any more, and would appear in the static
formulae (corresponding to detection phenomena)
thus perturbing the static regimen.

Equations (47) and (48) rule the magnetronic
oscillations and are linear with respect to the
unknown quantities r and V,. Eliminating V
one easily gets

d'r e O'Vp 1 BV, 2e
r, ——+— =,t I,dt, (49)

fS Bf 'rC Bf

where Vo and V, result fmm the study of the
static case.

In order to know how the magnetron is able to
react on the oscillating circuit connected to it, we

need to calculate the internal impedance of the
magnetron; we thus want to find the relation
between the alternating current I,(t) fiowing

through the magnetron, and the alternating
potential V on its anode. Let us suppose I,(t) to
be given, then Eq. (49) is a linear differential

Such critical conditions, however, correspond to
no anodic current (I,=O) and infinite transit
time v, and cannot be used for sustaining oscil-
lations. We may, however, suppose the magnetron
to be very near this critical state, the continuous
current I. keeping a small value, so that the
average potential V,(r) will dift'er only slightly
from Vo(r). The proper frequencies co(r) will then
keep values very near 42~0.

Returning to Eq. (49) we notice its similarity
to the equation of a harmonic oscillator acted
upon by an external force represented by the
right-hand term. A remarkable feature is that
this equation contains no damping term, but this
is only the result of the initial assumptions
outlined in Section S. A complete theory, in-

cluding magnetic oscillating 6elds, should yield
equations with a damping term due to outside
radiation, as is immediately realized for physical
I easons.

We are thus allowed to pmceed as though such

a damping were actually found in the equations,
and search only for the forced oscillations,

neglecting free oscillations [solutions of Eq. (49)
without right-hand term]. Let us thus suppose
conditions very near the critical state and call

r(r) =t t, —

the transit time for an electmn running from the
filament (r=a) to the distance r Supposin. g
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filament r =a. These simpler formulae result
from the assumption of a magnetron working
very near its critical point. On a more general
case, formulae would be of a more complicated
type, but one very important point would remain
unchanged, namely, the relation between phase
angle q and transit time 7.

Having obtained expressions for alternating
current J and potential V, one immediately
finds the internal impedance of the magnetron

V. 4~ ( 1

~

———
~

sin—e '"" (59)J (o'(r) —co' Ea'

(4 T/2.
FIG. 9. Approximate values of 8 .

&p
= —cur/2.

Equation (49) takes the following form and
defines, for each distance r„ the amplitude r of
electronic oscillations.

4eJ o)7-

r, (co'(r) —a&2) = sin e"'+ '~—
mf 07 2

(55)

Phase p of these oscillations is directly related to
the transit time ~.

From the r, values, one easily calculates V,
using Eq. (47).

O'Up O'U. m
+ Q)2

Br2 Br2 e
(56)

Up and U. are very nearly equal to each other
(almost critical state) and formula (56) ap-
proximately yields

4J,(o8U, m CO 7'

=—(o'r.= —sin —e'"+'" (57)
Br e r [co'(r) —&o'] 2

sinusoidal oscillations, we write down

I,=J e'"', J,&0 real,

Jrz J~ M7

j I~dI = (e"' e—' ")= 2——sin —e'"'"'& (54)
Zco GO 2

The question is now to discuss this expression and
to see under which conditions it may yield a
negative real part, indicating a negative re-
sistance term in the magnetron. It is well known

that, in order to be able to sustain oscillations
in an electric circuit with positive resistance, an
electronic tube must play the role of a negative
resistance. Depending on secondary effects in the
electronic tube, one may connect this negative
resistance in series with the electric circuit or in

parallel with it. Magnetrons are actually used
with the parallel connection, according to
Fig. 8.

7. THE MAGNETRQN As A SQURcE QF

ELECTRICAL OSCILLATIONS

Referring to formula (59) we notice, first, that
the denominator is zero for aP equal to oP(r),
which seems to indicate the possibility of infinite

internal impedance 8,. This, of course, is the
result of some simplifying assumptions discussed
in Section 5. A complete theory would indude
direct radiation from the moving electrons, thus

giving a damping term s in the equation, and the
impedance R would have a denominator avoid-

ing infinity like

I t (o'(r) —o)'j'+s' I .

4J co 1
V—a

co'(r) —co' a' r'
COT

sin—e'"'+'~. At any rate, large values of R, will only be
obtained for

One must, of course, suppose U, to be zero on the co =co(r) = V2corr. (60)
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Now we determine the real part of R„

Figure 9 gives an approximative visualization of
such a function. This will be negative in the
following cases:

and

oP &oP (r), sinter &0,
m. &ur &2m,

3x'(er (4x

a&') co2(r), sin&or )0,
0&cor &m. ,

2x &(or &3m.

(62)

(63)

We recall that transit time r in a magnetron may
reach values much greater than the period of
oscillations; the best values of r in both cases will

correspond to sinur equal 1, that is,

co' &co'(r), (or = (2n+1)x+';s.,

(g'&(d'(r), cur =2ns+ ',s- (64)

(65)

One thing may appear rather surprising in the
preceding results, and that is the role played by
frequencies of the order of V2or~. If we refer to the
electronic motions in the static magnetron, we

notice that the electrons move around the
filament with angular velocities ranging from 0
(near the filament) up to orii at a great distance
from the filament LEq. (15)]. None of these
frequencies happens to play a role in the opera-
tion of sustaining oscillations, and the V2co~

frequency is noticeably higher. This can be
understood, as the angular velocities of the
electrons cannot be observed in a magnetron
whose anode is built as a complete cylinder
around the filament. The only motions which

may be noticed as giving a change in the anodic
current are radial motions. The oscillations
result, in this case, in electronic motions, where
all electrons located on a certain cylindrical
layer (at distance r,) move together either to or

fro, the whole cylindrical layer expanding or
narrowing at one time. This is the type of
motion corresponding to the frequency V2coII, and
it has nothing to do with the rotational fre-

quency m.

Another point to be emphasized is the great
variety of conditions under which the magnetron
is able to sustain oscillations. Conditions (62) and

(64), for co&co(r), and (63) and (65) for u&)cu(r),
offer a great number of different solutions, a
characteristic almost never found in the dis-

cussion of electron tubes.
Where does the energy necessary for sustaining

oscillations in the outer circuit come from? All

our calculations refer to a magnetron very near
its critical conditions (I=O). Such a magnetron
stores up energy in kinetic form from the
electrons rotating about the filament. In the
process of sustaining oscillations in an outer
circuit, some energy will be taken out of this
reserve, thus slowing down the electrons; in

order to keep the electron cloud in rotation, a
small current I must be allowed to How between
anode and cathode, and the power IV supplied

by the battery will restore the necessary energy
and keep the cloud in steady rotation.

Our conclusion, that such a magnetron should

be operated near V2~~, fits with the results

obtained by Blewett and Ramo4 in a recent

paper and is checked by experimental facts.
Blewett and Ramo, however, failed to get the
conditions for negative resistance, a difhculty
they themselves emphasized at the end of their

paper.
The first part of this paper, including Sections

1—4, was written in January, 1939, but its
publication was delayed because of present cir-

cumstances. Several copies, however, were circu-

lated; the author has to thank M. M. Blewett and
Ramo for their courtesy in making reference to
this unpublished paper.

4 J. P. Blewett and S. Ramo, Phys. Rev. 57, 635 (1940).


