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The Effect of Dislocations on Magnetization Near Saturation
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The effect of dislocations on the magnetization curve at high fields is calculated by direct use
of dislocation theory. The deviation from saturation is assumed to be due to magnetostrictive
forces. localized in the stress field about the dislocation rather than at the dislocation itself; their
effect is more complicated than that of the simple "line concentrations of force" considered in an
earlier article. Pairs of dislocations of opposite sign, separated by a short distance, contribute a
term a/H to the deviation from saturation; in this respect they resemble line concentrations.
Pairs separated by a long distance and surplus dislocations of one sign contribute a term b/H',
with b theoretically not a constant but a logarithrnically varying function of H. From data on
the variation of the empirical a and lE with plastic strain, it is possible to calculate the density of
dislocations and the "block" length if a value is assumed for the distance I between the mem-
bers of a dislocation pair. The orders of magnitude obtained agree with those obtained in the
theory of hardening if Y is taken —2&(10 ' cm. It appears that all but about 1 percent of the
dislocations are members of such pairs.

HE magnetic properties of ferromagnetic
materials are greatly affected by plastic

strain. A theoretical analysis of such effects,
developed chiefly by Kersten, ' has been very
successful in correlating a large number of ex-
perimental observations. Kersten's theory overs
a rather detailed description of the effect of
"internal stresses" on magnetic processes, but no
description at all of the way in which such stresses
arise; they are merely postulated. Meanwhile,
other workers have developed a fairly successful
theory of plastic strain and hardening, in which
the most fruitful concept has been that of
"dislocations, '" It should, therefore, be possible
to interpret Kersten's "internal stress" in terms
of dislocations, or still better to describe directly
the effect of dislocations on the magnetization
process.

At low fields the. theoretical problem is an
extremely complicated one; but as saturation is
approached, simplifications may be introduced.
The resulting equations are solvable, and data
are available from which it is possible to judge the
success of such a theoretical analysis. If theory
and experiment agree herc, then there is some
ground for hope that the dislocation concept may
also prove useful in interpreting properties of
practical importance at lower fields: initial and

' R. Becker and W. Doring, Ferromagnetismgs (Julius
Springer, Berlin, 1939), pp. 154—167.'F. Seitz and T. A. Read, J. App. Phys. 12, 100, 170
(1941).

maximum permeability, hysteresis, remanence,
and coercive force.

The magnetization curve at high fields can
usually be fitted by an empirical formula J=J,

a/EI b/—EI2+ C—IX, where J is the magnetization
at a field II, and the other quantities are con-
stants. The "spontaneous" or "intrinsic" magnet-
ization J, and susceptibility C are satisfactorily
explained by atomic theory. ' The constant b in
annealed material can be calculated from data on
crystalline and stress-induced anisotropy, ' but in
plastically strained material it has a higher value.
The constant a is much more dependent on
plastic strain, and quite possibly would vanish
for a perfectly annealed specimen. It will be
shown in this article that the orders of magnitude
of a, and of the part of b not attributable to
anisotropy, are consistent with the view that
they are due to dislocations. The empirical
formula, however, is theoretically far from exact.

1. TIIE STRESS PRODUCED BY DISLOCATIONS

A "positive" line dislocation, of the sort
postulated by Taylor' to explain plastic flow, is
shown in Fig. 1(a). If such a dislocation moves
through the crystal from left to right, the atoms
above it are displaced to the right, with respect

' Reference 1, pp. 25—101;T. Holstein and H. Primakoff,
Phys. Rev. 58, 1098 (1940).

4 Reference 1, pp. 168—171, 175; T. Holstein and H.
Primakoff, Phys. Rev. 59, 388 (1941).' G. I. Taylor, Proc. Roy. Soc. A145, 362 (1934).
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F&G. 1. (a) Approximate positions of atoms in a plane
perpendicular to a dislocation line. Positive dislocation.
(b) Negative dislocation. (c) The equivalent of (a) for a
continuous medium: a "dislocation" in the theory of
elasticity. (d) With an excess of dislocations of one sign,
the specimen may no longer be treated as having infinite
dimensions in the plane perpendicular to the dislocations.
The cylindrical specimen shown has been chosen for
detailed study. The stress produced at I' by a dislocation
at 0' is to be expressed in terms of polar coordinates
referred to the center 0. (e) Directions of field, dislocation
lines, and reference axes in a twisted wire, in the simplified
model adopted here. In the 'detailed consideration of a
microscopic neighborhood of a dislocation, the model is
further simplified by supposing that the dislocations are
all parallel to Oa and infinitely long.

to the atoms below it, by an amount Xo. The
same result is attained if a "negative" dislocation
(Fig. 1(b)) moves through the crystal from right
to left. A specimen after plastic strain is supposed
to contain dislocations of both signs.

The lattice distortion in the neighborhood of a
dislocation may be calculated by elasticity theory
at distances r that are large compared with ) 0,

that is, with the interatomic distance. In such a
calculation the dislocation is pictured as in Fig.
1(c) and may be treated by methods developed

by Timpe, Volterra, and others. '. The internal
surface is assumed free from traction; its radius
ro is of atomic order of magnitude, but disappears
in the final formulas, since in the application to
Fig. 1(a) it must be supposed that r)) rp

In a ferromagnetic material, this distortion of
the lattice produces torques that tend to aline the
magnetic moments of the atoms along certain
directions; the directions change from point to
point, since the strain is not uniform. At high
fields the effect is a slight deviation of the local
magnetization from the field direction, and a
consequent decrease of the observed holomagnet-

'A. Timpe, Zeits. f. Math. Physik 52, 348 (1905);
V. Volterra, Ann. Ec. Norm t 3j 24, 401 (1907); A. E. H.
Love, A Treatise on tke Matk matical Tkeory of I':lasticity
(Cambridge, 1934), fourth edition, pp. 221—228.

by means of the formulas

X,=8' /&8ty', Y„=8'&t/8x', X„= 8'x/c—lx8y,

p =r '8'x/88'+r '8&c/Br, happ =8'&c/Br'

p,.p
———8 (r '8&r/8 8) /8—r

A state of plane strain will be assumed; the
constant G' is then equal to p(X+@)/(X+2&) in

the usual notation for elastic constants. ' For the
magnetic calculation the only stress required is

X„=cx(x' y')/r4 =c(cos8+co—s38)/2r, (3)

where c= G'Xp/&r.

7 A. Timpe, reference 6; L. N: G. Filon, Britisk Associa-
tion Report (1921), p. 305.' For generalized plane stress, G'=ltt(3)+2@)/4(X+@)
= 4 XYoung's modulus. These stresses differ from. those
given by Taylor, reference 5, p. 376. The incompleteness
of Taylor's formulas has been pointed out by J. M.
Burgers, Proc. K. Ned. Akad. Wet, 42, 293 (1939),footnote
pp. 305—6. Taylor's Cartesian stresses could be maintained
only if surface tractions were applied to the internal
boundary r=ro. They appear to have been derived from
a preliminary displacement formula given by Volterra,
reference 6, p. 463, to which Volterra later added other
terms in order to satisfy the boundary conditions. Vol-
terra's complete displacement formula, p. 465, agrees with
that of Burgers (except for a rotation of axes) and leads
to stress formulas in agreement with those given here.
Taylor's polar stresses are inconsistent with his Cartesian;
they are incorrect in the sign of 0.,„and in the value of
the constant (Taylor has p, instead of G').

ization J below the saturation value J,. Where
.the spatial variation of the strains is slow, the
local direction of magnetization is determined by
an equilibrium between the torques due to the
lattice distortion and to the field. But in the
immediate neighborhood of a dislocation, where
the strains vary rapidly, the magnetization is
prevented from changing equally rapidly by the
interatomic coupling torques, which tend to keep
the magnetic moments of neighboring atoms
parallel. Thanks to this smoothing out effect, the
region r—X, where the formulas of elasticity
theory are not reliable, is precisely the region
where the exact nature of the lattice distortion is
least important in the magnetic problem; thus
for magnetic calculations the elastic formulas
may be used at all points without serious error.

The dislocation of Fig. 1(c) produces, in an
infinite medium, stresses which may be calculated
from the Airy stress function'

y = —(G'Xp/2&r) y In (x'+y')
= —(G'Xp/&r)r lnr sin8 (1)
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The displacement corresponding to Eq. (1)
becomes logarithmically infinite at r= ~. If the
numbers of positive and of negative dislocations
are equal, the resultant displacement behaves
properly at infinity, and a large specimen may be
considered infinite in the xy plane; but if there is
an excess of dislocations of one sign, the external
boundary must be taken into account. A similar
situation occurs in the magnetic problem. In
most of the following calculations it will be
assumed that positive and negative dislocations
are present in equal numbers; but one particularly
simple case of unequal numbers will be investi-
gated. In this case the boundary is assumed to be
a circular cylinder of radius r& with center at 0,
illustrated in Fig. 1(d). The stress may be found
as follows.

If the medium were infinite, the stress func-
tion for a positive dislocation at 0' would be

x& ———cy' lnr'. Referred to 0 as origin, this
becomes, ' for r)R,

c{(r s—ing —R sinP) Inr+ C,r 'cosg—
+C~'r ' sing++ [(C r "+D„r "+') cosng

n 2

+(C„'r "+D„'r "+') sinng]}, (4)

where

C„=[sin(n+1)P —(n+1) sin(n —1)Pj

XR"+'/2&(n+1),

C„'= —[cos (n+1)P —(@+1)cos(n —1)Pj

XR"+'/2m (m+ 1),

D„=[sin(e —1)PjR" '/2(n 1), —

D„'= —[cos(n 1)PjR—" '/2(e —1).

where K], K2, and ~3 are independent of 0. Hence"

x~ ———c{RsinP (r'/2r~')+L&r' cosg

+L,'r' sing+ P [(K„r"+L„r"+') cosng
n—2

where
+(K ~r"+L Ir.+2) sinng]}, (7)

whence
x~

——(Nc/4r&')r' sing,

(X„)~=—(Xc/2rP)r cos 0.

(~)

(10)

The function z= —c g; s;y Inr +x& is a
good approximation to the actual stress function,
except in a region near the boundary, whose
width 6 is a few times larger than the distance
between dislocations. This may be seen as follows.
Let A be the region r(r~ —8 and 8 the region

-Ll Clrl L 1 C1 ri ' —&r1

= —(~+1)C„r 2"—AD r& ~"+2 (n, )1) (8)

L„=nC„r~ '" '+(n —1)D„r~ '" (n )1),

with similar equations in the primed constants.
The solution for an arbitrary distribution of

dislocations may be found by superposition of
the individual solutions with due regard to the
sign of each dislocation. "The coefficients in the
resultant boundary stress function X. contain
such sums as P; s,R;" cosnP;, where s; is +1 or
—1, according as the ith dislocation is positive or
negative. For a macroscopically uniform distri-
bution of dislocations, with an excess N of posi-
tive ones, approximate values of the coefficients
may be obtained by replacing the sums by inte-
grals, or in other words by treating the dislocation
distribution as continuous in calculating the eff'ect

of the boundary. If this is done, most of the co-
efficients vanish, and there remains only

X = Kyrie cos 0+K2ry sing+ K3,

gx/gr = ~~ cosg+ K2 sing,
(6)

9 W'. R. Smythe, Static and Dynamic Elec'tricity (Mc-
Graw-Hill Book Company, Inc. , New York, 1939), p. 64."J.H. Michell, Proc. Lond. Math, Soc, 31, 100 (1899).

The additional term x& required by the boundary
must correspond to a single-valued displacement,
must have no singularity at 0, and must be such
that at r=r~ the sum x~+x2 satisfies Michell's

boundary conditions"

"This is not equivalent to the stress produced by an
image dislocation at the point (r1'/R, p). The failure of
the method of images is easily demonstrated in the case
of a dislocation at (a, 0) in a semi-infinite medium bounded
by a free surface at x=0. If r1 is distance from the image
at (—a, 0) and r2 is distance from the original dislocation,
the stress function is cy/ln(r&/r2)+-', (r2/r&)'j; the image
method gives only the first term, which satisfies the
condition X,= 0, but not the condition X„=0 at the
boundary." fhe problem of a single dislocation in a cylinder can
be solved more simply in bipolar coordinates: J.S. Koehler,
Phys. Rev. 59, 477A (1941); G. B. JeEery, Phil. Trans.
Roy. Soc. A221, 265 (1920). A different coordinate system
is required for each dislocation, and there is, therefore,
no advantage in introducing such coordinates in the
present calculation.
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r~ —6(r(r~. The dislocations in A are indis-
tinguishable, on the boundary, from a continuous
distribution, and may therefore be treated as
such in calculating the contribution of the
boundary under their influence alone; the result
is a good approximation in 8 as well as in A.
This is not true of the dislocations in B. But the
effect producedin A by a dislocation in 8, in the
presence of the boundary, is not appreciably
affected by a slight change in the position of the
dislocation. Therefore the dislocations in 8 may
be replaced by a continuous distribution without
greatly altering the stresses in A, though the
stresses in the boundary region 8 are not given
correctly by this method.

In the magnetic calculation it is convenient to
treat the specimen as if it extended to infinity,
but had at r=r& a boundary incapable of trans-
mitting stress, with no dislocations outside the
boundary. If the boundary could transmit stress,

x, in the external region, would be given by Eq.
(4) summed over the dislocations. Except within

a distance 5 of the boundary, this may be
replaced by its value for a continuous distri-
bution, —

¹ sin0 [r 1nr+rP/4r]. The function
x= —c P;s;y lnr +xb', with

x~'=+¹sin0. [r Inr+r~'/4r], (11)

is, therefore, a good approximation to the actual
(zero) stress function for r)r~+0. Thus the
actual stresses in both regions may be approxi-
mated closely, everywhere except within a dis-

tance 8 of either side of the boundary, by treating
the dislocations as if they were surrounded by an
infinite medium, but adding to the stress function
a term x~ for r (r~ and a term x~,

' for r )r j. The
corresponding term in X„for r )r~ is

(X„)~'=—', Ng[ —r '(cos0+cos30)

+r, 'r ' cos30]. (12)

It is also convenient, in the magnetic calcula-
tion, to express X„as a Fouricr integral,

X„=f(r, 0) =(2~) ' tg(p, p) exp[i0 r]d0, (13)

where

r = r(i cos0+ j sin0), 0 = p(i cosQ+ j sing),

and dg= pdpdp. The Fourier transform g is

where dr =rdrdo. For a positive dislocation at the
origin in an infinite medium, "

g =ic( —cosP+cos3&)/2p.

For a dislocation at R, an additional factor
exp[ i0 —R] must be inserted; a distribution of
dislocations of signs s; at points R; requires a
factor p „s;exp[ —i0 R;). The stress described
by (X„)& at interior points, and by (X„)b' at
exterior, has the Fourier transform

g = i(Nc/r &) p
—'J~(pr&) (cosp —cos3$). (16)

2. SINGLE DIsLocATIoNs AND DoUBLFTs

Suppose now that the specimen, with dislo-
cation lines parallel to Os, is subjected to a large
magnetic field H parallel to Oy. This corresponds
roughly to the situation in a small portion of a
twisted wire, illustrated in Fig. 1(e); this same
situation will now be supposed to prevail
throughout the specimen.

The deviation of the magnetization vector
from the field direction is measured by its direc-
tion cosine n with respect to the x axis. The
equations that determine a were derived in an
earlier article;" they are

't7'n 0u/0x— gn =f—„
&'u =k0a/0x,

(1&)

(18)

where g= HJ,/C, u = UJ./C, 5 =4+Jp/C,
fi= C '(d~/du) =o , C-is a constan't proportional
to the strength of the interatomic coupling forces,
U is the potential of the internal field produced

"The integration over 8 may be carried out by taking
as a new variable of integration the angle between g and r;
the same method may be used for the integration over p
in )$3 and 4. The results may be expressed in terms c. f
Bessel functions by means of formulas given by Watson,
Theory of Bessel Functions (Cambridge, 1922), pp. 20—21.
In the subsequent integration over r or p, only elementary
properties of Bessel functions are required for Eqs. (15)
and (16); but for such integrals as those of Eqs. (29) and
(30), use must be made of special formulas given by
Watson, Chapter XI I I, $ $13.4 ff. , 13.51—13.53, 13.6.
Partial fractions and the din'erentiation method of Eq.
(47) are also useful.

"W. F. Brown, Jr. , Phys. Rev. 58, 736 (1940), Eqs.
(50), with the change (x, y, z)~(z, x, y). Since m contains
no linear term in y, f3 ——0 and (to the approximation
adopted here) I remains in the xy plane,

given by

g(p, 4) =(2s) '
I f(r, 0) exp[ i0—r]dr, (l4)
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by the non-uniform magnetization, and m is the
anisotropy energy density associated with the
stress. In Eq. (17), the first term represents the
coupling torque exerted by neighboring atoms,
the second the torque due to the component of
internal field perpendicular to the magnetization,
the third the torque due to the component of
magnetization perpendicular to the external field;
the sum of these must balance the anisotropy
torque represented by f& Eq.uation (18) is
Poisson's equation. For H))4m J, the internal
field may be neglected; n is then determined by
the equation

V a '!ta =fy (17a)

f~ k(cos 0+——cos3 0) /2r, (20)

where k = (3X„/C)c=3l!,„G'Xo/~C. The solution of
Eq. (17a), subject to finiteness conditions at r = 0
and r = ~, is by direct integration

a = (k/2X') l [St,(X'r) —1/l!.'r] cosg

—[SCq(X'r) +1/X'r 8/(X'r) '] cos3—8 I, (21)

where" ) ' = g', or, by use of the Fourier ex-
pansion (15),

where

a=(2m) 'Jl G exp[i' r]dy,

G=-', ik(cos!t —cos3&)/p(p'+X").

(22)

(23)

The decay distance 1/l!.' is about 500 lattice
spacings for nickel at H=100. For r—1/X' the
coupling forces, which are responsible for the

For arbitrary direction cosines (a, p, y) in a
material with isotropic negative saturation
magnetostriction —) „,m is given by"

w= —',X„[X, a+ Y„P'+Z.y'

+2(I'.Py+Z, ya+X„aP)j; (19)

when Y', =Z, =O and p='. 1, this becomes const.
+37t,„X„a,whence f, =(3X„ /C)X„. Insertion of
the value of X„ from Eq. (3) gives, for a single
positive dislocation at x =y = 0,

terms in 1/r', E'~, and K3, are important; but
for r))1/X' the value of a is the same as if the
coupling forces were not present (C=O). The
magnetization at any point is J,,(1 ——',a'). If an
attempt is made to average this by integration
over the xy plane, it is at once evident that the
boundary must be taken into account, for the
infinite integral diverges logarithmically at r = ~.

If, however, the dislocations occur in pairs,
with the positive one a short distance —R=iX
+]F—from the negative, this difficulty does not
occur. The value of n for such a doublet may be
found by applying the operator —R V' to the
value for a singlet. If the latter is expressed in
the form (22), an additional factor —ip R in (23)
gives 6 for a doublet, and

(24)

The value of (a')A, for n' dislocations per cm2,

distributed at random, is I times this integral.
The integration is straightforward and gives

J/ J —L(a&) =z'k'2s. (3X2+5 P'2)/64'. (25)

Such a distribution of dislocation doublets there-
fore gives a 1/H law of approach to saturation,
provided H is high enough to justify the neglect
of the internal field. The effect of the latter at
lower H will be considered in f4.

3. PAIRED DIsLocATIQNs

Consider, next, a more general distribution of
dislocations, arbitrary except that equal numbers
of positives and negatives are present in any
macroscopic area of the xy plane. This restriction
eliminates boundary difhculties and is probably
not a bad approximation, for there is no physical
reason why one type of dislocation should be
produced faster than the other in the hardening
process.

Superposition of the effects of all the disloca-
tions gives a in the form (22), with G replaced by

"Reference 1, p. 146.
"The symbols ) and k of reference 14 have been re-

placed by X' and k' in the present article. The following
must be distinguished: ) 0 ——elementary slip distance,
X=elastic constant, ) „=magnitude of saturation magneto-
striction, )'=p&=reciprocal of magnetic decay distance.
A few symbols (P, y, x) have been used for different
purposes in different parts of the discussion.

Hence
G~ ——G P, s, exp [ ip R;].— (26)

IG~I'de=)" I Gl'&'&i&'»

Xexp [iy R;;jd!s,
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where Rg=R; —R;; or since s;= —Q s;,

n'dr= —-', prk' P; P, ' s;s,R;;4Ifp(X'R;;)

——,'fp(X'R;;) cos28;;

+f4(X'R;;) cos48„;+,'fp(X'R-;;) cos68;, I

= —-'prk' Q Q s;s;F(R;;),

where 8,, =$(R;;, i), and

(28)

Jl n'dr=Jf ~G~' p; s„.[s;+p, ' s;exp(i8 R,;)]d8

s;s;~ft G~'[1 —exp(i8 R;;)]d8.
(27)

After integration over @ and transformation to a
new variable of integration x =R;;p, this becomes"

Let n be the number of dislocations per cm' of
the xy plane, and S the area of the specimen in
this plane; then Q; P s„s;F(R;;) may be re-
placed by nS[s; g s,F(R;;)]A., the average
being taken over all dislocations i. Let the
dislocations about any given one be divided into
three groups: (1) those at a distance small enough
to permit the use of the approximation (33) over
the range of fields under investigation; (2) those
at a distance large enough to permit the use of
(34); (3) those at an intermediate distance. For
rough calculations, if the chief contributionat
large distances is from fp, group 3 need include
only values of R, ; between the smallest 1/X' and
the largest 3/k' for the range.

For the first group,

F(R;;)= AX' 'R;P(1 —
A cos28, ;)

fp(u) =J [1—Jp(x)][x(xP+uP)P] 'dx
0

f~(u) =Jt J~(x)[x(x'+u')'] 'dx (n) 0).
0

Integration gives"

2u'fo(u) =K~(u) +2u 'Kp(u)—

(29)

(3o)

= (3X; +5 Y, )/32'; (35)

this makes a positive contribution to (pp')A„ if
dislocations i and j have opposite signs, a nega-
tive contribution if they have the same sign. Let
f& be the average net number of dislocations j of
opposite sign to dislocation i, in group 1; then the
sum over all i's and over j's within group 1 gives

+2u '[(y —-', )+In (u/2)], (31)

2u'fp(u) =Ki(u)+4u 'Kp(u)+u ' 8u ', —

2uPf4(u) = —Kp(u) —6u 'K4(u)

+-,'p ' —16' '+288@ ',
(32)

2u'fp(u) =Kp(u)+8u 'Kp(u)+ pu

—24@ '+1152' ' —30,720@ ';
y is Euler's constant. For p, ((1,

[(cpP)„„],= (1/64)prkPnf, q '(3XP+5—P'P) (36)

where X' and V' are average values of X ' and
Y; for near pairs of dislocations.

For the second group,

F(R,;) = X' 4I [(y —p)+1n(lj, 'R,;/2)] —
AA cos28;;

+ A cos48;;+ —,', cos68;;I; (37)

and if fp is defined for this group as f~ was for 'the

first, the contribution to (n') isA

For p))1,

fp( )= pu', fp(u) = ,'pu', —
fA(u) and fp(u) «1/u'

f,(u) =u-'[(y ——',)+In (u/2)],

2fp(u) =4f4(u) =6fp(u) =u '.

(33) [(n')«]p ———',prk'nfpq '[cp+ln(X'R/2)], (38)

where lnR is an average of the values of lnR;; for
this group, and

cp = (y —p) —
A (cos 28;;)«+ —,'(cos48;;)Ay

In the case of fp and fp, these approximations are
reliable to within about 2 percent except in the
range —', (u&5. Use of (33) at u= 1 results in an
error of 16 percent in fp and 19 percent in fp, (34)
is useless below u=3 for fp and below u=20
for fp.

+—,', (cos68;;)A, . (39)

If the distribution of dislocations j about a given
dislocation i is approximately isotropic at large
distances, as seems likely, the angular terms will

be small, and co= y —
~ =0.0772. In this case X'R

must be at least 3 by the definition of this group;
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where P(ii) is the contribution of dislocation pairs
separated by intermediate distances and is a
more complicated function than the other two
terms; or

J=J, a/H b—/H' —x(H), —

where

a=mfi 9(X O'X )'(3X'+5 K')/128xC

(41)

(42)

b = rif2 9(& G"&0)'Leo+In(X'R/2) ]/4ir J'„(43)
X'= (HJ./C)', (44)

and x(H) is a more complicated function. If only
group 1 contributes, the formula reduces to that
for doublets, since n = 2n'. lt is clear that:
(1) dislocations separated by distances smaller
than the magnetic decay distance contribute a
1/II term to the law of approach to saturation;
(2) dislocations separated by distances at least
several times the magnetic decay distance con-
tribute, not a 1/H' term, but a term b(H)/II', in
which b(H) varies logarithmically with H; (3) dis-
locations separated by intermediate distances
contribute a more complicated approach to
saturation.

4, EFFECT OF MAGNETIC INTERACTIONS AND OF

THE BOUNDARY

To take account of the internal field, Eqs. (17)
and (18) must be used instead of Eq. (17a). The
factor p'+'A" in the denominator of G must then
be replaced by p'+) "+h cos'@= p +X"sin'Q
+k" cos'f, where k"=)"+k.The calculation for
the doublets of )2 is simple enough to be carried

but a larger order of magnitude than j.o for X'R

would require appreciable noncancelling contri-
butions to 1nR from R;,'s greater than the
"block" dimensions or interfiaw distances (=10 '
cm). Such correlation of dislocation positions in
different blocks seems unlikely, and it may
therefore be assumed ' that ) 'R—10; then
ln(li'R/2) —1.

Thus, finally,

1 —J/J. =
2 (~') A.

= (1/128)mk'nfiii '(3X'+5 Y')

+ -', irk'n f2'-'Leo+In(li'R/2) g+ p(g), (40)

out without difficulty; the result is"

1 J—/ J,= n'(s O'C/8 J,) [H&+B&5 "

X [(EI+4H'*B&+B)X'

+(H+4H~B~+5B) V2j, (45)

where 8=II+4m J, is the induction. This reduces
to the previous formula for IX&&4'J, and gives an
approximately constant deviation from satura-
tion for H((4s J,. In the range 0.1 &H/4s J,&1,
in which data are available, the right member of
(45) is only very roughly equivalent to an ex-
pression of the form a'/H+b'/H2; if it is fitted to
such a formula as well as is possible, the required
a' is of the same order of magnitude as a (though
somewhat smaller), and the required b" is not
large enough to affect the order of magnitude of
the observed b.

To estimate the effect of the boundary when

positive and negative dislocations are not exactly
equal in numbers, consider the finite cylinder for
which the stress problem was solved in fl1. The
direct effect of the boundary on 0., for a given
stress, is unimportant compared with its effect on
the stress itself; the former is limited to a region
within a distance 5'=1/X' of the boundary, "the
latter extends throughout the specimen. The
specimen may, therefore, be considered infinite

provided the extra boundary term of Eqs. (10),
(12), (16) is added to the stress. The value of n

calculated in this way is the correct value inside
the actual specimen and vanishes outside, except
within a distance 5+5' of the boundary. The
calculation of J'n'dr proceeds as in fJ3. The cor-
rection to be added to the previous value, Eq. (28),
includes terms of the form Q, s~F„(Rf) cosnp;,
which may be neglected, and a term

t = 27rk QJ' I Q+4N(Ji(pri)/pri]'

4LJi(pri)!—pril 2' &'Jo(pR ) I

&& p '(p'+&") 'dp (46)

which may be evaluated approximately by re-

' The integration over p is elementary. The integration
over @ may be carried out by expressing the numerator
in the integrand as a sum of terms A„cos"pcosn@. See
D. Bierens de Haan, ¹Nvelles TaMes d' lntegrcles Deff,eies
(Leyden, 1867), p. 77, Table 47, No. 20.
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placing the sum by an integral. "The third term
in braces becomes twice the negative of the
second; the integral may be evaluated by
operating with —(1/2y) d/d p on the simpler
integral"

f(p) = {1—4[Jg(x)/x]')x '(x'+p') 'dx

=p
—'{(y—4)+in(p/2)

+4@ '[-,' —Ig(p)Xg(p)]I. (47)

Since X'r~&&1, the correction to 1 —J/J. reduces
to

[1—J/ J,]~
——(xk'/4S) (Ar'/&")

X (y —3+In —,'X'r ), (48)

which is of the same general form as the contri-
bution of pairs of dislocations separated by a
large distance. One may consider each unneu-

tralized dislocation to be accompanied by an
induced or image dislocation on or outside the
boundary, although a quantitative calculation by
the method of images is not possible. "

It has been assumed throughout fl(2—4 that,
despite the severe lattice distortion at the
dislocation, the interatomic coupling forces are
able to maintain approximate saturation there as
elsewhere. " Any weakening of the interatomic
forces at a dislocation would produce an ap-
preciable effect only within a distance 1/X' of the
dislocation; it would not affect the contribution

'8 This step requires defense for two reasons. (1) The
terms in the integral do not converge separately at p=0;
therefore a slight change in one term might conceivably
introduce a large error. (2) The difference between a
continuous and a discontinuous distribution of dislocations
might be important at large p because of the oscillations
in Jp(pR ). Objection (1) may be met by expanding the
integrand in powers of p'. it vanishes for p=0 by virtue
of Z; s;=N, whatever the distribution of dislocations.
Objection (2) does not apply until p —1/I, where l is the
distance between dislocations; but by then pri)) 1, so that
the contribution to the integral from this range of p values
is small compared with the contribution from the range
where the substitution is permissible. A rigorous calcu-
lation shows that the error is of order of magnitude
2Z; s;RP /Nr12 —1.

"The contrary possibility was suggested at the end of
reference 14, because of an apparent failure of magneto-
strictive forces alone to give a large enough order of
magnitude. But in the tentative calculation given there,
the forces were supposed to be concentrated in a cross-
sectional area of atomic dimensions at the dislocation;
when they are properly localized in the stress field about
the dislocation, the difhculty disappears.

of distant pairs of dislocations, but might
seriously alter the contribution of near pairs.

5. INTERPRETATION OF EXPERIMENTS

The calculations of ))2—4 justify the following
statements. (1) Even a drastically simplified
model, in which it is assumed that II))47'J, and
that positive and negative dislocations are present
in exactly equal numbers, leads to a more
complicated law than the empirical one; but
a/IX and b/H2 terms are definitely present and
important. (2) Although b is not strictly a
constant, it may be replaced by a constant over a
limited range because of its slow variation with
H. (3) The assumption of equal numbers of
positive and negative dislocations is not a serious
restriction, for the boundary terms introduced by
a lack of such equality are of the same form as
the terms due to dislocation pairs separated by
large distances. (4) For II(47rJ„the a/H+b/H'
law becomes an even worse approximation be-
cause of magnetic interactions; but the empirical
a and b in this range are probably of the same
order of magnitude as the theoretical c and b

calculated for H»47r J, In view of (3). and (4),
the numerical calculations will be based on the
simplified model of (3.

Kaufmann's data on twisted nickel, " repro-
duced in Fig. 3 of reference 14, show an approxi-
mately linear increase of a with plastic twist.
From the specimen dimensions (given in the
caption of the same figure), twist may be con-
verted to plastic shear y averaged over the cross
section. Thus da/dv =5.6X 10' e m. u. with torque
still acting, = 3.3)(10' after its release. Similarly,
db/d y =8.2 X 107 e.m. u. with torque acting,
= 1.70X10' after its release; the former value is
largely due to elastic strain and is in fair agree-
ment with the theoretical value.

Consider first the part of b not due to anisotropy
or to elastic stress, of amount 1.70/10' per unit
of plastic shear. If this is given by Eq. (43), then
rlf2/y=47rJ, (db/dy)/9(X„G'XD)'(co+in ', X'R) For- .
definiteness take R=10 4 cm and X'2=1000J,/C
(Kaufmann's field range was 600 to 6000
oersteds); co ——0.07; J,= 500 e.m. u. , X„=3.9
X10 ', )0——2X10 'cm, '=G6. 51XOdynes/cm'

2'A. R. Kaufmann, Phys. Rev. 57, 1089A (1940) and
private communication.
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C= 10 ' erg/cm. Then nf2/y= 2X10" disloca-
tions per cm' per unit of plastic shear.

Consider next the value of a after release of the
applied torque. Here positive and negative dis-
locations seek equilibrium positions in the same
vertical plane, so that, approximately, X=O. To
explain the linearity of a with p and hence with n
on the basis of Eq. (42), it may be supposed that
dislocations are produced at certain favored posi-
tions on "block" walls (planes perpendicular to
Ox) and are propagated along Ox, positives to the
right and negatives to the left from opposite
walls, until they reach a common value of x and
become caught in each other's attraction. The
plastic shear is then y=n') OL, where L is the
block length and n'=number of doublets per
cm2=2nf&. Thus nf& is proportional to y, but Y
is determined by conditions at the block walls,
and therefore a ~ y. If a value of Y is assumed in
Eq. (42), nf&/y may be calculated from the
experimental do,/d 7

The largest Y that is consistent with V(1/X'
throughout the range is about 2)(10 ' cm. If Y
has this value, nf&/y=3X10" dislocations per
cm' per unit of plastic shear. Then L=2y/nfqXo

3 X 10 ' cm. A smaller assumed value of Y
would increase still further the value of nf~,
which is already 100 times as large as nf2. Thus it
appears that f~&&f2. that is, most of the dislo-
cations are accompanied by a companion dis-
location of opposite sign no more than 2)&10 '
cm away. Very closely, therefore, f~

= 1; and
with Y as assumed, n/y = 3 X 10", and f2 ——2

X 10'o/3 X 10"= 0.00
In these calculations, no use has been made of

Taylor's formula for the stress produced by an
array of dislocations or of Kaufmann's data on
the applied torque required to produce the
plastic twist. An independent calculation of n/y
and L may be made by using Taylor's formula
and the torque data and by assuming that after
plastic How the stress due to the dislocations
balances the applied stress. This calculation gives
n/&= 1 4X10",L =0.4X10 4. Taylor's formula,
besides being subject to the error" pointed out in

"This error has been corrected in calculations recently
completed and brieHy reported by J. S. Koehler, Phys.
Rev. 59, 943A (1941). I am indebted to Dr. Koehler and
to Mr. H. B. Huntington for helpful discussions and for

fl1, is based on a somewhat different picture from
the "doublet" picture adopted here;" conse-
quently an agreement in order of magnitude is all
that can be expected. The only unsatisfactory
aspect of the theory is that to obtain such
agreement, a value of V must be assumed; and
the value required, though reasonable in other
respects, necessitates pushing the approximation
(33) to the limit of its applicability. "

The larger value of a under applied stress may
be due to a larger n or to a nonvanishing X. It
should be possible to decide this question when
more is known about the distribution of dislo-
cations and about their behavior under applied
stress.

Magnetic measurements at higher fields are
desirable. The analysis of data in the range
II&4m J, is complicated by another factor in
addition to the necessity for taking account of
magnetic interactions. The theory neglects
second-order terms in 0. and therefore becomes a
poor approximation if the value of o. given by
Eq. (21) is an appreciable fraction of unity
for any value of r It follows . that k/X' must
be small, or Q(H/H~) must be large, where
H~ = (3X G'Xo)'/s'CJ, ='. 50 oersteds for nickel.
This condition is not very well satisfied in the
lower part of Kaufmann's range.

the opportunity to compare my stress formulas with theirs
in advance of publication."The doublet picture would probably not lead to
Taylor's parabolic relation between stress and plastic
strain: see reference 2, p. 174.The experimental mechanical
data plotted in reference 14, Fig. 3, show a small but
systematic deviation from such a parabolic relation. —
Taylor's stress formula, combined with Kersten's theory
of the magnetic effect of internal stress, leads to a formula
b=c'e(X 6') 0)'/Js, with c'='3/125=0. 024 (%. F. Brown,
Jr. , Phys. Rev. 59, 528 (1941)). The factor in Eq. (43)
that corresponds to c' is (9f2/4+)(cp+lnP'R), and its
numerical value according to the calculations of the last
paragraph is 0.013.

"The order of magnitude V=10 ' cm may be arrived
at by the following independent argument, which, however,
is highly speculatIve. Suppose that the "favorable" points
on block walls are distributed at random but with an
average spacing (along y) of m atomic distances Xp. Then
one out of m of the favorable points on the left wall is in
the same atomic plane with a favorable point on the right
wall. On these particular atomic planes, positive and
negative dislocations can be generated at opposite ends
and combine in the middle, and a large slip can result;
elsewhere, dislocations can be produced but not annihilated,
and the process is that described before. The spacing of
these doubly favored planes, m2Xp, may be identified with
that of the slip bands, D—10 cm', then m=g(D/Xp)
and Y=m) p

——g(D) p) —10 ' cm.


