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They did obtain, however, the correct value for
the 4d' 'D3, 2 splitting of the ground state, namely
5810 cm '.

The term values of Cd IV, In V and Sn VI are
listed relative to the 4d' 'D3 level of the ground
state of each ion and are to be found in Tables
IV, VI and VIII. The estimated intensities of all

classified lines are given in Tables V, VII and IX
along with the wave-lengths and corresponding
frequencies reduced to vacuum.

The writer is very much indebted to Professor
H. E. White for suggesting the problem and for
his valuable advice during the course of the
investigation.
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According to Dirac, electric particles display a finite
radius r0 ——2e'/3mc2 as the result of the damping term
(2e'/3mc')d'x/dt3 in the equation of motion. If the finite
radius is due to radiative damping, the same must neces-
sarily be true for the finite self-energy that is inversely
proportional to the radius. An infinitely large self-energy
and an infinitely small radius (Coulomb's law e'/r) results
from Fermi's Fourier representation of classical electro-
dynamics. A certain change is necessary, but the change
is to produce at once a finite self-energy and a finite radius
r0. Now, an electric particle vibrating in a field of frequency
v suffers a reduction R„ofits vibrational energy due to
radiative damping, the energy reduction factor being
R„=1/$1+(v/vo) g where v0=3mc'/4xe~. In view of the
uncertainty of position due to damping we propose that

the Fourier terms in the expression for the energy in Fermi's
classical radiation theory be reduced by the same factor
R„with Doppler effect for particles in motion. The result
of this reduction is that Dirac's finite radius r0 now occurs
in a modified Coulomb energy (e'/r) t 1 —exp( —r/r0) j, and
the finite self-energy of a single particle becomes e2/2r0
=(3/4)mc'. Whereas the force between charged particles
of finite mass remains finite for r =0, the force on an ideal
test charge of infinite mass becomes infinite for r=0. This
is analogous to the difference between the field E and the
displacement D in Born's unitary field theory. Of interest
for nuclear reactions are the electrostatic forces between
particles of different masses m and M. The results are
related to Sommerfeld's fine-structure constant and to the
theory of mesons.

i. INTRoDUcTIQN

LECTRIC particles can be treated from the
~ unitary or dualistic point of view. In the

unitary theory a particle is but. a spherically
symmetric solution of certain modified field
equations, without singularity at r=0. Born-
Infeld's new field equations yield a finite
maximum field e/ro' at r =0. The electronic
radius ro can be adjusted so that the total field
energy is ~ mc'; the fraction f~ can be chosen
at will. This adjustable parameter is a disad-
vantage since we cannot know beforehand what
fraction of the total mass is of electromagnetic
origin. We prefer the dualistic point of view in
which particles of various masses m are taken for
granted, and the field produced by them, the
"radius" and the self-energy, are to be expressed
in terms of e and m.

One general point is common to all theories of
electric particles. The smaller the radius, the
larger the mass, the product rome' being pro-
portional to the square of the universal charge.
However, the accepted (dualistic) radiation
theory leads to an infinitely large self-energy and
to an infinitely small radius, as expressed in
Coulomb's energy e'/r= ~ for r=0 If there are.
any reasons for having a finite radius then the
same reasons must also be responsible for the finite
self energy. -

A radius dependent on the charge and mass
occurs in Thomson's formula for the scattering
cross section of an electric particle as the
result of radiative damping Asimila. r radius
occurs in Dirac's re-examination of the classical
Lorentz theory. ' Due to the damping term

' P. A. M. Dirac, Proc. Roy. Soc. A16V, 148 (1938).
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(2e'/3mcP)dPx/dt' in the equation of motion, the
universal length

r p 2e'/——3mc'

plays the role of an apparent radius in Dirac's
discussion. The same radius measures the uncer-
tainty of position due to the natural line breadth.
If the finite electronic radius is the result of radi
ative damping, the same cause then must also be
responsible for the finite electromagnetic energy.
Our task is to find the quantitative relation
between radius and self-energy in terms of e

and m.
In particular we have tried to answer the fol-

lowing questions. (1) If m is the total inertia of
a particle, what part of rn is of electromagnetic
origin? (in contrast to the infinite field energy of
the present theory). (2) What is the mutual
electrostatic energy of two electric particles of
equal or different masses? (in contrast to the
Coulomb energy e'/r that is ~ for r =0).

An answer different from the impossible result
of radiation theory can only be obtained by
means of a format change of this theory, intro-
duced ad hoc for the purpose of getting rid of the
infinities.

We are proposing a cutting-o ff method based
on the analogy to the classical Lorentz theory.
If an electric particle of charge e and mass m is

put into a periodic electric field of frequency v

then the vibrational energy of the particle
depends on whether we do or do not account for
radiative damping. With damping the energy is
reduced (( 2) by a factor

R„=1/L1+(v/vp)'], where vp
——3 m'c/n4. e'.

On the other hand, in Fermi's classical field

theory the electromagnetic energy produced by
the particles consists of Fourier terms of wave-

length c/v. Our hypothesis is that each of these
Fourier terms of the energy is to be reduced by
the same factor R, that reduces the energy of a
vibrating electron because of radiative damping.
For a particle in motion v is replaced by the
Doppler frequency v' for reasons of invariance.

The result of this formal modification is so
simple that it might be considered correct even

if the method of deduction is not yet satis-
factory. The mutual energy of two equal par-

ticles at distance r is found ($ 3) to be

where
E;p=(e'/r) [1—exp( r/r —

p) j
r p

——2e'/3mc'

The same exp( r/r p—) appears in Dirac's inves-
tigation. For r =0 we have the finite value

E;p(r =0) =e'/rp.

For the self-energy of one particle at rest we
obtain

E;;=,'e'/r p,
—

intimately connected with the modification of
Coulomb's mutual energy. With the former value
of rp we also can write E'= 4mc'. That is, if the
modified Coulomb law is correct (in view of its
great simplicity it probably is) then only 4 of
the total energy mc' can be of electromagnetic
origin. A result like this is not unexpected in
view of neutral particles that have mass without
field.

Our discussion throws an interesting sidelight
on Sommerfeld's constant n=1/137. The charac-
teristic frequency vp occurring in R, may be
considered as the central frequency between v=0
and v= ~ for the particle. Indeed, according to
Dirac' Eq. (35) the spectral intensity emitted by
a self-accelerated particle is proportional to R„
and the total recorded intensity J'R„dv consists
of two equal parts, integrals from v=0 to vp, and
from vp to v= ~ . The characteristic time period
tp=1/vp=4ne'/3mcP leads to an approximative
value (n 1/140) of the fine-structure constant
when used in the proper value theory' of the
electronic charge.

There is also a relation between our results
and the theory of the meson The .modified
Coulomb potential resulting from the damping
effect consists of two terms

2 A. Lande, Phys. Rev. 59, 434 (1941); J. Frank. Inst.
229, 767 (1940); 231, 63 (1940). Part III is to appear soon.
The proper value theory of M. Born starts from a different
background and arrives at different results (Proc. Roy.
Soc. Edinburgh 59, 219 (1939) 60, 100 and 141 (1940).

V—U= (e/r) —(e/r) exp( —r/r, ).

V yields the ordinary Coulomb repulsion between
like charges whereas U leads to an attraction
between like charges at nuclear distances. V
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V' V i7—' V/Oct' = —4ir p

;and U are solutions of the differential equations we have a phase lag and amplitude reduction

1'„.= tg '(a)'/(op); cosf„=[1+((o'/cop) ']—. (4')

with
qP FF—g& P/clctP = 4pr p—ytp& fr,

k = 1/rp ——3mc'/2e'

The terms describing the mutual energy
between field and particles in Fermi's classical
theory of radiation can be transformed ()7) into

perhaps identical with the meson mass.

2. ENERGY OF SCATTERING PARTICLES

The equation of motion for a particle of charge
,e and mass m is

mx —(2e'/3c') d'x/dt' = eE

for small accelerations. For a periodic field

E=E„cso(&ot)

the solution reads

where

x=(eE /m&o') cosl' cos(&ot —l ),

tg '(=pp/cop), cos l „=[1+(cu/a&p)'] ',

27rvp ——cop ——3mc'/2e'.

The average vibrational energy thus is
2 2

-', m(x)&„——(e'E„/4m&a') cos'l .

@os g„is identical with the reduction factor 8„
mentioned before. Periodic terms also occur in

the classical. Fermi theory' under the heading
"mutual energy. " There, however, the terms
appear without the reducing factor cosg„and
without the phase lag g„.We are trying to rectify
this situation in an invariant way. For this

purpose we need the proper value g„ofthe phase
shift for a particle e; moving with velocity P; in

the direction of 8.; through the wave s of fre-

quency co,. Since the proper frequency felt by
the particle according to Doppler is

(o„=cv, (1 —P; cos8„)(1—PP)

3 E. Fermi, Rev. Mod. Phys. 4, 87 (1932).

'The latter differential equation of Yukawa is the
Schrodinger-Klein-Gordon equation for a free
particle of mass

3II=kIt/2 pre = (3mc'/2e') (h/2irc)
=(3m/2)(hc/2pre') =, m (3/2) 137=m 205,

FI' =4irc'0 ' g, cu, '{(Q; e„P,sin8„sinI'„)'

+(2' e' cosp-)'I. (5)

Here 0 is the total volume in which the proper
vibrations of frequency co, take place; 6„is the
angle between the wave s and the velocity P, , and

F,„=a&,r; cos8„/c+phase

contains the angle H„between the wave direction
s and the radius vector r; from the zero point to
the particle e;. Replacing the summation over
all waves s by an integration over (0/ 2prc )Ppp, 'der,

one obtains

FF'=(e~ep/r~p)+ . . +infinite self-energies.

This is Fermi's explanation of the Coulomb law
in wave fashion, accompanied by infinite self-
energies of every single particle.

We propose to modify Fermi's mutual energy
(5) into the form:

—2
FF' =4pre ~ Q

—& Q
X {(g, e;P; sin8„cosl','„sin(I',„+l „))'

+(Z, e„.cosl '.; cos(1'„+!l,))'I (6)

making use of the invariant phase shift and
amplitude reduction (4) (4'). We remark that
all electrostatic results obtained from (6) could
as well be obtained from an energy expression
half-way between (5) and (6) in which the

reduction f„is applied only to one factor of

the squares (P. .)'. We even could omit the
phase lag altogether.

Another justification for the factor cos2&'=R„
is this. Due to the classical uncertainty 6X=ro
wave functions at the place X are to be replaced
by their averages with density exp( —r/rp), vis.

00

sin(cpx/c) p,
———

~ exp( —
{ P ~

rp-')
2~

„ .sin [(o(x+$) /c]d $

= sin(&ox/c) [1+(co/(op)']-'.



124 ALFRED LAND k

3. SELF-ENERGY AND MUTUAL

ENERGY OF PARTICLES
We discuss this integral in the limit M= ~
where Xp= pp. Here (10) reduces to

Next we consider the mutual energy of two
particles at rest in the distance r;;. Here

cos(I'„+f,) cos(1'„+I'.)
= -', cos(pp, r/c cos0,) +-', cos(phase)

where 8, is the angle between the wave s and
the direction of r;;. Replacing the summation
by the integration -', d(cos8, )(Q/2»r'c») p4'dp». , and
using the abbreviations

p»/cup =u, p»r/c =uxp, xp r/r p,
——

rp 2e'/3mc' co—s—t'= (1+u') 1

we obtain from (6) the mutual energy

0K;= (e'/r)(2/»r) du sin(uxp)u '(1+u') '
0

= (e»/r) L1 —exp( r/r p)]—(9)

For large r this is the Coulomb energy. For small
r the mutual energy tends toward the constant
value e'/rp ——Ppmc'. The mutual plus the self-
energies of a pair of electrons at the distance zero
is equal to the self-energy of a charge 2e. If an
electron and a positron approach to r=0 the
energy 2 (-,'mc') is released, but the system would
still retain its original non-electromagnetic mass.
This process has nothing to do with annihilation.
In general, a point charge acts on another point
charge like an exponentially shading-off charge
cloud of radius rp=2e'/3mc'

For the mutual energy of two electric par-
ticles of masses m and M we obtain from (6)
with Xp=r/Rp and Rp ——2e'/3Mc'

0E M=(e'/r)(2/»r) dw sinw w '
0

X( +1wx»/») &(]+w»/X») ' (l0)

For a single particle at rest, P; =0 and 1 „=I,
we obtain from (6)

Z P = (4»rc»/Q) e Q, co, ' c os'f, cos'(I'„+1,).
Replacing the sum by an integral we obtain

e 2 r ( Go ) e coo
ZP= ——

~
1+ )

d~= =-,'m;c'. (7)
2c »r J p E G)p 3 2c

Z =(e'/r)(2/»r) dw sinw w '(1+w'/x ') &

0

SQ 00

= (e'/r) (2/ »)rdw dt cos(wt) (1+t')—
&

0 0

XQ

= (e'/r) (2/»r) dwZp(w),
0

where Ep is the Bessel function. For xp=r/rp ——pp

this reduces to e'/r. In general one can say that
a test charge of mass ~ in the distance r from
the charge e of mass m feels a Coulomb potential
of the smaller charge

e' = e(2/»r) dwKp(w) (e.
0

Since Ep(w) for small w is —lg w+Ig2 —y=
—Igw+0. 11593, the potential energy at small
distance becomes

8„„=(e'/rp) (2/»r) [1.11593+lg(rp/r) ]
= (3mc'/»r) lg(3.052 rp/r)

For M&)m one obtains approximately

ZM» ——(3mc'/»r) lg(3.052 M/m). (12)

Whether the formulae (10, 11, 12) for particles
of different masses have any physical significance
depends on whether the protonic mass is or is
not of electromagnetic character. It seems more
reasonable to assume that the mass of the proton
is mainly that of a neutron, plus a small electron
mass. In this case the electric forces between
electrons and protons, and between protons and
protons, would be of the same type (9) as be-
tween electronic particles, with r0 being the
electronic radius.

The potential energy between two electrons
remains finite and differentiable even for r=0,

0
whereas the potential energy E „between the
electron and a test charge of infinite mass
(Rp ——0) becomes logarithmically infinite for
r =0.This is a distinction similar to that between
the potential of the vector Z (which remains
finite), and the potential of the vector D (that
becomes infinite for r=0) in the unitary theory
of Born and Infeld4)

4 M. Born, Proc. Roy. Soc. A143, 410 (1934).
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(cosl „)'over all angles 8„.Expanding (4') into
powers of P' we obtain the average

I
(cosl gi) / = cos l g

4 (a),'+—P'~
'

cos4l, —
3 E(002

cos'l, ~+
GOp )

if we neglect terms in p'. Remembering that the
average of cos'8„is -', and that of sin'8„ is 3

we obtain from (6) the self-energy of a moving
particle

21m. 1(x 4 3m 4
Z=(2e'(op/c) P ———+—

(
—+—P ———P—

322 2&2 3 16 3 4)

=-;mc'(1+-',p')

in agreement with relativity if P4 is neglected.
The result is mainly due to the invariance of
the phase and amplitude reduction.

Our considerations yield definite values for the
self- and mutual-energies. We cannot expect
that quantum theory will change these values
materially. In particular, there is no reason why
the self-energy should be multiplied by a factor

4. SELF-ENERGY OF PARTICLES IN MOTION

In order to find the electromagnetic self-energy
of a particle in motion we need the average of

of order 1000 on account of the magnetic dipole
energy of a spinning charge cloud. This expecta-
tion would be just as wrong as the expectation
of an infinite self-energy from the picture of a
point charge.

In conclusion: The electromagnetic self-energy
of a charged particle is finite. Hence there must
also be a deviation from Coulomb's law so as to
eliminate Coulomb's singularity for r=0. We
have tried to find the modified interaction energy
and the corresponding finite self-energy by a
modification of Fermi's radiation theory, taking
account of the classical uncertainty of position
due to the natural line breadth.

Our next task is that of trying to deduce the
modified energy expression (6) from a corre-
sponding modification of the general set-up of
radiation theory. Fermi's theory is based on
standing waves rather than on incoming and
outgoing waves. Since standing waves account
for retarded and advanced potentials in a sym-
metrical fashion, they cannot adequately describe
the very radiation damping that was the starting
point of our approach. Indeed, radiation damping
is due to transforming an incoming plane wave
into an outgoing spherical wave. (The corre-
sponding difficulties in the unreduced theory are
much greater due to the infinite self-'field of the
electron. )

5. MQDIFIED FERMI THEQRY

Fermi Eq. (140) introduces a Fourier expansion of the scalar and vector potential into standing
waves in a large volume 0:

V(r, t) = c(8'/II) & Q,Q, (t) cosI',„,
U(r, t) = c(8s/II) & P, Ln,g(t)+A, q, (t)] sinI', „, (14)

I'.„=co,(n, .r)/c+ phase.

a, and A, are unit vectors longitudinal and transversal to the wave s. Substitution of (14) into the
Maxwell equations with divU —BV/Oct=0 leads to the following differential equations for Q„z,
and gs ~

d'Q, /dt'+&v, 'Q, =c(8s/0)& g; e; cosI'. ;,

d' ,xd/t'+co, ' ,x= (8x/II)& P, e,(n,r', ) sinI'„.,

d'g, /dt'+a&, 'q. = (8s/0) & g, e;(A,r;) sinI'„.

Equation (15) has homogeneous solutions Q', g,o, g,' superposed by solutions of the inhomogeneous
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equation which are
Q, i(t) =c(8ir/Il)'* P; e;&o, ~(1 —P 2 cos'y, ) i cosI'„,

X (t) =c(8 i/rII)'* Q„e;P; '"it„cu, '(1—P cos'0„)—' sinI'„, (16)

when we suppose that r'~/c=P; and r„=0.'i1„is the angle between s and P;. By virtue of (16) and (14)
the field at every point r is composed of contributions of every single particle in a symmetric fashion,
aside from the pure field derived from Q', x', q'.

Referring to the amplitude reduction and the phase lag (4 ) we now define reduced quantities Q„
g„q,as the solutions of the following differential equation

d'Q, /dt'+co, 'Q, = c(8ir/0) l g; e; cosl'„cos(F.;+1„), (17)

etc. Compare these with (15). The solutions are Q, = Q,'+Q, ', etc. Here Q,' is identical with the
former Q,o whereas Q, ' is reduced in amplitude and lags in phase:

Q'(t) =c(8ir/0)'* Q; e;cu, '(1——P; cos'8„) ' cosf'„cos(I'„+f„), . (17')

etc. , to be compared with (16). We also define reduced potentials at the place of the particle e;.

V(i, t) =c(8ir/Q)'* g, Q, cosf„cos(I'.,+f„),
U(i, t) =c(8ir/II)l P, (u,g, +A,q, ) cos f„sin( I„+f„)

Given positions and given velocities of the particles produce Fourier components (17') satisfying
(17). Equations (15) are the Fourier representation of Maxwell's equations including div U —8 U/itct
=0. Since (15) for Q, is equivalent to (17) for Q„Eqs.(17) are only another form of Maxwell's
equations as long as i =0.

6. ENERGY OF PARTICLES IN A FIELD

In Fermi s (154),we write r„for—cy;, 1'for ti;, which is immateria. l for our main task, which is to
deduce (6) from a Hamiltonian We pr. opose the following modification of Fermi's Hamiltonian (154):

IE= P, m;c'+ P, g; (r';p;) +c(87r/Ii) '* P, Q, g; e; csol'„cso(I'„+f', ~)

—(8ir/0) P, P; (r';, n, x,+A,q,) cosf'„sin(I'.;+f „)
+-' 2 [(p '+ k

' —P ')+~ '(q '+x ' —Q.') j (18)

H differs in the terms containing g„from the unreduced Fermi Hamiltonian. Nevertheless, as we
shall see in (20), the energy of the pure field is the same as in Maxwell's theory, and only the mutual
energy is changed. As "coordinates" we consider the reduced quantities Q„g,q, ; the conjugate
"momenta" are P„(„p,. As equations of motion BH/BQ, = dP, /dt, BII—/BP, =dQ, /dt we obtain
the former Eqs. (17) which, as we saw before, are equivalent to Maxwell's equations for r';=0.
Furthermore, the first four terms of (18) can be written

Energy = rest+ potential+ kinetic energy

E=p; [m,c'+e;V(i)+(p;, fi; e;U(i)/c) j, — (18')

representing the Hamiltonian of a system of electric particles under the reduced potentials V and U,
defined in (17") with the Fourier amplitudes Q, = Q,o+Q, ', etc. and Q,0=Q,O. According to (18')
a monochromatic external potential Q, acts on the particle with a potential V that is reduced by the

factor cos|'„and has a phase lag f'„behind the phase of Q, . At the same time there is no damping
term in (18'). The motion of the electron under this reduced external potential then is the same as
its motion according to the usual theory where the effect of the unreduced potential is accompanied

by that of a damping term. The terms Q, ' in V calculated for vibrating electrors have no phase
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lag and will not produce an additional damping effect. This result seems very inconsistent indeed.
But we must remember that the method of standing waves accounts for advanced and retarded
potentials simultaneously, not only for an external potential Q.o but also for the potential Q, '
produced by a particle on itself. The whole problem needs further clarification.

7. TRANSFORMATION OF THE ENERGY

We now turn to transforming the energy (18) into a more convenient form in which the Hamil-
tonian form is abandoned, however. p; is the total momentum, p; —e~U(i)/c is the kinetic momentum
(P;)k'". It does not matter' in (17) that (p;)k'" and m;c' split up into an electromagnetic and a
mecha, nical part in the ratio of 3 to 1 (see below). Only the mechanical part is to be carried in m;c
and (r',p;)k'", the electromagnetic part being contained in the other terms of (18). The potential
momentum is a part of the second sum in (18) and cancels the negative potential momentum repre-.
sented by the fourth sum of (18). This leaves for the total energy:

E=g, m;c +2+„'(rp. ;) k'"+c( 82/rI)I* p; e, p, Q, cos(I'„.+I„)cosl„.
X-' p [(p 2+$ ' —p 2)+01 '(q 2+g ' —Q ')] (19)

A further simplification is obtained by virtue of [Fermi s (160)(161)]

00,@,—P, =O, (.=00,Q, —(c/01,)(82r/0)'* p; e; c sol „co(s„I+I.;),
which results in

Z= p„m;c2yp; (r';p;)ki" +(42rc2/fl) p, 01,-2(p; e; cosl „cos(r„+I.;)+-'2 g. (p, '+01.'q. ')

At last we can use the relations q, =p,. so that

q
2 —

(q 0)2+(q 1)2+2q Oq 1

p 2 —
(q 0)2+ (q 1)2+2q Oq 1

When summing over s the double products vanish because of independent phases. q,
' can be taken

from (16) whereas (II,')2 is small and of order p'. Thus the energy becomes (if we neglect p')

Q —Q. m c2+P (r P )kin+1 P [(P 0)2+~ 2(q 0)1]

+(4 c 2/rII2) +, 01, {(p;e;p; si n6„si n(I'„+ I„)cosl „)2+(e;cos(1'„+I„)cosl „)2I. (20)

B consists of the mechanical rest and kinetic energy of the particles, the pure field energy, and the
mutual energy between field and particles. For the latter (20) yields the expression used before in

(6) g.e.d.
The attempt to incorporate the phase lag and the amplitude reduction into the general set-up of

the radiation theory cannot be considered as satisfactory because of inherent difhculties of the
standing wave method. Nevertheless the results obtained in the case of particles at rest or in uniform
motion may be considered as a supplement to Dirac s investigation' of the classical electron. Dirac
has shown that the "own radiation field" of a particle leads to a self-accelerated motion in which the
term exp( r/rO) plays a majo—r role. We have tried to show here that radiation damping when
accounted for by the modified energy (6), leads to a mutual energy between two particles of the
extremely simple form

212 (e'/r) [1 —exp ( r/rO) ]. —

The corresponding electromagnetic self-energy (Ei ———2212 for r=0) is 00mc2 contradicting those who
think. that the mass ought to be completely of electromagnetic origin, and confirming the present
idea" that only a part of the mass can be electromagnetic.

'W. Heitler, Quantum Theory of Radiation (Oxford, 1936), p. 33. See also reference i.


