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Fermi's theory of the energy distribution of P-particles is
extended to first and second forbidden transitions for
arbitrarily charged nuclei. The calculations are done not
only for Fermi's original "polar vector" form of the theory
but also for the scalar, tensor, axial vector and pseudo-
scalar forms. Selection rules appropriate for these are given
in Table I. The final results are given in the form of a
"correction factor" C, by which the allowed distribution
must be multiplied to give a forbidden spectrum. They are
listed in $4. The energy dependence of the correction factors
was found to be completely independent of knowledge
concerning the details of the nuclear states only for the
scalar and pseudo-scalar interactions (which give identical
results) and for certain special selection rules in the other

interactions. Comparison with experimental data on Na",
P" and RaE seems to eliminate the scalar, pseudo-scalar
and axial vector possibilities, all of which yield results
independent of detailed knowledge concerning the nuclear
states involved in these cases. The polar vector and tensor
results depend on the unknown ratio of the magnitudes of
certain nuclear matrix elements. Arbitrary adjustment of
the unknown ratios allows fairly good fitting of the data.
Especially striking is the reproduction of a "K-U type"
shape for the RaE spectrum. Although the tensor and polar
vector theories are equally favored by the evidence of the
energy distributions, the fact that the tensor theory leads to
Gamow-Teller selection rules perhaps make it preferable.

become obscured, although certain groups can
still be distinguished if care is taken to compare
only atoms of comparable size. ' This happens
because the decay constants depend also on the
nuclear charge and on the complexity of the
nucleus.

A formula for the energy distribution P(W)dW
of the P-particles emitted in "allowed" transi-
tions was given by Fermi. 4 He obtained:

P(W)dW=(G'/2s')CoF(Z, W)pW
X(Wo —W)'dW, (1)

in which W is the electron energy, p = (W' —1)l

is its momentum, lV0 is the maximum energy of
the P-spectrum, and G is the "Fermi constant"
having the order of magnitude S)&10 ''-. The
function

tl1. INTRODUCTION

HE distinction between "allowed" and
"forbidden" P-decay was first made by

Sargent' on an ei11pirical basis. By plotting the
decay constants of the naturally P-radioactive
elements as a function of the maximum energy
of the P-rays, Sargent showed that there is no
one-to-one correspondence between the two
quantities, but 'that for a given energy release
the decay constant may have any one of a
discrete set of order of magnitudes. Fermi's'
theory attributes these differences between
equally energetic transitions to differences in the
change of angular momentum and parity which
occur during each, in analogy to the emission of
dipole, quadrupole, etc. radiation in atomic
spectra. The class of p-emitters with the larges
decay constants as a function of the energ
release are said to undergo "allowed" transitions
the tra, nsitions with a decay rate a distinct ordei
of magnitude smaller (it turns out to be 100)
are "first forbidden"; the next class is "secon
forbidden, " and so on. When the Sargent plo
is extended to lighter, artificially radioactiv
atoms, the distinctions between the classe

' B. W. Sargent, Proc. Roy. Soc. 139, 659 (1933).' E. Fermi, Zeits. f. Physik 88, 161 (1934).

p(Z W) — (2p~) 2~ 2s~azw/o-
y I"(1+2s)

X
~

I'(s+inZWjp)
~

' (2)

represents the inHuence of the nuclear charge Z;
p is the nuclear radius and s = (1—n'Z') l;

' L. W. Nordheim and F. L. Yost, Phys. Rev. 51, 942
(1937);compare also E.J.Konopinski, Advancesin Nuclear
Physics (Interscience Publishers, Inc. , in press).

4The usual relativistic units will be used throughout;
unit of energy is mcm, of time 5/mc~ and of length A/mc.
All formulas will be written for electron emission; for
positron emitters one has to change the sign of the nuclear
charge Z.
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1'(0, W) =1. The qua, ntit:y Co (for which exact
expressions will be given later) contains a matrix
element of the initial and final nuclear states
and is independent of the energy 8'. The formula

(1) seems to be adequately confirmed by the
best experimental measurements of various P-

spectra. Most notable are Lawson and Cork's5
In'" spectrum, Tyler's' spectra of the Cu"
positrons and electrons, and the measurements'
on N" and C"

The authors made a criticism of Fermi's
formula (1) on the basis of a comparison with
older experimental data and advanced a modi-
fication of the Fermi theory which seemed to
represent those data better. The technical
improvements in the most recent measurements,
particularly in eliminating scattering, have
withdrawn the basis for the criticism. Further,
these measurements have confirmed the values
of the maximum energy lVO as derived from the
nuclear masses. The so-called K-U modification
had led to values of S"0 which were distinctly
too large. '

Fermi's formula (1) however still does not
represent a great number of observed P-spectra.
Many of these disagreements are undoubtedly
due to the superposition of several spectra, as
has lately again been emphasized by Bethe,
Hoyle and Peierls. " Nevertheless, all the dis-
agreements cannot be explained in this way.
The very well investigated" spectra of RaE
and P" show definite deviations from Fermi's
formula. No evidence of the y-radiation to be
expected if these spectra were complex has been
found. The feeble y-radiation which has been
observed can be completely accounted for as
internal bremsstrahlung. "- Now, according to
the Sargent relation both P" and RaE seem to

belong to the "second forbidden" class. There is,
therefore, no a priori reason to expect them to
obey the "allowed" formula (1). Accordingly, it
will be of interest to see whether an extension of
Fermi's calculations to forbidden transitions can
account for such cases. Attempts in this direction
have been made already by Hoyle" and by
Berestetzky. '4 These authors however have con-
fined themselves to the K-U modification of the
theory and moreover have made no systematic
examination of the possible forms of the for-

bidden P-spectra.
The calculation of the form of forbidden

spectra may also have importance for the general

theory of P-decay. As is well known, the Fermi'

theory can be formulated in several different

ways, all of which lead to the same shape for
allowed spectra, but can be expected to yield
distinct results for forbidden transitions. These
various ways can be expressed in terms of five

independent forms, listed by Bethe and Bacher."
We have especially investigated the shape of
the forbidden spectra for each of these forms

separately. The method of calculation is illus-

trated in )$2, 3 for the one of these forms

originally adopted by Fermi. The results for all

the forms are listed in ))4, S. In $6, a comparison
of these results with the limited accurate experi-
mental data available, namely the P" and RaE
spectra, has been made. This seems already able
to eliminate some of the possible forms.

f2. THE FORBIDDEN SPECTRA IVOR TIIE FI..RMI

INTERACTION (Z =0)

The result of Fermi's formulation for the
number of electrons I'(W)dW emitted into the
energy range dR' at W may be written:

P(W)dW=G'/(2 )')td .Jtd ) d p I(U*Q,

' J. L. Lawson and J. M. Cork, Phys. Rev. 57, 982
(1940).' A. W. Tyler, Phys. Rev. 56, 125 (1939).

~ E. M. Lyman, Phys. Rev. 55, 1123A (1939); Y.
Watase and J. Itoh, Proc. Phys. Math. Soc. Japan 22, 639
(1940); A. A. Townsend, Proc. Roy. Soc. 177, 357 (1941).

E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev.
4S, 7 (1935). (To be referred to as i.)' Kurie, Richardson, and Paxton, Phys. Rev. 49, 368
(1936); Bonner, Delsasso, Fowler, and Lauritsen, Phys.
Rev. 49, 203 (1936); J. D. Cockcroft and W. B. Lewis,
Proc. Roy. Soc. 154, 261 (1936).

"Bethe, Hoyle and Peierls, Nature 143, 200 (1939).

U) Q'"p) ~ (U*e~Qk U) ~ (P*—ay) ~. I g'P Wd W (3)

"J.L.Lawson, Phys. Rev. 56, 131 (1939);A. Flammers-
feld, Zeits. f. Physik 112, 727 (1939); G. J. Neary, Proc,
Roy. Soc. 175, 71 (1940); L. M. Langer and M. D. Whit-
aker, Phys. Rev. 51, 713 (1937); Alichanian and Nikitin,
J. Phys. Acad. Sci. USSR 3, 243 (1940).

'2 E. Stahel and J. Guillissen, J. de phys. et rad. 1, 12
(1940); Sizoo, Eykman and Groen, Physica 6, 1057
(1939); Chien-Shiung Wu, Phys. Rev. 59, 481 (1941)."F.Hoyle, Proc. Roy. Soc. 166, 249 (1938).

"Berestetzky, Comptes rendus Acad. Sci. USSR 23,
450 (1939).

'5 H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8,
82 (1936).
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The integral over the coordinates of all the
nucleons, J'dr represents the matrix element
of the interaction between the nucleons and the
electron-neutrino field. U and V are the wave
functions of the initial and final nuclei; Qo is an
operator which by definition replaces U with a
wave function describing a nucleus in which the
4th neutron is replaced by a proton; P and oo

are the wave functions of the emitted electron
and anti-neutrino, respectively, normalized to
one particle per unit volume and evaluated at
the position of the transforming nucleon. All

the wave functions are assumed to be of the
four-component Dirac type and the e's are the
usual Dirac matrix operators; g is the neutrino
momentum, in our units numerically equal to
the neutrino energy X, since, at the outset, we
assume the neutrino mass to be zero. The
integrals over co, and or„represent integrations
over the directions of the electron and the
neutrino momenta and a summation over their
spin directions. Accordingly, the formula (3) is

written appropriately for the case in which the
forces on the electron and the neutrino are
neglected, so that their wave functions can be
taken as plane waves:

&=A exp[i(p r)], q =8 expL i(q r—)].
Since the de Broglie wave-lengths of the

electron and the neutrino are, in general, large
compared to nuclear dimensions, one can evalu-
ate the matrix element in (3) in successive
approximations, corresponding to an expansion
of P and y in successive powers of (p+q) r:

(4*Iv)o = (~*&)L1 —i(p+a r.)
—-', (p+iI r,) "], (4a)

(4* ) =(~* &)L1—i(p+q. .r ). ] (4b)

we shall call the transition "allowed. " By
carrying out the further operations in (3) we are
then led to Eq. (1) with Z=O and

2

Cov (Z =0) = 1 (6)

The index V is added to Co to distinguish the
Fermi interaction from the other four forms to
be discussed later.

The first term in (4b) leads to a nuclear
matrix element in (3):

"~=)"dr Qo (V*~oQoU),

)
r= dr Qo (V*roQoU).

We must, therefore, take the second term of
(4a) and the first term of (4b) together. Whether
the matrix elements J'e and fr are also of the
same order of magnitude will be discussed in $5.
Together they lead to the formulas for what we
shall call the "first forbidden" transitions. The
result can be expressed in the same form as (1)
except that Co is now replaced by the "correction
factor":

2 2

Civ(Z=O) = )I r (a+b)+ )I n

which has the selection rules appropriate for a
polar vector:

AJ=O, &1(no 0~0); yes

where the "yes" signifies that the parity must
change in the transition. These same selection
rules are likewise characteristic of the nuclear
matrix element which arises from the second
term of (4a):

If only the first term of (4a) is kept one is led
to a nuclear matrix element in (3), which we
shall represent by the symbol J'1:

)I 1= ~dr Qo (V*QoU).

Since this is the matrix element of a scalar
quantity it can be diff'erent from zero only when
the initial and final states have the same angular
momentum J and parity. When this is the case

. ( &l+i
(

lie) ( ~ xI —c.c. c, (10)

in which a, b, c are abbreviations for:

2 PY 1(P'
a=-', (P'+q'), b= , c=—

(
—+——.

I (11)
9 WX 34W Xi

To obtain the formulas for the "second
forbidden" transitions, we proceed in an analo-

gous fashion. We consider together the third
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t'r' and )I'( r), (12)

the axial vector

tenn of (4a) and the second term of (4b), since
each will yield nuclear matrix elements con-
taining products of two polar vectors. These
tensors can always be written as combinations
of the scalars

for each tensor. Only the contributions of the
axial vector and the tensors are, therefore, of
interest for the "second forbidden" formula.
They give the correction factor,

C„(Z=O) =2 IR' I'(pd+ p~b)+2 IA' I' l~
s7 17

2

+f(P A;;RP, ;—c.c.)f+ ~t nXr (-,'c —b), (18)
'L7

with the additional abbreviations,
(13

d = p(p'+a')+ p p'v',

and the symmetrical tensors with spur zero:

R,;=Jr (;;——,'8;; '), (14)

t

A,;=) (0,;x;+n;x,——pb;;(n r)).

(16)AJ=Wi; no

for the axial vector and

AJ= &1, &2(no 1 ~ 0); no

Each of these matrix elements has characteristic
selection rules. For the scalars (12), these will be
the same as for the "allowed" transition (i.e.,

6J=0, no) and their contribution will, therefore,
constitute only a presumably small correction
to the "allowed" formula. In addition to these
(except for 0—&0 and —',—&-', ) the axial vector and
the tensors give really new selection rules.
They are

1 (p' g'~ 1
f=

I
——+—I+ wpb. —

30 E W E)4'
The derivation of (18) is greatly facilitated

by taking advantage of the fact that the nuclear
matrix elements can only occur in the invariant
combinations indicated in (18). Just as in

deriving Eq. (10) it was sufticient to compute
only the coefficient of one of the components in
each of the expressions

I
J'r I',

I
J'a I' and

(J'r) (J'e)*, so in deriving (18) it is enough to
consider only certain representative terms. The
only complication arises from the fact that in
the terms with A;;, J'nXr and fe r the same
combinations of the e and r components occur.
One must, therefore, compute the coefficients of
more than one representative term in each of the
invariant expressions, in order to obtain enough
simultaneous linear equations to determine the
coeScients with which each invariant occurs.

$3. THE FQRBIDDEN SPEcTRA FoR THE FERMI INTERAcTIQN (ZWO)

When the influence of the Coulomb field on the wave function of the electron is taken into account,
it becomes necessary to use spherical coordinates, at least for the electron. The formula (3) is now

replaced by:
2

P(W)dW= G'/47rP) d(o„Q I dr Q I (V*Qp P)(P*y) p (V*apQ'p U) g*—ny) p} (g'W/P)d W (20).

P is now the solution of the Dirac equations in the Coulomb field, "corresponding to the energy W
and the angular momentum quantum numbers j, l, m, normalized to one particle in a sphere of
unit radius. For y we still keep the plane wave solution in Cartesian coordinates.

We try now to divide the matrix element occurring in (20) into parts with characteristic selection
rules, as in the preceding section. To do this we write the spherical harmonics occurring in P as
polynomials in x/r, y/r, z/r When the plan. e wave pp is also developed in powers of x, y, z, for each

1" Compare M, E. Rose, Phys. Rev, 51, 484 (1937), His notation will be followers in this paper,
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set of values of j, I, m one obtains formulas for Q*p) and Q*noo) analogous to (4a) and (4b), except
that the coefficients still depend on the coordinate r. One should evaluate these coefficients at the
place of the transforming nucleon. The difficulty then arises that they contain the radial wave
functions of the electron, which are singular at the origin. However, this is without physical signifi-

cance since the Coulomb field undoubtedly breaks down within the nucleus. Following Fermi, we

avoid the difficulty by evaluating the radial functions at a value p of r, which has the order of magni-
tude of the nuclear radius. It is now possible to select the terms appropriate for the allowed, the
first forbidden, etc. , transitions, just as in the preceding section.

The result. for the allowed spectrum becomes

2

Ik (IVv)d I/V (G2/~2) t1—((g 2+f 2)/4or) (g2IV/p)dIV (21)

where go and f o are radial wave functions in the notation of reference 16. Evaluating these functions

by keeping only the largest terms in their series expansions in powers of p, one obtains:

This leads to formula (1) with"
2

Joy= I 1 (1+s)/2.

(22)

(23)

For the first forbidden transitions one obtains analogously:

' V'go'+f-o' f '+g-o' gk'+f o' e' g-ofo g of —o--
P 3 4o 4orp' 2m p' 3X 2orp

g go +f kgofo-g of o—--
(24)

4~p

Here new radial wave functions appear which again are to be evaluated from their series expansions.
The expansions will always be carried to high enough powers in p to give non-vanishing results in

the limit of Z—k0, which can then be checked against the formulas of )2. The explicit results are
listed in )5, together with those for the second forbidden transitions and for other forms of interaction.

)4. THE FORBIDDEN SPECTRA FOR OTHER FORMS Oli INTERACTION

In constructing the matrix elements in (3) and (20), Fermi used a combination of Il and oo which

behaves like a polar four-vector in Lorentz transformations. The natural generalization of this
special form is to include in the consideration the four additional combinations which transform,
respectively, like a scalar, a tensor, an axial vector and a pseudo-scalar. For each of these the curly
brackets in the integrands of expressions (3) and (20) are replaced by"

Scalar:

Tensor:

Axial V. :

Pseudo-S. : I (V*pkT kkQk U) (/*pro p) k }.

I ( V*PkQk U) (tf"PP) k },

I (V'Pk&kQlcU) (f P~P)l+('V Pk~kQkU) (0"P~q)k},

I (V"ekQk U) ~ (/*a oo) k (V*T»Qk U)

(/*To�—

~)k },

(25a)

(25b)

(25c)

('25d)

In these expressions the P's are the usual Dirac matrices, y5 ———io.„-e„a,and the e's are the familiar
Pauli matrices doubled to four rows and four columns; e=y50. .

"This differs from Fermi s original result by the factor (1+s)/2, which has no eff'ect on the energy distribution.



'1'HEOI&Y OF 5 —I~AI.) IOAC'1'I VI'I Y 3l3

'I'.&Bj.E I. Selection rules.

Scalar
Matrix
sJ
Parity

Change

ALLOWED

f1
0

no

FIRST FOR 8IDDLr N

fr
0, +1 (no 0~0)

yes

SECOND FORRIDDI'. N

R;;
+1, ~2 (no 1~0)

no.

Matrix
Polar V. AJ

Parity
Change

f1
0

no

fr, fe
0, ~1 (no0 0)

yes

R, ;, 3,;
+1, +2 (no 1~0)

no

fo.Xr
~1
no

Matrix
Tensor 5J

Parity
Change

fe
0, &1 (no 0~0)

no yesyes

fe r fe)&r, fo. 8;;
0 0, ~1 (no0~0) 0, +1, ~2

(no 0 0
-'„1~ 0)
yes

fe r
0~0

no

T,;, A, ;
+2

no

S,7.f;.

&2, &3
(no 2&+0)

no

Matrix
Axial V. b,J

Parity
Change

fe
0, +1 (no 0~0)

no yes yes

fe"'r, fv5 feXr
0 O, ai

(no 0~0)

8'2
0, +1, %2

(no 0~0
1+&0)

yes no

a2, +3
(no 2~0)

no

Matrix
Pseudo-S. 6J

Parity
Change

fvs
0

yes

fy5r
0, ~1 (no 0~0)

no

R,P
~1, ~2 (no 1+&0)

yes

All the forms (25) lead to exactly the same formula (1) for allowed spectra except for differences
in the nuclear matrix elements, and, therefore, in the selection rules. The scalar leads to the same
"allowed" selection rules as Fermi's polar vector because PI„- is a scalar operator just as the unity
in J'1. Since the Pi is a mere scalar, it is ignored in all the further considerations. For the pseudo-
sca, lar interaction the nuclear matrix element J'y~ replaces Fermi's J'1 in allowed transitions, and,
therefore, its selection rules differ only in that parity is required to change. The axial vector and the
tensor interactions each consist of a pair of terms, as does the Fermi interaction. It can be made
plausible (for further discussion see )5), that again only the first terms play a role in allowed transi-
tions. However, they lead to completely different selection rules because they involve the matrix
element J'e which is non-vanishing only for

d,J=0, &1 (no 0~0); no. (26)

The difference from (8) is, of course, due to the fact that e is an axial whereas n is a polar vector.
The rules (26) for allowed transitions are referred to as the Gamow-Teller rules because evidence
for their correctness was first adduced by these authors. "

Still further types of nuclear matrix elements must be introduced when the results of the inter-
actions (25) for forbidden transitions are investigated. The scalar interaction brings in elements
which differ from J'r and R,; only in that the operator pi, also appears in the integrands; as already
mentioned, this distinction is unimportant and will be ignored. The effect of p5f, in the matrix ele-
ments needed with the pseudo-scalar interaction,

p~r and R;;= y~(x;x; —', 8;;r ), — (27)

is to. require parity changes opposite to those required by J'r and R;;. The axial vector interaction

G, Garnow and F.. Teller, Phys. Rev. 49, 895 (1936).
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will, for first forbidden transitions, introduce J'yo and combinations of &i with r:
I

&r r, J &rXr, B;;=J"(&r,x;+o;x, ,'—5;;—(&ir))

For the second forbidden transitions J'd'or and combinations of &r, r, and r are needed. The irreducible
forms consist of two vectors J'r'&r and J'(&r x)r, one symmetrical tensor of the second rank and
with zero spur

T;;= t (L&iXx];x;+L&iXr];x,), (29)

and finall a completely symmetrical tensor of the third rank with diagonal "spurs" zero,

S,;o= {o. &;x;xo& —-'oh&, ;[&io&r'+2kp&(&i r)]},

where enclosing indices in parenthesis signifies a sum of terms for all permutations of the indices.
Except for the trivial Po, it is easy to see that the tensor interaction requires all the matrix elements
already introduced which contain e or 0,.

The selection rules characteristic of the various matrix elements are presented in Table I. Just
as in )2, all matrix elements introduced in the second forbidden approximation which only repeat
the allowed selection rules are left out; also, for the matrix elements which are admitted, only those
rules are quoted which are not also "allowed. "

It can be seen from Table I that 0—+0 transitions possess a special property. The scalar and polar
vector interaction do not allow 0—+0 transitions with parity change in any approximation. The
axial vector and pseudo-scalar interaction similarly forbid completely 0~0 transitions with no
parity change. The table shows this only up to the second forbidden approximation, but it is easy
to convince oneself that this property extends to all approximations.

The calculations proceed as illustrated in {}$2,3. The final results for the energy distributions are
always expressible in the form (1), with new correction factors ta,king the place of Cp. The subscripts
S, V, T, A will refer to the scalar, vector, tensor and axial vector interactions, respectively. The"i"and "2" will distinguish the first forbidden and second forbidden formulas. The pseudo-scalar
gives exactly the same results as the scalar, except for the appearance of ps in the matrix element
itself. The calculations were always done first for Z= 0 and then for arbitrary Z, so that a check was
available by going to the limit Z—+0. The results for the first forbidden transitions are:

2

Cls J
"r ( ,'K'Lo+2Li+1&-fo-+ oKNp),

f . (r &
Cir =

J
i' (pK Lp+2L&+1}fp —oKNp) + &o Lp+i I

I &o
} I

I x I*—c.c. (oKLp —Np),iJ y &J

2 2 p o

Cir= (&i r) (pK'Lo+Mo+pKNo)+ i
&i Io+, &iXx (oK'Lo+pLi+Mo oKNo)—

(& & (+'&*
~"~Xr

I I } +cc (lKLo —No)+Z IB' I'('K'Lo+ 'L)-
C,~ ——

J
&i r (oK Lo+Mp —oKNp)+ J~ po Lp —i

I
&r'r II ' yo } c.c. (pKLp —Np)

) E~

+ &iXr ( 'K'Lo+ ', Li+Mo+ o-KNp)+-Q
I
B;;I'( 'K'Lp+ oLi). —
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For the second forbidden transitions one obtains:

C2s = Q i
R''i {y oK I o+ +4 5K Np+ yK (2L4+Mp)+2KN4+ /2L2+3M4},

Coy= + iR;;i'{ysoK LQ y45K Np+)sKP(2L&+ilIIQ) —2KN&+ /L2+3M&}

+p i A4gi (y 2K Lp+ ggLy) i {g R;;A*;;—c c.} (/&5 oK'I o
—ysK'No+ ygKI i —igNi)

2

+ "aXr (ysK2LQ+ gigKN p+ )2L4+ Mp),

Cgr = P i
S'g }

~ 452(HQK I o+2K L4+15L2)+2 i T'&
~

'
4 2 {H sK4Lo VQKsNQ+Kp(L&+Mo)

—6KN, +6L2+9M, }++iA| i'(H2K'Lp+i~L&) —{pT,;A*;;+cc.}
2

X gg(HQK4LQ gigK Np+KL4 3N]) + ~

a' r (ggK2L p+ /gKNQ'+Mp)

C s =& l~' pl' H2(y45K L.+2K'L +»L )+g i
T*

sjk u

H 2 {ylsK Lp+ NK'No+K (Li+Mo) + 6KNg+6L2+ 9M' }.

(pg i ' gpg+f 22 1+s
Lp=

{
F}—

&2~ ) 4&

(P' ) ' g, '+f,' F, P' 2+s4

42~ ) F 9 44x p'

Here the quantities I, 3f, and N represent combinations of radial wave functions. They are listed
below, together with their values, computed as explained in {}3.Following the arrows are given
expressions which are good approximations for the case O.Z«1.

4x p'

(p' i 'gg'+f 4' Fg p' 3+so

F 225 6 225

(p' i ' fp'+g 2' 1 —s aZ 1 s 1
M, ={—F

} (2s —1)W ——+ {n'Z'-+ (4s' —3)sp' }
424r ) 44rp' 2p' p 2s+1 W (2s+1)'

1 agZ2 aZ( 1 )-p+ + {
W—},

4p' 3p E S")

(p' i —' fg'+g 4' Fg p' 2 —s4 nZ 1
+
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Above are used the abbreviations:

sl (4 n2Z2)-,' ss (9 n2Z2):', -

(4i)'
F (Z, W) = (2Pp) " s ~~"

I
F(s +t'nZW/P) I,

F '(2s I+1)

(6')'
F&(Z, W) = (2pp)"' 'e ~'" F(s&+snZW/P) I'.

4I"(2ss+1)

ei5. GENERAL DISCUSSION OF THE FORMULAS

The characteristic features of the formulas can be seen completely by using the O.Z«1 approxi-
mations for L, 3f, and X. For example, one then obtains:

n'Zs nZ( 1) t' ( r' ) ( p )
' ( nZ)

f=tr= "«+b+ + I W.—
I + ~~ n +t

I
~

n
I I

r
I
-c'

I
c+

s) 4p' 3p E W) & (& ) E~ ) ( 2p)

Cst. ——P IR;;I' ',d+ ',a-b+--
nsZs nZ (1')

(rI'+lb')+
I

W ——I(sta'+ t'oP')+7t(-':tz'+lP')
12p"- 3p ( W)

AZ 2

+Q IA;)I' ',a+t', P A;;R'-;-, —c.c. f+ (q'+-,';p') + ) n&(r
27 'e7 6p

n'Z' nZ (
~ ~-l-. —b+- +

4p' 3p E W)

where a, b, c, d, and f are defined as in f2 (Eqs. (11) and (19)).
The first characteristic of these formulas which stands out immediately is that, in contrast to

the allowed formulas, these involve more than one nuclear matrix element. The only exceptions to
this are the scalar and pseudo-scalar correction factors, and, for certain special cases of selection
rules, also some of the other factors. When more than one matrix element is thus involved, one

C„,!Xi8i'
fet 4JskR

20

0.5-
~ ~ r

~ ~ ~ Z~ 85

0( 0(

FIG. 1. The first forbidden correction factors C1g and
C1y for the axial vector and tensor interactions with
6J= +2, divided by the nuclear matrix element expression
Z~8;;~ ass functions of the electron energy W. The

arrow indicates the end point used, W0=3.75, which is
appropriate for Na'4. Z=11 would be scarcely distinguish-
able from Z=O.

FIG. 2. The first forbidden correction factor for the
scalar interaction divided by the square of the matrix
element J'r as a function of the electron energy W. The
arrow indicates the end point used, W0=3.75, which is
appropriate for Na". Expressions like 5)&(Z=O) signify
that the actual ordinates were multiplied by five in
plotting here. The pseudo-scalar interaction gives precisely
the same dependence on the energy.
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FIG. 3. The second forbidden correction factors C2A and
C2z, for the axial vector and tensor interactions with
b J= &3, divided by the nuclear matrix element expression
Z~S„;&~', as functions of the energy W. The arrows

indicate the end points used: lVO ——3.3 (appropriate for
RaE) for Z=83 and one curve with Z=0; tV0=4.37
(appropriate for P") for the other curve with Z=O. Z=15
gives results scarcely distinguishable from Z=0, here.

FIG. 4. The second forbidden correction factor C2q for
the scalar interaction divided by the nuclear matrix
element expression Z~R;;~' as a function of the electron
energy TV. The arrows indicate the end points used:
Wp =4.37 (appropriate for P") for Z =0 and Z = 15;
F0=3.3 for Z=83.

expects it to be necessary to know something about the nuclear states before anything definite
concerning the energy dependence of the correction factors can be concluded. However, one can
try to make some estimates of the order of magnitude of the matrix elements. Fermi has already
mentioned that matrix elements like J'a and J'ys are of the order v/c smaller than J'1 or J'tr,
tt being the velocity of the nucleons. The ratio v/c is thought to be of the order 1/10, which is just
about the same as the magnitude of (p+g)p in Eq. (4a). This serves as an additional argument
for combining the first term of (4b) with the second term in (4a), etc. , besides the fact that these
terms lead to the same selection rules. One is tempted to make a sharper estimate of such matrix
elements as J'tt, by making use of the symmetrical nuclear Hamiltonian. If one neglects the difference
in the Coulomb energy in the initial and final nuclei, one can derive for example relations like

tt=sWp r, A;;=iWpR;;

This would, for instance, make the energy dependence of the correction factor C&& completely definite.
However it seems unjustifiable to neglect the Coulomb energy. We prefer, therefore, to draw only
such conclusions whi-h are unaffected by using arbitrary ratios of the nuclear matrix elements.

Another outstanding characteristic of the forbidden formulas in contrast to the allowed is their
sensitivity to the position p at which the wave functions are evaluated. Except for the very lightest
nuclei, the dominant terms are those containing nZ/p, as long as p is of nuclear dimensions. The
assumption made by Fermi that p is to be set equal to the nuclear radius here becomes quite critical.
Exceptions to this can be found in the tensor and axial vector interactions for cases in which hJ
has the highest possible value; in the only contributing terms nZ/p does not appear.

More detailed conclusions which can be made regarding the first forbidden formulas follow:
(1a) For 6J= +2, which is allowed in this approximation only by the axial vector and the tensor

interactions, the energy dependence of the correction factors becomes completely definite since only
a single matrix element does not vanish. This dependence is shown in Fig. 1 for two values of Z.
It can be seen that the influence of Z is comparatively small, as is to be expected from the absence
of terms in nZ/p.
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(1b) Also completely definite are the correction factors for the scalar and pseudo-scalar inter-
actions. These are shown in Fig. 2 for three values of Z. This time, due to the presence of nZ/p,
the Coulomb influence is quite large.

(1c) All the interactions give the allowed form to first forbidden spectra with d, J=O, &1 if the
nuclear charge is large enough and the energy small enough. In such cases the n'Z'jp' term pre-
dominates in the correction factors and it is independent of energy. This tendency is displayed by
the CI~ curve for Z=83 in Fig. 2.

(Id) It may happen that first forbidden spectra take the allowed form even for light nuclei
according to the vector and tensor interactions. If it should happen that the matrix element

~

1'n ~'

in Cir or Ciz, or
~

j'Tq~ in Ciq, has a dominant magnitude, then the correction factor becomes
nearly independent of the energy.

(1e) A definite result is also possible for Cir in 0~0 transitions and for Ci~ in 1~0 transitions.
In each case only a single matrix element does not vanish. The energy dependence in these cases
is very similar to that of C&~ as illustrated in Fig, 2.

Concerning the second forbidden correction factors one can make the following statements:
(2a) A definite energy dependence is obtained for C&z and C2z in case AJ= +3. It is shown in

Fig. 3 for a large and a small value of Z. Again the Coulomb influence is comparatively small.
(2b) The scalar and pseudo-scalar correction factors are again completely definite and are shown

in Fig. 4. As in the first forbidden transitions, the Coulomb influence is considerable.
(2c) Excepting AJ= &3, all the interactions in general give for large Z a correction factor which

decreases steeply with energy, approximately as (Wo —W)'. This is illustrated for C&s in Fig. 4.
(2d) For 0—+0 transitions, C2+ assumes a definite energy dependence much like that of Cis. For

2+&0 transitions, C2& is definite and very nearly like C2&. Finally, C2& becomes definite for 1++0
transitions and gives a distribution much like Ciq again.
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Fzo. 5. The experimental number of electrons emitted
by P32 per unit energy range in ratio to the relative num-
bers expected according to Fermi's allowed formula,
N~PW(Wp —W)'I". The data are Lawson's. " The blank
circles indicate points computed for Wp ——4,37, the value
given by Lawson as most probably correct. The crosses
are for Wp=4. 33 and the solid dots for Wp ——4.44; this.
shows the inHuence of small uncertainties in the upper
limit. The curve is drawn to represent an average of the
measurements. The ordinates are on an arbitrary scale
which is the same for all the points.

)6. COMPARISON WITH EXPERIMENTS

There seem to be available for comparison
with the "forbidden" formulas only three reliable
P-spectrum measurements, namely those of Na'4,
P" and RaE. By dividing the experimental
number of electrons per unit energy range by
pW(WO —W)'F(Z, W), one obtains, according to
(1), the energy dependence of the correction
factor C. Since one divides by a quantity which
becomes small at both ends of the spectrum, it
is clear that great accuracy is needed to obtain
a reliable correction curve. Small uncertainties
in the value of the upper limit Wo have great
effect. All this is illustrated by Fig. 5.

Na'4 is expected to be first forbidden according
to the Sargent law. "The experimental correction
factor, shown in Fig. 6, must accordingly be
compared with the formulas for C~. It seems
impossible however for any of the Ci's to
represent the data, whatever choice is made for
the values of the nuclear matrix elements. This

"Compare Konopinski, reference 8.
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FIG. 6. The ratio of the number of electrons emitted by
Na'4 per unit energy range to the relative number expected
according to Fermi's allowed formula. The data are due
to Lawson. " The circles are the experimental points and
the straight line is drawn on the hypothesis that the
spectrum is complex with the main component of the
spectrum. having the allowed form as indicated by the
experimental points for energy greater than W=2. The
ordinates are on an arbitrary scale.

allowed according to our selection rules, es-

pecially since the experimental form of the main

component seems to be the allowed one. One
then must explain the long lifetime by the
violation of some further selection rule.

As has already been mentioned, P" and RaE
are most likely to be second forbidden and
their spectra are almost certainly single. Com-
parison of Figs. 4, 5 and 7 shows that C2q

cannot explain the data. One can also exclude
C2~. This follows from the fact that S"and RaF
are even-even nuclei and so can be taken to
have J=O in their normal states. According to
the axial vector theory, then, the transitions
must be 2—+0 or 3—+0 in the second forbidden
approximation. As mentioned in conclusions (2u)
and (2d), both these cases lead to definite energy
dependences for C2~. The 2—+0 case is excluded
for the same reason as C2q, while in the 3~0

may not at all be a real difficulty, since it seems
quite possible for the Na" spectrum to be
complex. The sudden rise of C toward low
energies must then be interpreted as due to a
superposed spectrum with an upper limit of
around 1 Mev. Gamma-rays of about the right
energy have been observed. "This conclusion is
contradictory to that drawn by Langer, Mitchell
and McDaniel" and by Feather and Dunworth"
from their coincidence experiments. These experi-
ments do not seem to be quite conclusive
however, especially since they have not been
extended to low enough energies. Accepting the
conclusion that the spectrum is complex, one
sees from Fig. 5 that, for the main component,
the correction factor is constant over a large
part of the spectrum. This already excludes the
purely scalar and pseudo-scalar theories, as can
be seen from Fig. 2. To explain the result with
the vector or tensor correction factors, one must
assume that the matrix elements fn or fys
which have coeAicients independent of the energy
are much larger than all the others. This may
very well be the case. Of course, the possibility
still remains that Na'4 is not first forbidden but

"J.R. Richardson and F. N. D. Kurie, Phys. Rev. 50,
999 (1936).

"Langer, Mitchell and McDaniel, Phys. Rev. 56, 962
(1939).

"N. Feather and J. V. Dunworth, Proc. Camb. Phil.
Soc. 34, 442 (1938).
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FIG. 7. The ratio of the number of electrons emitted by
RaE per unit energy range to the relative number expected
according to Fermi's allowed formula. The experimenters
responsible for the data are indicated. " The dashed line
gives C2r/ Zi T;; is with the ratio of the matrix elements
involved in C27 adjusted to fit the experimental curves at
the points indicated by the arrows. The adjusted ratio
was A;;/T;; = —5.8, which does not seem implausib]e.
The ordinates are on an arbitrary scale.

case C2~ cannot explain the data either, as can
be seen from Fig. 3. There remain now only the
polar vector and the tensor interactions. For
the first we can exclude the 1~0 and for the
second the 0~0 and 3—+0 possibilities, since
these are similar either to Ciq or to C2~, as
pointed out in conclusions (2d) and (2u). There is
left now only the possibility of 2—+0 transitions for
P" and RaE. The energy distribution which C&&

and C2z yield for the 2—+0 case depends on the
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ratio of two matrix elements. By adjustment of
the ratio, C2y and C2z can be made to give an

Flr, . 8. The solid curve is the same as the curve in
Fig. 5, representing an average experimental correction
factor for Pss. The broken lines give Csr/ Z~ Tr; ~s, the
correction factor according to the tensor theory. The
dashed line was fitted to the experimental curve at two
points indicated by arrows, leading to A;;/T;;= —2.2.
The dotted curve was fitted at three points with A;;/T;;= —1.5&i3.0. Compare with Fig. 5.

equally good account of the facts since two of the
three terms in each depend on the energy
identically and the third terms are very nearly
alike. We have done the computations for C2z

since the tensor theory is, perhaps, to be favored
over the polar vector theory, considering that
there is some evidence that the Gamow-Teller
selection rules are to be preferred to the original
Fermi ones. The fitting of C2y to the RaE and
P" experimental data is shown in Figs. 7 and 8.

The one encouraging feature of the application
of the theory to the experiments is that the
decided deviation of the RaE from the allowed
form can be at all explained by the theory.
According to statement (2c) of f5, the theory
gives a correction factor approximately propor-
tional to (Ws —W)' for an element like RaE.
This accounts for the surprising agreements
found by the experimenters between their data
and the so-called K-U distribution.

The authors wish to express their appreciation
for helpful discussions of the problem with
Professors E. Wigner and 0. Laporte.

A UGUST 15, 1941 PH YSICAL REVIEW VOLUM E 60

A Dilatometric Study of the Order-Disorder Transformation in Cu-Au Alloys

F. C. Nlx AND D. MAcNAIR
Bell Telephone Laboratories, NevL York, New York

(Received June 26, 1941)

The order-disorder transformation in single crystals of Cu-Au alloys, containing 22, 25, and
30 atomic percent Au, has been studied by dilatometric means. The plots of true coefficient of
thermal expansion versus temperature for previously well-ordered alloys display a slow rise
from —190'C to about +50'C, followed by a flat plateau to about 250'C. From the flat plateau
they rise rapidly to a peak at the critical ordering temperature T„ followed by a fall to a second
flat plateau which extends to at least 450 C above T,. The lower portion, that portion below
the flat plateau, can be well represented by a Grueneisen equation if one assumes additivity
for the constants taken from the equation for the pure metals Cu and Au. The presence of the
flat plateau above T, is in disagreement with Bethe-Peierls' theory of the vanishing. of short
range order. Plots of true coefficient of expansion versus temperature, for specimens previously
quenched from above T„display valleys similar to those in the comparable specific heat
curves of Sykes and Jones.

'HE transformation from a random or
disordered state to an ordered state in

Cu-Au alloys, containing 22 to 30 atomic percent
Au, is accompanied by a decrease in volume. The
greater the final degree of order attained, the
greater the volume decrease. The contraction in
volume on ordering for Cu3Au, as deduced from

the contrast between quenched and fully annealed
alloys, has been found by x-ray measurements of
lattice-constant to be 0.6 percent. ' The volume
change accompanying the redistribution of atoms
over the lattice sites depends on the relative

' C. H. Johansson and J. O. Linde, Ann. d. Physik 25,
1 (1936).


