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results. This agreement, and the substantially
equal values for the mean life measured in Al
and Fe, render it plausible to assume that these
values represent the mean life for spontaneous
decay.

The present experiments seem to indicate a
number of disintegration electrons per mesotron
definitely smaller than unity. The statistical
error is certainly large, and systematic errors are
not to be excluded, although it seems rather
unlikely that they might be large enough to
account for a discrepancy by more than a factor
two.

The results, however, are in agreement with
the assumption that only half of the mesotrons
undergo free decay. Since the analysis of meso-
tron tracks in a magnetic field has shown that
there are about as many positive as negative

mesotrons, or a small excess of positive, " the
result found is what should be expected if only
mesotrons of one sign (positive) undergo free
decay. Actually, if, according to the calculations
of Tomonaga and Araki, reactions with nuclear
particles are much more probable than spon-
taneous disintegration for negative mesotrons,
then we should only record an electron for each
positive mesotron absorbed. The nuclear reac-
tions produced by negative mesotron s will

probably lead to excited states of nuclei and
eventually give rise to electrons through processes
of P-decay. It is exceedingly unlikely, however,
that such particles could be emitted with suf-
ficient energy and within a sufficiently short time
to be registered in the present experiments.

"See H. Jones, Rev. Mod. Phys. 11, 235 (1939), also for
earlier literature.
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1'he eigenvalues of a free particle in a spherical potentia1 well of finite depth are computed
and used to calculate the surface energy of nuclear systems. No assumptions are made con-
cerning the specifically nuclear forces. For depth and radius 56nsc' and -', A&e' jmc', respectively,
the computed surface energy is about two-thirds the empirical value. A well of infinite depth
yields a surface energy more than double the empirical value. One-dimensional and cubical wells
are discussed for the purpose of orientation.

ImRonvcYroN

HE empirical packing fraction curve' and
the phenomenon of fission' require the

existence of a nuclear surface energy having
the magnitude 26A'mc' within limits of perhaps
~10 percent. There exists no adequate theo-
retical calculation of this quantity, although
estimates have been obtained by Weizsacker' and
Bethe. 4 A complete theoretical discussion is not
possible without the use of special assumptions

'A. J. Dempster, Phys. Rev. 53, 869 (1938).
s N. Bohr and J.A. Wheeler, Phys. Rev. 56, 426 l1939l.

C. F. v. Weizsacker, Zeits. f. Physik 90, 431 (1935).
4 H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 82

(1936).

about the nuclear forces, but it is clear without
calculation that the specifically nuclear forces
must make a positive contribution to the surface
energy. If p is written for the coefficient of A& in
the semi-empirical formula for nuclear energies,
and y~, yI for the contributions from the kinetic
and potential energy operators, respectively,
these remarks may be summarized in the re-
lations

p= +~+pi ~26tpsc, p~ (26mc .

The difficulties and uncertainties barring a
theoretical determination of y~ are not present
to the same degree for y~. It is, therefore,
desirable to obtain a First approximation for y~
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before attempting to estimate y~. This is done in
the last section with the model of free particles in
a spherical potential well of depth D and radius R.
For the purpose of orientation, one-dimensional
and cubical wells are also studied.

The free-particle model is useful chieHy for the
calculation of the kinetic and Coulomb energies,
quantities which do not depend sensitively on the
exact form of the short range correlations be-
tween the positions of the heavy particles. These
calculations as customarily made involve two
approximations: (a) the correct single particle
eigenfunctions are replaced by plane waves which
vanish abruptly at the boundary of the well and
(b) sums over the occupied energy levels are
replaced by integrals in momentum space. For
the kinetic energy one obtains

If the breadth of the well is assumed proportional
to the number of particles, the first term in
brackets may be interpreted as the "line" energy
and the second and constant term as the "end"
energy. The third term has no simple geometrical
interpretation and vanishes for infinite I..

ONE-DIMENSIONAL Q"ELL OI& DEPTH D

The results are stated only for a . well of
sufficient depth to satisfy the inequality

(k'/SML')y'(-'D with p»1.

Under this restriction the effect of raising the
bottom of the well is to subject the occupied
levels to a uniform compression. The eigen-
values are

5)N Zq'——28.642 1+—
{ { (Ro/R)'mc', (2)

9E A )
where V is the volume of the sphere and
Ro= gA 'e2/mc'. The absence of a surface term in

Eq. (2) is characteristic, not of the free-particle
model, but of the simplifying assumptions (a)
and (b).

ONE-DIMENSIONAL WELL OF INFINITE DEPTH

The vanishing of the single particle wave
functions at x =0 and x =L determines the
eigenvalues

e„=h'n'/SML' n= 1, 2, 3 (3)

With one particle per orbit, and a total of p
particles, the kinetic energy of the degenerate
gas 1s

E= (h'/SML') g,~n' = (h, '/24M)

&& {L( /L)'+5(~/L)'+(1/2L)(u/L) I (4)

c~ = —D+ (/z2n~/SML~) {1 —(2Q~/+ 2MDL~):.*I (5)

yielding the total energy

E= —pD+ (k'/24M) {L(p/L) '

+-'(p/L) '{1 —(Sp'h'/9m'MDL') & 1+O(l/ L) I. (6)

Thus the "line" energy is unaffected by putting
a bottom on the well, while the "end" energy
is reduced by the factor

1 —(Sp'h'/9''MDL') '*.

The artificial boundary condition that the
phase of the wave function have the value -„'m at
x=0 and ~~+ at x=I. determines eigenvalues

e„=(h, '/83IIL') (n ') ' n = 1, 2, 3 —-. (7)

In this case there is no "end" term in the ex-
pression for the energy of a completely de-
generate gas. We note that for a well of finite
depth the phases ~—„'m at the boundaries corre-
spond to e —,'D.

The eigenvalues are

CUBIcAL WELL oF INFINITE DEPTH

e(„„——(h'/SML')(2+m'+n') l, m, n=1 2 3

To calculate the kinetic energy of a degenerate gas we should sum e& over all the points of lmn
space included in an octant of a sphere. The calculations are greatly simplified without materially
altering the results if instead of summing over an octant of a sphere we sum over a cube. With two
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'I ABLE I. Average energy per partic1e (mc' units).

Table II
Eq. (12)

80.6
79.8

16

56.9
57.0

40

48.4
48.3

44.9
44.6

80

44.0
43.6

116

41.6
41.7

136

41.4
40.9

180

39.7
39.7

212

39.5
39.0

264

38.2
38.2

276

38.0
38.1

particles in each orbit, and N particles altogether, this procedure yields

Z~ = (3k'/43IIL') I -'(N/2)+-', (N/2)'+-', (N/2) '
I (N/2)*'

= (k'/2""M) I V(N/V)'t'+2 "'S(N—/U)'~'+2 "'L(N—/V) I,

where U and S are written for the volume and surface area, respectively, of the cube. If the volume
is proportional to the number of particles, Eq. (9) represents a sum of volume, surface and edge
energies. The absence of a constant term which might be interpreted as a "corner" energy indicates
that the geometrical identifications must not be taken too literally.

Comparison of Eq. (9) with Eq. (2) shows that the coeAicient of the volume energy is 8 percent
too large because of the approximation involved in summing over a cubical region in the quantum
number space. Correcting this discrepancy and interpreting U and S as the volume and surface
area, respectively, of a sphere of radius R we find

5 (N —Zq ' 1.92t 2 (N —Zy ' 1.26
&z=&x+&z=28 64A 1+

( I + '1+-]
I + (Ro/R)'m"

9L A ) A**I 94 A J A'
(10)

The surface energy given by this crude calculation is about double the empirical value. The sig-
nificance of the last term in brackets is very uncertain, but it is retained because a similar term is
found necessary to fit the exact energies of a spherical well of infinite depth.

SPHERICAL WELL OF INFINITE DEPTH

The eigenvalues are determined by the equation

2'i+, (kR) =0, k = 2z.(2M'/h') ',

where J~+,, is a Bessel function of half-integral order. Values of kR/n. are listed in the last section of
Table II. A table of values of (kR)' is given by Margenau. ' The numerical results for the average
energy per particle follow closely the law

5(N —Zy' 192 2(N —Z~' 145-
Zz/A = 28.64 1+—

] ( + 1+—
] ) + (Ro/R)'mc'

9E A ) A'* 9E A ) A*'
(12)

Table I shows how the computed values compare with Eq. (12) for the radius R=RO ———,'-Ale'/mc'

and N=Z.

SPHERIcAL WELL oF FINITE DEPTH

Calculations have been made for depths and
radii defined by the equations

D = 56mc'/q', R = PRO/X, (13)

with X=1.05, 1.00, 0.95 and 0.90. No restriction
is required on g. Tables of Bessel functions com-

~ H. Margenau, Phys. Rev. 46, 61.3 (1934).

puted by the W.P.A. Mathematical Tables
Project greatly facilitated the numerical work.
Margenau's' form of the equation expressing the
continuity of the logarithmic derivative of the
wave function was found convenient for use in

connection with the W.P.A. tables. Some results
for 'A=g = 1 are exhibited in Table II. All values
are uncertain in the third decimal place.
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TAm, E II. Values of kR/7r= t 83f(D+e)/k']&R, 'A= 77=1. TABLE III. Values of (8+ADmc')/Amc' for N=Z, 7l=).

A (8MD/h2)&R l =0 l =1 l =2 l =3 l =4 l =5 l =6

4 0.832 0.689

16 1.320 0.794 1.118

40 1.792 0.844 1.200 1.526
1.635

68 2.138 0.867 1.237 1.579 1.901
1;706 2.057

80 2.257 0.873 1.245 1.591 1.919 2.232
1.724 2.089

116 2.555 0.887 1.267 1.620 1.958 2.283
1.758 2.145 2.489

16
40
68
80

116
136
180
212
264
276

X =0.90

41.1
36.8
35.1
34.2
33.9'
33.1
33.3
32.6
32.6'

X =0.95

39.5
35.7
34.4
33.7
33.3
32.7
32.7'
32.2
32.3

X =1.00

38.3
34.6
33.6
33.1

32,7
32,2
32.25
31.8
31.8
31.4
31.3

X =1.05

37,1
33.4
32.8
32.4'
32.1
31.6
31.7
31.3
31.4

136 2.694 0.893 1.274 1.631 1.972 2.301 2.623
1.771 2.164 2.523

180 2.958 0.901 1.288 1.649 1.995 2.331 2.657
1.793 2.195 2.568 2.913
2.649

212 3.124 0.907 1.296 1.659 2.007 2.346 2.676 3.004
1.804 2.210 2.589 2.945
2.673

264 3.361 0.912 1.304 1.671 2.023 2.365 2.700 3.030
1.817 2.229 2.615 2.980
2.702 3.100

276 3.411 0.914 1.307 1.673 2.026 2.369 2.704 3.033
1.821 2.233 2.620 2.988
2.708 3.108

1.000 1.430 1.835 2.224 2.605 2.978 3.342
2.000 2.459 2.895 3.314
3.000 3.471 3.922
4.000 4.475

+ Here kR =(8~2Me/h2)&R with e the kinetic energy measured from
the bottom of the well.

Table I I I shows the average energy per par-
ticle, measured from the bottom of the well, as
a furiction of X and A when N=Z and q=).
The generalization from q = X to arbitrary values
of g follows in an obvious manner from the
invariance of the quantity RD' under changes
in q. The numerical results in Table III follow

closely the formula

E= [28.64A+ {17.8+50(1—X) I AI]

X (X/q) 'mc' —AD. (14)

From Eq. (14) we obtain

ys ——(Ro/R) '

)& [17.8+50 t 1 —(56mc'/D) ~RO/R I ]mc' (l5)

in agreement with the inequality (1) for reason-
able values of X and q. Depths greater than
86mc' are excluded by the inequality. The use of
Eqs. (14) and (15) for values of A which do
not correspond to completely filled shells implies
the reasonable assumption that discontinuities
in the energy due to shell effects are, to a large
extent, smoothed out in actual nuclear systems.
Because of the restriction of the numerical work
to completely filled shells, it was not found
possible to determine the dependence of energy
on N —Z. The calculation of such second-order
terms must await the development of a satis-
factory method of smoothing out shell effects.


