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It is only possible with the information
available to offer a partial indication as to which
of the proton groups II, I2, I3 is associated with
which of the nuclei Mg Mg Mg It is
reasonably certain, however, that the group I&

is produced by Mg'4, since at a scattering angle
of 90' it is nearly 1.7 times as large as the E
group and could scarcely be produced by the
other two rarer isotopes. This observation is
supported by Henderson's'" measurement of the
gamma-ray energy of radio-sodium in the
proposed reaction,

Na.*'4~Mg'4+ P+y,

in which he finds, by the absorption coefficient
method, that the gamma-ray energy has an
approximate value of 1.3 Mev which compares
with our value of 1.37 Mev. However, from a

~ M. C. Henderson, Phys. Rev. 48, 855 (1935).

number of published results, Livingston and
Bethe" list gamma-rays for this reaction of
energies 0.95 Mev, 1.93 Mev, and 3.08 Mev,
none of which is closely comparable with the
excitation energies or their differences as reported
here.

From published studies of the proton groups
from the reaction

Na" +He4~Mg26+ H',

Livingston and Bethe'4 have assigned excitation
energies to Mg" of 2.2 Mev, 4.0 Mev and 5.0
Mev. Of these, the first mentioned is not ob-
served in our results, while the last value quoted
is not in the range of our experiment. However,
the group I3 of measured excitation energy 4.07
Mev might perhaps correspond to the remaining
proton group, thus associating this group with
Mg".
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The forced separation of variables usually employed in

the quantum-mechanical treatment of molecular problems
introduces certain small errors into the wave function. If
the exact Hamiltonian is used, energy values can be
computed very accurately because first-order errors in a
wave function give rise to second-order errors in the energy.
The energy of H2+ is ordinarily computed by using a
separable, approximate Hamiltonian instead of an exact
one. From a consideration of the terms which must be
added to the approximate Hamiltonian to make it exact,
Van Vleck has derived the correction terms needed to
reduce the first-order error in the computed energy to a

second-order error. The correction term is a function of R,
the internuclear distance, and its calculation requires a
knowledge of the wave function. In this paper the ground
state wave function of H2+ is accurately determined over
values of R from 1.20 to 2.75 atomic units and a table of the
wave function coefficients is given, along with the corre-
sponding energy values. Then, correction terms are
calculated for a set of values of R. Including the proper
correction term, the total negative energy of H&+ for the
equilibrium internuclear distance is found to be 1.20472
+0.00001'~=132,132+10 cm '. This result is compared
with the consequences of certain experimental data.

1. THE PROBLEM

HE usual quantum-mechanical treatment
of molecular problems is based upon a

forced separation of variables. ' This introduces
certain small errors into the wave function,
which, as such, is still as accurate as necessary.

' Cf. A. S, Coolidge and H. M. James, J. Chem. Phys. 6,
730 (1938).

Since energy values are subject to much closer
check by experimental data, it is desirable to
determine energies as accurately as possible.
They can be computed very accurately in some
cases because first-order errors in a wave func-
tion give rise to second-order errors in the energy
if the exact Hamiltonian is used in calculating
the energy. The energy of H2+ is computed in

the ordinary way by using, not the exact Hamil-
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tonian, but the separable, approximate one.
From a consideration of the terms which must
be added to the approximate Hamiltonian to
make it exact, Van Vleck' has derived the cor-
rection terms needed to reduce the first-order
error in the computed energy due to total neglect
of the motion of the nuclei to a second-order
error due to carrying out the computation with
approximate wave functions. The correction
term, denoted by P„„+Q +S, is a function
of R, the internuclear distance. The potential
energy at each value of R is obtained by adding
this correction to the energy value of the corre-
sponding fixed-nuclei solution. For infinite sepa-
ration this correction becomes that required to
convert the fixed- into the free-nuclei problem,
hence it may be termed "the correction for
nuclear motion. " In this paper the ground state
wave function of H2+ is accurately determined
over values of R from 1.20 to 2.75 atomic units
and the corresponding corrections for nuclear
motion evaluated. A corrected value of the
energy of H2+ for equilibrium internuclear dis-
tance is obtained and compared with certain
experimental results.

2. CALCULATION OF 'THE WAVE FUNCTION

tion described below, the various authors have
calculated only the energy values and not the
wave function itself. Hence the first step in

calculating the correction for nuclear motion is
to make an accurate determination of the ground
state wave function.

If elliptical coordinates, g, g, y, are inserted
in the Schrodinger equation, the latter becomes
separable and the wave function for the ground
state may be written:

+($ n v') = X(k) I'(&)
(2s) &

where C is the normalization constant. I'(g) and

X(&) are defined by the differential equations:

d—(1 —q') + (X'q'+ p') Y'= 0, (2)

d dX—(1 —P) +(X'P —2R)+p')X=O, (3)
d$ d$

in which X'= —Z'R'/2, Z' being the electronic
part of the energy.

The solution of (2) is given by

+a6(&)&6(n)+ (4)

The calculation of the wave functions of H~+ y(„) 1+.a (~)p („)+a (~)p, („)
has been discussed in numerous papers in recent
years " but, due to the difficulties of calcula-

where, in order that the series may converge, the at must satisfy the relation:

L(L —1) (1+1)' P (l+1)(/+2)
a( gX' +a( y' —l(l+1)+X' + +c)+gX'

(2l —3) (2/ —1) (2l+1)(2l+3) (2l+1)(2/ —1) (2l+3)(2l+3)

So that the above equation may be satisfied by values of a& other than zero, p,
' and X' must satisfy a

functional relation, given in continued fraction form by Wilson and solved in series form (arcurate
to the sixth decimal place) by Sandeman

2894282K'4513988K"92) 1026ys2Z4 4X"
—p =—+ + — — — +

3 3' 5 3'5 7 3'5' 7 3'5' 7 ii 3" 5'7' ii 13 3" 5'7' 11 13

' J. H. Van Vleck, J. Chem. Phys. 4, 327 (1936).' P. Burrau, Kgl. Danske, Vid. Selsk. 7, No. 14 (1927).' A. H. Wilson, Proc. Roy. Soc. A118, 617, 637 (1928).' P. M. Morse and E. C. G. Stueckelberg, Phys. Rev. 33,
932 (1929).' E. Teller, Zeits. f. Physik 61, 458 (1930).

7 E. A. Hylleraas, Zeits. f. Physik 71, 739 (1931).' G. Jaffe, Zeits. f. Physik 87, 535 (1934).' I. Sandeman, Proc. Roy. Soc. Edinburgh 55, 72 (1935).
"W. G. Baber and H. R. Hasse, Proc. Camb. Phil. Soc.

31, 564 (1935).' S. K. Chakravarty, Phil. Mag. 28, 423 (1939).
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TABLE I. IVave function coePcients and energy values.

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

1.214301
1.366077
1.523336
1.685909
1.853595
2.026162
2.203349
2.384868
2.570407
2.759633

0.114518
.139388
.166929
.197207
,230283
.266212
.305038
.346787
.391465
.439049

0.001978
.002919
.004159
.005770
.007815
.010364
.013487
.017253
.021719
.026927

0.0000137
.0000243
.0000410
..0000663
.0001035
.0001565
.0002306
.0003317
.0004674
.0006465

0.008496
.010137
.011831
.013559
.015301
,017039
.018757
.020438
.022068
.023634

0.0003706
.0003908
.0004032
.0004086
.0004077
.0004014
.0003906
.0003762
.0003590
.0003399

0.0000411
.0000406
,0000392
.0000373
.0000348
.0000323
.0000294
.0000267
.0000239
.0000214

3.612652
3.660361
3.723734
3.802924
3.898359
4.010611
4.140736
4.292105
4.459978
4.653078

—2.712737—2.593552—2.482167—2.378365—2.281847—2.192272—2.109276—2.032493—1.961558—1.896115

—1.065698—1.129506—1 ~ 169259—1.192061—1.202863-1.205184—1.201567—1.193872—1.183471—1.171381

1.483559 1.99746688 0.260107 0.009908 0.0001465 0.016754 0.0004028 0.0000328 3.991018 —2.206537 —1.205268

+ B' and E are given in terms of Z~ =109,679 cm I =13.530 ev.
+@ Equilibrium internuclear distance.

The solution of (3) is written

( $-1 ($-1) ' (5 11-'

X(()=e "&~
( 1+bI(X) +b2(A)

~ ~
4-b3(X)~ —

~
+

E $+1& )+1 k)+1& E$+1&

where p= 1 —(R/X). In order that the series may converge, b„must satisfy the relation

where
(7)

2m'+2m(p+2X)+(p+2pA+X'+p')

(m+1) '
—v,„g——(m —1+p)'/(m+1)'

So that (7) may be satisfied by values of b other than zero, p', 7, and p (or &|.') must be related in the
manner indicated by the continued fraction:

Vp V1 V2—Qp�-

=ui+�u2+�N

(8)

In theory it is possible to eliminate p between (5) and (8) to obtain a relation between X and
R;""in practice it is extremely difficult to determine an algebraic relation between X and R suK-
ciently accurate to yield reliable values for the wave function coefficients. In the present work this
calculation has been done numerically to insure maximum accuracy; for an arbitrary value of X, p'

was found from (5), and then (8) was solved for the corresponding unique value of p (and hence R).
From these values (all accurate to the sixth decimal place), corresponding values of aI, b, C, and the
energies E' and E$=Z'+(e'/8) j were determined with like accuracy. Table I gives these results
over a range of values of 7 (or 8); the last row gives results for the equilibrium value of R.

The value of the energy for the equilibrium value of R is exactly equal to that found by Hylleraas. '
Sandeman' calculated a somewhat smaller absolute value. His result probably is slightly in error
because the empirical formula relating 'A and R, from which he obtained the energy minimum by the
appropriate differentiation, was obtained from pairs of values of X and R which fail to give agreement
in Eq. (8) by about two percent.

The pairs of values of X and R tabulated in Table I give rise to the empirical relation:

R =0.0099234+0.9302959K+0.2461946K'+0.0449322K' —0.0176366K'+0.0006485XS
—0.0000972lb, '+0.0000397K' . (9)

3. CALCULATION OF P +Q„„+S„„A NDDISCUSSION OF RESULTS

Van Vleck's' expression for S„„,which represents the energy difference due to the fact that the
center of gravity of the molecule does not exactly coincide with the center of gravity of the nuclei,
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becomes for H2+:

2 f' 1 8 8%' 8

P —{&'-1) +—(1—q')
MiR'~ P —s' BP B) Bq Bg

O'R p' r" (BXq' (" p'
t
BY)'

Y'dq ($' —1)j [ d$+ X'dP ' {1—q')
( [ dq,

4M' ~ i &i EB&) ~i ~ i &Bg&

where M& ——mass of proton, E» = ionization potential of hydrogen.
The corresponding expression for P „+Q „,which may be qualitatively described as representing

coupling between vibrational and electronic motion, is

P +Q„„2
I

(B%') '
i

dr
Zs Mi ~ &BR)

4 p 1 8%'
5(&'-1) +n(1 —n')—

3/IpR & P —q' BR Bp

2 r t2+s' —1 2 (BV)~+-— ~ (4'-1)
(

—
~

+(1— ')
(MpR' ~ P —it' E Bf) &Bg)

O2R2 i BX 8V
IXYI Yk(k' —1) +Xn(1 —n') ~EH2'~ i~i BR 8$ 8$

O'R pBXq'-
t

BYq' 5„„
+ l~ „I' (P+n') Y'((' —1)~ (

+X'(1—')~ I «& — . (»)
& Bql ( Bit) Bs

The expression defined in Eq. (10) has been
evaluated in a straightforward manner for a
series of values of X. The evaluation of expression
(11) involves the calculation of the derivatives of
the coeS.cients a~ and b and of X and p with
respect to R."The appropriate derivatives have
been calculated for different values of X by use
of the Gregory-Newton interpolation formula
for derivatives of tabulated functions. Otherwise
the evaluation of (11) involves only lengthy,
but straightfor ward, integrations. Figure 1 shows
the variation of 5„„,P +Q „, and P +Q
+5 with internuclear distance. The total
correction for nuclear Inotion at the equilibrium
distance is 0.00055 &0.00001 EH(60 cm ' =0.0075
ev). Uan Vleck' has estimated this quantity as
114 cm ' =0.014 ev.

By combining the correction for nuclear mo-
tion with the value of the energy at equilibrium

@The normalization constant C is also a function of R,
but calculation shows that terms involving 8C/BR are
negligible compared to the others; hence such terms are
omitted in Eq. (11).

internuclear distance given in Table I, the total
negative energy of H2+ becomes, for this value
of R,

W(H2+) = 1.20472 &0.000018'
= 132,132~10 cm '
= 16.300&0.001 ev.

(12)

D(H2) = 36,116&6cm '.

With this value, the energy of H~ becomes

W(Hg) =2(109,679)+36,116
=255,474~6 cm '.

(13)

13 H. Beutler and H. 0. Junger, Zeits. f. Physik 101, 304
(1936).

This value now can be compared with the results
of experiment.

The total energy of H~ equals twice the
ionization energy of the H atom plus the dissocia-
tion energy of H2. Beutler and Junger" have
obtained a direct experimental value of the
dlssoc1at1on eIlel gy:



NUCLEAR MOTION I N H2+ 377

This value of the zero-point energy and the
value of the energy of H2+ given in (12) give for
the ionization energy of H2.

6 I(H2) = 255,474 —132,132+1126
= j.24,468&20 cm '.

(15)

C&

x 5
Beutler and Junger, noting that the ionization
energy of H~ cannot be measured with the same
accuracy as the dissociation energy, have ob-
tained the experimental value

I(H2) =124,427&10 cm '.

P„„+&7ln

Frc. 1'. Variation of P +Q„„+S,„,S„„andI'„+Q with internuclear distance.

The ionization energy of H2 can now be calcu-
lated, for the total energy of H2 equals the
ionization energy of H2 plus the energy of H2+

minus the zero-point vibrational energy of H2+.

By extrapolation from a singlet series of H2,
Richardson" has obtained for the zero-point
energy the value 0.1399&0.0007 ev; Sandeman's
theoretical work gives 0.1390 ev. The computa-
tions of this paper lead to the value

0.1389 cv=1126 cm '
(error not exceeding 10 cm '). (14)

«O. W. Richardson, Proc. Roy. Soc. A152, 503 I,'1935);
molecular Hydrogen and Its Spectrgrn (Yale University
Press, New York, 1934), p. 158.

The small discrepancy may indicate that the
probable error has been underestimated in one
or both cases.

The dissociation energy of H2+ equals the
energy of H2+ minus the zero-point vibrational
energy of H2+ minus the ionization energy of the
H atom. Using the theoretical values (12) and

(14), one obtains:

D(H2+) = 132,132—1126—109,679 (16)
=2j.,327&20 cm '.

This result cannot be directly compared with

experiment because direct observations on the
H2+ spectrum are completely lacking. The
cxpcr lmental value, 2~,3~6~ ~5 cm, given by
Beutler and Junger is a combination of the
ionization and dissociation energies of H2, hence

the small discrepancy between calculated and

experimental values of I(H2) appears again here.
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