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" 'T is well known that liquid helium at tempera-
- - tures below the ) -point possesses a number of
peculiar properties, the most important of which
is superfluidity discovered by P. L. Kapitza.
As to the theoretical interpretation of these
phenomena, Tisza's' well-known attempt to con-
sider helium I I as a degenerate Bose gas cannot
be accepted as satisfactory —even putting aside
the fact that liquid helium is not an ideal gas,
nothing could prevent the atoms in the normal
state from colliding with the excited atoms; i.e.,

when moving through the liquid they would
experience friction and there would be no super-
fluidity at all.

Consider the quantization of an arbitrary sys-
tem of interacting particles (a liquid) from a
general point of view. This can be done by means
of introducing operators of the density of the
mass p, the density of the flow of the mass
(momentum density) j and the velocity v of the
liquid according to:

p= +222 b(r —R),

j =-,'Q[p, h(r, —R)+ 6(r —R)p,],
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' P. L. Kapitza, Nature 141, 74 I'1937); Comptes rendus
Acad. Sci. USSR 18, 28 (1938).' L. Tisza, Nature 141, 913 (1938).

R being the radius vector of an arbitrary point,
r the radius vector of the particle 222 . (It must
be emphasized that such a description is based
on a microscopical picture and does not involve

any statistical averaging. ) The calculation leads
to the following commutation rules:

(here i, k =x, y, s; (rot v);& ——(Bv&/Bx~) —(Bv~/Bxi )„.
and the indexes 1 and 2 refer to the points Rl
and R2 in space). By applying the relations (2)
to the macroscopic motion of the liquid, we find,
as it should be, the usual hydrodynamic equa-
tions written in an operational form (in a macro-
scopic consideration the internal energy of a
liquid is considered as a function of its density
only).

From (2) it can be seen that rot v commutes
with p and v and, therefore, also with the Hamil-
tonian in that case only when rot V=O over the
whole volume of the liquid. This means that
rot V=O is conserved, i.e., a quantum liquid
always possesses stationary states in which
rot v=O ("potential motion"). States in which
rot v/0, but is arbitrarily small over the whole
volume, do not exist. In other words, there is no
continuous transition between the states of the
potential (rot v=O) and the vortex (rot vWO)
motions of a quantum liquid. Therefore, between
the lowest energy levels of vortex and potential
motion there must be a certain energy interval A.

(It must be emphasized that we do not here refer
to the levels for single helium atoms but to the
levels corresponding to the states of the whole
liquid. ) One may question which of these levels
lies lower: apparently both cases are logically
possible. The supposition that the normal level

of potential motions lies lower than the beginning
of the spectrum of vortex motions leads to the
phenomenon of superfluidity. Hence we must
suppose that this very case exists in liquid
helium.

Every weakly excited state must be considered
as a combination of simple "elementary excita-
tions. " In the case of potential internal motions,
these excitations are quanta of longitudinal
(sound) waves, i.e., phonons. The energy 2 of the
phonons, is, as is we11 known, a linear function of
their momentum: 2=cp (c being the velocity of
sound). The "elementary excitations" of the
vortex spectrum can be called "rotons. " Their
energy is a quadratic function of the momentum:
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~=D+P'/2p (y being the "effective mass" of a
roton and the energy is measured fro~a the nor-
mal state of the liquid). If the number of rotons
and phonons per unit volume is not too large
(sufficiently low temperatures) their aggregate
can be considered as a mixture of two ideal gases.
I he phonon gas obeys Bose statistics. For the
rotons we can apply (for kT«h) the Boltzmann
distribution independently of their statistics
(probably Bose) owing to the assumed large term
5 (as compared with kl') in their energy.

From these properties of the energy spectrum
the heat capacity of helium II must consist of
two parts: the "phonon part, " i.e. , the normal
Debye heat capacity proportional to T', and the
"roton part, " depending on the temperature ex-
ponentially ( e ~'"'). A comparison of the
calculated phonon heat capacity with that meas-
ured experimentally' shows that right down to
the lowest temperatures ((1'K) the roton part
plays the dominant role in the heat capacity. If
it is expressed through p and 6 and compared
with the experimental values, we get 6/k =8—9',
p = 7—8 masses of a helium atom.

At absolute zero, helium is in its normal un-
excited state. If such a liquid is considered when
flowing as a whole along a capillary, it ran be
easily shown that the interaction between it and
the walls of the capillary cannot lead (when the
velocity of the flow is not too great) to an excita-
tion of internal motion, i.e. , to an energy dissi-
pation; in other words, the liquid will disclose no
viscosity. Owing to the presence of the energy
gap in the spectrum the rotons can be excited only
at velocities V) (2h/p)'', and the phonons-
because of the linear dependence of their energy
on the momentum —only at V)c.

At temperatures higher than absolute zero
there are a certain number of phonons and rotons
in helium II. If we consider helium II in a rotat-
ing vessel, a statistical investigation leads to the
result that a statistical equilibrium must be
established in the vessel which is distinguished
from the equilibrium in a vessel at rest in that
the gas of rotons and phonons rotates with the
vessel as if it were carried along by the walls. If
the angular momentum of the helium in the ro-
tating vessel is calculated from the corresponding

' W. H. Keesom and A. P. Keesom, Physica 2, 557 (1935).

statistical distribution, at absolute zero, i.e. , in
the entire absence of rotons and phonons, we
would get simply zero. At higher temperatures
the angular momentum will be non-zero, but the
moment of inertia will be, at sufficiently low
temperatures, much lower than the usual one
(which corresponds to the usual rotation of the
whole liquid together with the vessel).

Thus, when the walls of the vessel are in mo-
tion, only a part of the mass of liquid helium is
carried along by them, and the other part "re-
mains stationary. " Therefore we might regard
liquid helium as if it consisted of a "mixture" of
two liquids —one is "superfluid" without vis-
cosity and not carried along by the walls of the
vessel, and the other is "norma1. " When these
two "liquids" move through each other there is
"no friction" between them, i.e. , there is no
transfer of momentum from one to the other. It
must be emphasized that when we talk about
helium as being a "mixture" of two liquids it is
no more than a means of expression convenient
for describing the phenomena in helium II.
Actually, it should be said that two motions can
exist simultaneously in a quantum liquid, each
of which is connected with its own effective mass.
One of these motions is "normal" and the other
is "superfluid. " It must be particularly stressed
that we have here no real division of the particles
of the liquid into "superfluid" and "normal"
ones—in a definite sense one can speak only of
the "superfluid" and "normal" parts of the mass
of the liquid as of masses connected with two
simultaneously possible motions, but this does
not mean that the liquid can be really divided
into two parts.

At every temperature liquid helium is charac-
terized by a definite value for the ratio of the
densities p and p, of the "normal" and "super-
fluid" liquids (p=p +p, is the true density of
helium). At T=O the ratio p„/p=0; if the tem-
perature is raised it increases. The temperature
at which p„/p becomes unity, i.e. , the "super-
fluid" part vanishes, is the X-point of helium.
The ratio p /p can be measured experimentally
in a direct way by measuring the moment of
inertia of the rotating vessel filled with helium II.

The ratio p„/p can be calculated for low tem-
peratures when the aggregate of phonons and



rotons can be regarded as an ideal gas; one gets:

4 P(ph)

+~Pf (FClfi)

p 3 C-
(3)

(F&&I'") is the energy of the phonon gas per 1 g of
helium, N""' is the number of rotons in 1 g of
helium; E(&") T', N("" e ~'" ) In view of a
very rapid exponential increase of N'"", this
formula can be approximately applied to the
calculation of the temperature of the X-point;
with the values of p, and 6 given above we get
2.3'K for the X-point, which is in suAiciently good
agreement with the known value 2.19'K.

It can be shown that the motion of the "super-
fluid" liquid is always "potential. " Besides this,
the motion of the "superfluid" part of helium II
does not carry heat. Therefore, a motion of
helium II in which only the superfluid part takes
part is thermodynamically reversible. When
helium II is flowing through a narrow slit it is
just the superfluid part which flows through
without disclosing any friction. The outflowing
helium ought to be at a lower temperature than
the helium II in the initial vessel —in the ideal
case at absolute zero.

For the heating of the liquid in the vessel when

helium flows out through a narrow capillary, and
for the temperature gradient of the pressure
dp/dT, the formulae are obtained which were

given by H. London4 starting from Tisza's ideas,
the verbal formulation of which coincides at this
point with the theory here advanced. These
formulae are fully confirmed by P. L. Kapitza's
experiments. '

A temperature gradient along the capillary
gives rise to two currents —the current of the
"normal" liquid which carries heat from the hot

4 H. London, Proc. Roy. Soc. A171, 484 (1939).' P. L. Kapitza, Phys. Rev. 00, 354 (1941) (this issue).

to the cold end and the oppositely directed
current of, "superfluid" liquid; this mechanism
leads to a very large heat transfer.

A complete system of hydrodynamic equations
can be advanced describing the macroscopical
motion of helium II. At every point the motion
is described by two velocities —the "superfluid"
v. (for which rot v, =0) and the "normal" v„;
on a hard surface v, must fulfill the boundary
conditions of an ideal liquid and v that of a
viscous one. If the values of v, and v„are not too
large, the equations are found to be of the form:

p= p, +p„, j=p,v, +p„v„,

(Bp/Bt)+div j=0,
(4)

(~)

Bv,

p(), +p o (vl)o (n)+p o (e)p (e)

~s pn
2

= —grad p+———(v„—v,)'
2 2p

(()pS/Bt)+div(pSv ) =0 (8)

(s and (p being the entropy and thermodynamic
potential per 1 g of helium, p the pressure); in

(6) and (8) the terms connected with the viscosity
of the normal liquid are left out.

The application of these equations to the
propagation of sound leads to the result that two
velocities of sound must exist in helium I I which
are approximately equal to

u) ——(Bp/Bp) ', u2 ——(Ts'p, /Cp )" (9)

(C is the heat capacity). At the X-point u2 be-
comes zero. At T—+0 these velocities tend to the
limits u, =c, u~ ——c/v3.

A detailed paper wi11 be published in one of
the issues of the Journal of Physics USSR.


