The Spectra of Cd IV, In V and Sn VI in the Isoelectric Sequence Rh I to Sn VI

MILTON GREEN

Department of Physics, University of California, Berkeley

(Received May 12, 1941)

The spectra of Cd IV, In V and Sn VI were photographed in the region 270A to 1800A with a three-meter, normal incidence, vacuum spectrograph, with a highly condensed, high voltage vacuum spark as a source of light. The irregular doublet law and the law of constant second difference were applied in the classification of many of the lines of these three ions. The separation of the $4d^{9} \,^{2}D$ multiplet of the ground state has been found for all three ions. Most of the odd terms arising from the $4d^{8}5p$ electron configuration and some of the even terms arising from the $4d^85s$ electron configuration have been determined. Classifications have been made for one hundred eighty-five lines of Cd IV, forty-three lines of In V and thirty-nine lines of Sn VI, making possible the assignment of fifty-one term values for Cd IV, thirty-two for In V and twenty-five for Sn VI.

[•] HE spectra of Rh I, Pd II and Ag III have been analyzed by Sommers,¹ Shenstone² and Gilbert,³ respectively. With the data on these three spectra in conjunction with the law of constant second difference and the irregular doublet law, the analyzed spectra of this isoelectronic sequence has been extended three more elements, i.e., through Sn VI. The predicted and observed terms for the spectra of

TABLE III. A comparison of the $4d^9 \, {}^2D_{3,2}$ splitting with the difference $4d^9 \, 5s \, {}^3D_3 - 4d^9 \, 5s \, {}^3D_1$ of the same element.

Ion	² D _{3,2} (см ⁻¹)	-	Ion	³ D _{3,1} (см	1 ⁻¹)
Rh I	2350	1100			
Pd II	3540	190	Pd I	3530	1045
Ag III	4610	200	Ag II	$4575 \left\{ \right.$	1105
Cd IV	5810	1200	Cd III	5770 {	1240
In V	7160 {	1550	In IV	7110	1540
Sn VI	8710	1330	Sn V	8620 [}]	1310

TABLE IV. Term values in Cd IV.

TABLE I. Predicted and observed terms in Cd IV. In V and Sn VI.

Elec- tron		Par- ent	Observed Terms				
Con- FIG.	Predicted Terms	Term in Ion	Cd IV	In V	Sn VI		
4d9	^{2}D		2D	^{2}D	2D		
	2S 2D	1S					
$4d^{8}5s$	2G	^{1}G	2G	-			
	2 and 4P 2 and 4F	3P 3P	2 and 4F				
	2P°	18					
4.10	$2(P^{\circ}D^{\circ}F^{\circ})$	1D	$^{2}(P^{\circ}D^{\circ}F^{\circ})$	${}^{2}(P^{\circ}D^{\circ}F^{\circ})$	$^{2}(P^{\circ}D^{\circ}F^{\circ})$		
4 <i>a</i> °0 <i>p</i>	2 (F (G H)) 2 and $4(S^{\circ}P^{\circ}D^{\circ})$	3P	$2(S^{\circ}P^{\circ}D^{\circ})$	$2(S^{\circ}P^{\circ}D^{\circ})$	$2(S^{\circ}P^{\circ}D^{\circ})$		
	2 and 4 $(D^{\circ}F^{\circ}G^{\circ})$	зF	2 and 4 (D°F°G°)	2 and $4(\hat{D}^{\circ}\tilde{F}^{\circ})'^4G^{\circ}$	2D° 2 and 4F° 4G		
			1		1		

TABLE II. Radiated frequencies with first and second differences. First series members.

Ion	$4d^{9} {}^{2}D_{3} - 4d^{8}({}^{3}F)5p {}^{2}D^{\circ}{}_{3}$			$4d^{9} {}^{2}D_{3} - 4d^{8}({}^{3}F)5p {}^{4}F^{0}{}_{4}$			
Rh I	28,737	43 005		29,867	41 370		
Pd II	72,732	+3,993 52 260	8365	71,246	52 292	11,003	
Ag III	125,092{	50,200	6850	123,628	50 345	6,963	
Cd IV	184,301	65 242	6134	182,973	65 543	6,197	
In V	249,644	71 076	5735	248,515	71 345	5,805	
Sn VI	320,720 [∫]	11,070		319,860	11,545		

¹ L. A. Sommers, Zeits. f. Physik 45, 147 (1927).
 ² A. G. Shenstone, Phys. Rev. 32, 30 (1928).
 ³ W. P. Gilbert, Phys. Rev. 48, 338 (1935).

Term Symb	OL	Relative Term Values (cm ⁻¹)	Term Sym	BOL	Relative Term Values (cm ⁻¹)
$4d^9$	${}^{2}D_{3}$	0	$4d^{8}({}^{3}F)5p$	$^{2}D^{\circ}{}_{2}$	187,213
A 79 (2 T) F	$^{4}D_{2}$	5,812		² G ² 4	188,147
$4d^{\circ}(^{\circ}F)5s$	*F5	108,704	(17)	² H ² ₃	188,296
	* <i>F</i> 4	111,734	(*P)5p	⁴ P ⁰ ₁	189,404
	⁴ <i>F</i> ₃	114,758		${}^{4}P{}^{0}{}_{2}$	190,411
	${}^{4}F_{2}$	116,125		${}^{4}P^{\circ}{}_{3}$	190,694
	${}^{2}F_{4}$	118,333	$(^{1}D)5p$	${}^{2}F_{3}^{\circ}$	191,953
	${}^{2}F_{3}$	120,557	-	$^{2}P^{\circ}{}_{1}$	194,212
$({}^{1}G)5s$	${}^{2}G_{5}$	133,860	1	${}^{2}F^{\circ}_{4}$	194,367
	2G_4	134,010		$^{2}P^{\circ}{}_{2}$	195,542
(³F)5p	$^{4}D^{\circ}_{4}$	172,387	1	$^{2}D^{\circ}{}_{3}$	196,255
	${}^{4}G^{\circ}{}_{5}$	175,319	$(^{3}P)5p$	⁴D°1	196,370
	⁴D°₃	177,252	$ ({}^{1}D)5p$	$^{2}D^{\circ}_{2}(?)$	196,485
	₄G° ₆	179,173	$(^{1}G)5p$	$^2H^{\circ}{}_5$	196,560
	⁴G°₄	179,375	$(^{3}P)5p$	4D°4	197,508
	₄G°₃	180,812		${}^{4}D^{\circ}{}_{2}$	198,220
	$^{4}D^{\circ}{}_{2}$	180,868		${}^{4}D^{\circ}{}_{3}$	198,338
	${}^{4}F^{\circ}{}_{5}$	181,672		$^{2}D^{\circ}_{3}$	199,525
	${}^{4}F^{\circ}{}_{2}$	182,176		$^{2}D^{\circ}_{2}$	200,743
	⁴D°₁	182,864	$({}^{1}G)5p$	${}^{2}H^{\circ}_{6}$	201,293
	4 <i>F</i> °₄	182,973	$({}^{3}P)5p$	${}^{2}P^{\circ}{}_{2}$	201,967
	$^{2}D^{\circ}_{3}$	184,301		${}^{2}S^{\circ}_{1}$	202,655
	${}^{2}G^{\circ}{}_{5}$	185,366	$({}^{1}G)5p$	${}^{2}F^{\circ}_{4}$	202,836
	${}^{4}F^{\circ}_{3}$	186,307		${}^{2}F^{\circ}_{3}$	204,196
	${}^{2}F^{\circ}_{4}$	187,168	(³P)5⊅	$^{4}S_{2}^{\circ}$	204,294
	-			${}^{2}P^{\circ}_{1}$	206,402

MILTON GREEN

TABLE V. Classified lines in Cd IV.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	INT.	λ νας.	ν VAC.	CLASSIFICATION	INT.	λ νας.	ν VAC.	CLASSIFICATION
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1929.70	51,821	$4d^{8}({}^{3}F)5s {}^{2}F_{3} - 4d^{8}({}^{3}F)5p {}^{4}D^{\circ}_{4}$	10	1358.11	73,632	${}^{4}F_{4} - ({}^{3}F) {}^{2}G^{\circ}{}_{5}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1850.40	54,043 56,700	${}^{2}F_{4} - {}^{4}D^{2}_{4}$ ${}^{2}F_{3} - {}^{4}D^{2}_{3}$	12	1354.78	73,813	${}^{2}F_{3} - ({}^{1}D) {}^{2}F_{4}$ ${}^{4}F_{5} - ({}^{3}F) {}^{4}F_{6}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ŏ	1735.42	57,623	${}^{4}F_{3} - {}^{4}D^{\circ}_{4}$	8	1346.15	74,286	${}^{4}F_{2} - ({}^{3}P) {}^{4}P^{\circ}_{2}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1700.14	58,819	${}^{2}F_{3} - {}^{4}G^{\circ}_{4}$	12	1340.97	74,573	$\begin{cases} {}^{4}F_{4} - & ({}^{3}F) {}^{4}F_{3} \\ {}^{4}F_{2} - & ({}^{3}P) {}^{4}F_{3} \end{cases}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	1659.51	60,259	${}^{14}_{2} - {}^{2}_{3}_{3} - {}^{4}_{3} {}^{3}_{3}$	6	1333.53	74,989	${}^{(1)}_{2}F_{3} {}^{(1)}_{3}F_{2}^{(1)}F_{2}^{(3)}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1658.08	60,311	${}^{2}F_{3} - {}^{4}D^{\circ}_{2}$	10	1325.55	75,440	$4d^{8}({}^{3}F)5s {}^{4}F_{4} - 4d^{8}({}^{3}F)5p {}^{2}F^{\circ}_{4}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1648.58	60,658 61.042	${}^{4}F_{4} - {}^{4}D^{2}_{4}$	8	1321.85	75,051	${}^{4}F_{3} - ({}^{6}P) {}^{4}P^{+}_{2}$ ${}^{4}F_{2} - ({}^{1}D) {}^{2}F^{0}_{3}(?)$
	Ô	1635.81	61,132	${}^{4}F_{2} - {}^{4}D^{\circ}_{3}$	4	1316.99	75,931	${}^{2}F_{3} - ({}^{1}D) {}^{2}D^{\circ}{}^{\circ}{}^{2}(?)$
	8	1622.87	61,619	${}^2F_3 - {}^4F^{\circ}_2$	8	1316.89	75,935	${}^{4}F_{3} - ({}^{3}P) {}^{4}P^{\circ}_{3}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1602.20	62,414	${}^{2}F_{4} - {}^{2}F_{4}$	12	1306.07	76,566	${}^{4}F_{4} - {}^{(-D)}F_{4}^{-}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1600.13	62,495	${}^{4}F_{3} - {}^{4}D^{\circ}_{3}$	14	1304.36	76,666	${}^{4}F_{5} - {}^{2}G^{\circ}_{5}$
$ \begin{array}{c} 6 & 1572,00 & 63,333 & (\mathbf{F})55, \mathbf{5F_{r}} & (\mathbf{F})\mathbf{5p,} \mathbf{FP_{s}}^{r} & 10 & 1285,63 & 777,33 & \mathbf{FP_{r}} & (\mathbf{D}) \mathbf{2D}^{r} \\ 10 & 1570,20 & 63,588 & \mathbf{4F_{r}} & \mathbf{TP_{r}}^{r} & \mathbf{CP_{r}}^{r} & 10 & 1283,33 & 77,928 & \mathbf{FP_{r}} & (\mathbf{D}) \mathbf{2D}^{r} \\ 6 & 1547,02 & 64,601 & \mathbf{4F_{r}} & \mathbf{TP_{r}}^{r} & \mathbf{CP_{r}}^{r} & 12 \\ 10 & 1547,02 & 64,601 & \mathbf{4F_{r}} & \mathbf{TP_{r}}^{r} & \mathbf{CP_{r}}^{r} & 12 \\ 10 & 1547,02 & 64,601 & \mathbf{4F_{r}} & \mathbf{TP_{r}}^{r} & \mathbf{CP_{r}}^{r} & 12 \\ 1266,157 & 78,073 & \mathbf{4F_{r}} & (\mathbf{P}) \mathbf{1D}^{r} \\ 6 & 1545,22 & 64,745 & \mathbf{4F_{r}} & \mathbf{TP_{r}}^{r} & \mathbf{TP_{r}}^{r} & 1226,613 & 73,073 & \mathbf{4F_{r}} & (\mathbf{P}) \mathbf{1D}^{r} \\ 6 & 1551,57 & 65,570 & \mathbf{4F_{r}} & \mathbf{1D}^{r} & \mathbf{1D}^{r} \\ 6 & 1515,77 & 66,103 & \mathbf{4F_{r}} & \mathbf{1D}^{r} \\ 6 & 1513,72 & 66,057 & \mathbf{4F_{r}} & \mathbf{4d^{8}(\mathbf{F})55} & \mathbf{1D}^{r} \\ 6 & 1513,75 & 66,013 & \mathbf{4F_{r}} & \mathbf{1C}^{r} \\ 6 & 1513,75 & 66,113 & \mathbf{4F_{r}} & \mathbf{1D}^{r} \\ 6 & 1513,75 & 66,166 & \left\{ \begin{array}{c} \mathbf{2F_{r}} \\ \mathbf{2F_{r}} \\ \mathbf{7F_{r}} & \mathbf{1D}^{r} \\ \mathbf{7F_{r}}^{r} & \mathbf{1D}^{r} \\ \mathbf{7F_{r}}^{r} & \mathbf{1D}^{r} \\ \mathbf{7F_{r}}^{r} & \mathbf{1D}^{r} \\ 11240,06 & 80,233 & \mathbf{4F_{r}} & \mathbf{1D}^{r} \\ 11240,06 & 80,233 & \mathbf{4F_{r}} & \mathbf{1D}^{r} \\ 11481,79 & 1247,07 & 148,205 & 67,143 & \mathbf{4F_{r}} & \mathbf{2D}^{r} \\ 11481,79 & 1247,07 & 148,205 & 67,143 & \mathbf{4F_{r}} & \mathbf{2D}^{r} \\ 1148,12,28 & 67,418 & \mathbf{4F_{r}} & \mathbf{1D}^{r} \\ 1449,179 & 57,543 & \mathbf{1D}^{r} \\ 1149,179 & 67,504 & (C155,57,-16,-16,55,57,-16,-16,55,57,-16,-16,55,57,-16,-16,55,57,-16,-16,55,57,-17,-17,57,57,57,57,57,57,57,57,57,57,57,57,57$	10 6	1598.73	62,550 62 701	$({}^{1}G)5s {}^{2}G_{4} - ({}^{1}G)5p {}^{2}H^{\circ}_{5}$	10	1299.46	76,955	${}^{2}F_{3} - ({}^{3}P) {}^{4}D^{\circ}_{4}$ ${}^{2}F_{2} - {}^{4}D^{\circ}_{6}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1578.90	63,335	$({}^{3}F)5s {}^{2}F_{4} - ({}^{3}F)5p {}^{4}F_{5}^{6}$	10	1285.63	77,783	${}^{2}F_{3} - {}^{4}D^{\circ}_{3}^{2}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1572.69	63,585	${}^4F_4 - {}^4G^{\circ}_5$		1283.23	77,928	${}^{2}F_{4}-$ (1D) ${}^{2}D^{\circ}_{3}$
$ \begin{array}{c} \mathbf{\hat{6}} & [1547,01] & \mathbf{\hat{6}4}, \mathbf{\hat{6}41} & \mathbf{\hat{1}} \mathbf{\hat{r}}_{1-}^{-} & \mathbf{\hat{1}} \mathbf{\hat{r}}_{2-}^{-} & \mathbf{\hat{1}} \mathbf{\hat{1}}_{2-}^{-} & [226, \mathbf{\hat{4}7} & \mathbf{\hat{1}8}, \mathbf{\hat{5}60} & \mathbf{\hat{1}} \mathbf{\hat{r}}_{1-}^{-} & (\mathbf{\hat{1}}\mathbf{\hat{1}}) \mathbf{\hat{1}} \mathbf{\hat{1}}_{2-}^{-} & \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}}_{2-}^{-} & \mathbf{\hat{1}} 1} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} 1} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} 1} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} \mathbf{\hat{1}} 1} \mathbf{\hat{1}} 1$	10	1570.20	03,080 64 615	${}^{4}F_{2} - {}^{4}D^{2}_{4}$	8	1280.50	78,094	${}^{4}P_{2} - {}^{2}P_{1}^{-1}$ ${}^{2}F_{4} - {}^{(3}F) {}^{4}F_{5}^{0}$
	Ğ	1547.01	64,641	${}^2F_4 - {}^4F^{\circ}_4$	12b	1266.47	78,960	${}^{4}F_{4} - ({}^{3}P) {}^{4}P^{\circ}_{3}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1545.79	64,691	${}^{4}F_{2} - {}^{4}G^{\circ}_{3}$		1266.25	78,973	${}^{2}F_{3} - ({}^{3}P) {}^{2}D^{\circ}_{3}$ ${}^{2}F_{2} - ({}^{3}P) {}^{4}D^{\circ}_{3}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1544.52	65.520	$^{4}F_{4} ^{4}D^{\circ}_{3}$	6	1259.14	79,421	${}^{1}F_{2}^{-}$ $({}^{1}D) {}^{2}D {}^{4}P^{\circ}_{2}$
	2	1520.88	65,750	${}^{2}F_{3} - {}^{4}F_{3}^{\circ}$		(OV)(?)	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 6	1515.77	65,973 66.054	$4d^{s}({}^{s}F)5s {}^{2}F_{4} - 4d^{\circ}({}^{s}F)5p {}^{2}D^{\circ}_{3}$ ${}^{4}F_{0} - {}^{4}F^{\circ}_{0}$		1256.16	79,608 78,004	$4d^{\circ}({}^{\circ}F)55 {}^{\circ}F_{3} - 4d^{\circ}({}^{1}D)5p {}^{2}F_{4}$ ${}^{2}F_{4} - ({}^{3}P) {}^{4}D^{\circ}_{2}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1513.75	66,057	${}^{4}F_{3}^{2} - {}^{4}G_{3}^{\circ}$		1247.39	80,195	${}^{2}F_{3}$ - ${}^{2}D^{\circ}_{2}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	1512.57	66,113	${}^{4}F_{3} - {}^{4}D^{\circ}_{2}_{2}_{2}_{2}_{2}_{2}^{\circ}_{2}$	0	(CIII)()	?)	$4E$ $(1D) 2E^{\circ}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6b	1501.13	66,616	$\left\{\begin{array}{ccc} {}^{2}\Gamma_{3} - & {}^{2}\Gamma_{4} \\ {}^{4}F_{5} - & {}^{4}G^{\circ}_{5} \end{array}\right\}$	10	1246.06	80,220	${}^{-1}F_4 = ({}^{-1}D) {}^{-1}F_3$ ${}^{4}F_2 = ({}^{3}P) {}^{4}D^{\circ}_1$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1500.11	66,662	${}^{2}F_{3} - {}^{2}D^{\circ}_{2}$	4	1237.87	80,784	${}^{4}F_{3} - {}^{2}P_{2}^{\circ}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1498.39	66,738 67.034	${}^{4}F_{2} - {}^{4}D^{\circ}_{1}$ ${}^{2}F_{2} - {}^{2}C^{\circ}_{2}$	0	1231.51	81,201 81 407	$2F_4 - 2D_3^2$ $2F_2 - 2P_2^2$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	1483.28	67,418	${}^{4}F_{3} - {}^{4}F_{2}^{\circ}$	4	1227.07	81,495	${}^{4}F_{3}^{3}$ - (1D) ${}^{2}D^{\circ}_{3}^{2}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	1482.95	67,433	$({}^{1}G)5s {}^{2}G_{5} - ({}^{1}G)5p {}^{2}H^{\circ}_{6}$	10	1223.52	81,731	${}^4F_3 - {}^2D^{\circ}_2$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 6	1479.37	67,596 67,644	$({}^{\circ}F)55 {}^{2}F_{3} - ({}^{\circ}F)5p {}^{2}G^{\circ}_{4}$ ${}^{4}F_{4} - {}^{4}G^{\circ}_{4}$		1218.04	82,099 82,279	${}^{4}F_{2} - {}^{4}D_{2}$ ${}^{2}F_{3} - {}^{(1G)}{}^{2}F_{4}^{\circ}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1476.22	67,741	${}^{2}F_{3} - {}^{2}F_{3}^{\circ}$	6	1210.24	82,638	${}^{4}F_{4} - ({}^{1}D) {}^{2}F^{\circ}_{4}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1471.08	67,978	${}^2F_4 - {}^4F_3$ ${}^4F_2 - {}^2D_3$		1208.43	82,752	${}^{4}F_{3} - ({}^{3}P) {}^{4}D_{4}^{\circ}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	1465.97	68,214	${}^{4}F_{3}^{2} - {}^{4}F_{4}^{\circ}$	3	1198.15	83,462	${}^{4}F_{1} - {}^{2}D^{\circ}{}^{3}_{2}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	1452.90	68,828	$({}^{1}G)5s {}^{2}G_{4} - ({}^{1}G)5p {}^{2}F^{\circ}_{4}$	12	1196.47	83,579	${}^{4}F_{3} - {}^{4}D^{\circ}_{3}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10 6	1452.03	68,841 68,979	$({}^{\circ}F)55 {}^{2}F_{4} - ({}^{\circ}F)5p {}^{2}F_{4}^{\circ}$ $({}^{1}G)55 {}^{2}G_{5} - ({}^{1}G)5p {}^{2}F_{4}^{\circ}$	10	1195.03	83,038	${}^{2}F_{3} - ({}^{3}G) {}^{2}F_{3}$ ${}^{2}F_{3} - ({}^{3}P) {}^{4}S^{\circ}_{2}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1447.54	69,083	$({}^{3}P)5s {}^{4}F_{4} - ({}^{3}F)5p {}^{4}G^{\circ}_{3}$	20	1183.40	84,502	$4d^{8}({}^{3}F)5s {}^{2}F_{4} - 4d^{8}({}^{1}G)5p {}^{2}D^{\circ}_{2}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 4	1437.90	69,546 60,821	${}^{4}F_{3} - {}^{2}D_{3}^{\circ}$		1183.07	84,526 84 627	${}^{4}F_{4} - {}^{2}D_{3}^{\circ}$ ${}^{(3}F) {}^{4}F_{2} - {}^{(3}P) {}^{2}D_{2}^{\circ}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{4}$	1431.55	69,854	${}^{2}F_{3} - ({}^{3}P)5p {}^{4}P^{\circ}_{2}$	10	1179.73	84,765	$(1)^{4}F_{3}^{2}$ $(1)^{2}D^{\circ}_{3}^{2}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	1429.83	69,938	${}^{4}F_{4} - ({}^{3}F)5p {}^{4}F_{2}^{\circ}F_{5}$	14	1167.30	85,668	${}^4F_5 - {}^2F^{\circ}_4$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1429.28	09,905 70,139	${}^{2}F_{4} - {}^{2}F_{3}$ ${}^{2}F_{3} - {}^{(3}P)5p {}^{4}P^{\circ}_{3}$	0	1164.89	85,845	${}^{+}F_{4} - {}^{-}D_{4}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	1424.92	70,179	$4d^{8}({}^{1}G)5s {}^{2}G_{4} - 4d^{8}({}^{1}G)5p {}^{2}F^{\circ}_{3}$	20	1164.65	85,863	${}^{2}F_{4} - ({}^{1}G) {}^{2}F_{3}^{\circ}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 16	1424.81	70,185	$({}^{3}F)5s {}^{4}F_{2} - ({}^{3}F)5p {}^{4}F_{5} $	47	1162.87	85,994 86 525	${}^{4}F_{3} - ({}^{3}P) {}^{2}D^{\circ}_{2}$ ${}^{4}F_{3} - {}^{2}S^{\circ}_{3}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	1414.83	70,680	${}^{4}F_{5} - {}^{4}G^{\circ}_{4}$	10	1154.64	86,607	${}^{4}F_{4}^{2} - {}^{4}D^{\circ}_{3}^{1}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	1406.58	71,094	$4d^{8}({}^{3}F)5s {}^{4}F_{2} - 4d^{8}({}^{3}F)5p {}^{2}D^{\circ}_{2}$	2	1146.71	87,206	${}^{4}F_{3} - {}^{2}P^{\circ}_{2}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	1403.68	71,239	${}^{4}F_{4} - {}^{4}F_{4}$ ${}^{2}F_{2} - {}^{(1D)}{}^{2}F^{\circ}_{2}$	8	1139.04	87,793	${}^{4}F_{2} - {}^{2}D_{3}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1397.65	71,549	${}^{4}F_{3}^{\circ} - ({}^{3}F) {}^{4}F_{3}^{\circ}$	10	1134.08	88,177	${}^{4}F_{2} - ({}^{3}P) {}^{4}S_{2}^{\circ}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	1385.55	72,173	${}^{4}F_{2} - {}^{2}F_{3}$ ${}^{2}F_{4} - {}^{(3}P) {}^{4}D^{\circ}$	12	1126.00	88,810 80 4 3 3	${}^{4}F_{5} - {}^{4}D^{\circ}_{4}$ ${}^{4}F_{2} - {}^{(1C)}2F^{\circ}_{2}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12^{2}	1380.98	72,412	${}^{-1'4}_{4F_3}$ ${}^{(3F)}_{2F_4}$	24	1116.88	89,535	${}^{4}F_{3} - ({}^{3}P) {}^{4}S^{\circ}_{2}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	1370.48	72,967	${}^{4}F_{5} - {}^{4}F_{5}$	0	1107.76	90,272	${}^{4}F_{2} - {}^{2}P_{1}^{\circ}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 12	1364.37	73,294 73,302	${}^{4}F_{2} - ({}^{3}P) {}^{4}P^{3}_{1}$ ${}^{4}F_{2} - ({}^{3}F) {}^{2}C^{\circ}.$	0	1097.53	91,114 92,464	$4a^{\circ}({}^{\circ}F)55 {}^{*}F_{4} - 4a^{\circ}({}^{1}G)5p {}^{2}F_{4}^{\circ}(?)$ $\frac{4F_{4}}{2F^{\circ}}$
	4	1359.86	73,537	${}^{4}F_{3} - {}^{2}F_{3}$	10	1062.23	94,142	${}^{4}\overline{F}_{5} - {}^{2}\overline{F}_{4}^{\circ}$
$6 1358.49 73,611 \qquad {}^{2}F_{4} - ({}^{1}D) \; {}^{2}F_{3} \qquad 3 583.30 171,438 \qquad 4d^{9} \; {}^{2}D_{2} - ({}^{3}F) \; {}^{4}D_{3}^{\circ}$	6	1358.49	73,611	${}^{2}F_{4}$ – (1D) ${}^{2}F^{\circ}_{3}$	3	583.30	171,438	$4d^{9} {}^{2}D_{2} - ({}^{3}F) {}^{4}D^{3}{}_{3}$

Int.	λ νας.	ν VAC.	CLASSIFICATIO	n Int	. λ vac.	ν VAC.	Classificati	ON
3	580.09	172,387	${}^{2}D_{3}-$	$^{4}D^{\circ}_{4}$ 14	525.18	190.411	2D -	(3P) 4P
3	571.43	175,000	$^{2}D_{2}^{\circ}-$	${}^{4}G^{\circ}_{3}$ 17	525.09	190.444	$^{2}D_{n}^{2}-$	(1D) $2D$
6	571.25	175,055	$^{2}D_{2}$ -	$^{4}D^{\circ}_{4}$ 14	524.77	190.560	${}^{2}D_{0}^{2}$ -	(^{3}P) ^{4}D
18	567.03	176,358	$^{2}D_{2}-$	${}^{4}F^{\circ}{}_{2}$ 14	524.46	190.672	${}^{2}D_{2}^{2}-$	(1D) 2D
3	564.80	177,054	$^{2}D_{2}-$	$4P_{1}^{\circ}$ 14	524.40	190.694	${}^{2}D_{2}$ -	(3P) 4P
11	564.17	177,252	$^{2}D_{3}-$	$^{4}D^{\circ}_{3}$ 9	520.96	191,953	${}^{2}D_{2}$ -	(1D) 2F
14	560.25	178,492	${}^{2}D_{2}-$	$^{2}D^{\circ}_{3}$ 14	519.41	192.526	${}^{2}D_{2}$ -	(3P) 4D
9	557.49	179,375	${}^{2}D_{3}-$	${}^{4}G^{\circ}{}_{4}$ 1	516.22	193,716	${}^{2}D_{2}$ -	(3P) 2D
18	554.04	180,493	${}^{2}D_{2}-$	${}^{4}F^{\circ}{}_{3}$ 17	514.49	194,367	${}^{2}D_{3} - 4d^{8}($	$(D)5h^2F$
17	553.06	180,812	$^{2}D_{3}-$	${}^{4}G^{\circ}_{3}$ 17	512.99	194.936	${}^{2}D_{2}$ -	(3P) 2D
10	552.89	180,868	${}^{2}D_{3}$ -	${}^{4}D^{\circ_{2}}$ 17	511.40	195.542	${}^{2}D_{2}$ -	
11	551.26	181,403	$^{2}D_{2}-$	$^{2}D^{\circ}_{2}$ 3	509.80	196,155	${}^{2}D_{2}^{\circ}-$	(3P) $2P$
10	548.92	182,176	$^{2}D_{3}-$	${}^{4}F^{\circ}{}_{2}$ 17	509.54	196,255	${}^{2}D_{3}^{-}$	(1D) 2T
11	548.00	182,482	$^{2}D_{2}-$	${}^{2}F^{\circ}_{3}$ 17	508.01	196,847	${}^{2}D_{2}^{\circ}-$	(3P) 25
25	546.53	182,973	$^{2}D_{3}-$	${}^{4}F^{\circ}_{4}$ 19	506.31	197,508	${}^{2}D_{3}^{2}-$	(3P) $4T$
9	544.68	183,594	${}^{2}D_{2} - 4d^{8}({}^{3}P$	$2)5p ^4P^{\circ}_1 \qquad 17$	504.49	198.220	$^{2}D^{\circ}_{2}$ -	41
25	542.59	184,301	$^{2}D_{3}-$ ($({}^{3}\hat{F}) {}^{2}D^{\circ}{}_{3} = 11$	504.19	198.338	$^{2}D^{2}$	4 1
18	541.73	184,594	${}^{2}D_{2}-$ (${}^{3}P) {}^{4}P^{\circ}{}_{2} = 14$	504.09	198.377	$^{2}D_{2}$	$({}^{1}G) {}^{2}F$
17	540.89	184,881	$^{2}D_{2}-$	$^{4}P^{\circ}_{3}$ 3	503.81	198.488	${}^{2}D_{2}^{2}-$	(3P) 4S
14	537.22	186,144	${}^{2}D_{2}-$ ($^{1}D) ^{2}F^{\circ}_{3}$ 1	501.19	199.525	${}^{2}D_{2}$ -	2L
17	536.75	186,307	$^{2}D_{3}-$	$({}^{3}F) {}^{4}F {}^{\circ}{}_{3} $ 17	498.53	200,590	$^{2}D^{\circ}_{2}$ –	$2 \overline{p}$
17	534.28	187,168	$^{2}D_{3}-$	${}^{2}F^{\circ}_{4}$ 17	498.15	200.743	${}^{2}D_{2}^{2}-$	2
18	531.50	188,147	${}^{2}D_{3}$ -	$^{2}G^{\circ}_{4}$ 17	495.13	201,967	${}^{2}D_{3}$ -	2 P
18	531.08	188,296	${}^{2}D_{3}$ -	${}^{2}F^{\circ}_{3}$ 17	493.00	202,840	${}^{2}D_{3}$ -	$({}^{1}G) {}^{2}F$
14	530.78	188,402	${}^{2}D_{2}$ — ($^{1}D) ^{2}P^{\circ}_{1} \qquad 2$	489.76	204,182	${}^{2}D_{2}$ -	24
18	527.06	189,732	${}^{2}D_{2}^{-}$	${}^{2}P^{\circ}{}_{2}$ 10	489.49	204.294	${}^{2}D_{2}$ -	(3P) 45

TABLE V.—Continued.

these ionized atoms are shown in Table I. In Table II are listed the frequencies of the two strong transitions $4d^{9} {}^{2}D_{3}-4d^{8}({}^{3}F)5p^{2}D^{\circ}_{3}$, and $4d^{9} {}^{2}D_{3}-4d^{8}({}^{3}F)5p^{4}F^{\circ}_{4}$ with first and second differences. The data in the second difference column show an approach toward a constant value for increasing ionization. The displaced frequency diagram for $4d^{9}-4d^{8}5p$ transition is shown in Fig. 1.

The data in Table III give a comparison of the

TABLE VI. Term values in In V.

Term Symbol	Relative Term Values (cm ⁻¹)	TERM SYMBOL	Relative Term Values (cm ⁻¹)
$\begin{array}{c} 4d^9 \ {}^{9}D_3 \\ {}^{2}D_2 \\ {}^{2}D_2 \\ 4d^8 ({}^{3}F)5p \ {}^{4}D^0 {}^{4} \\ {}^{4}D^0 {}^{3} \\ {}^{4}G^0 {}^{4} \\ {}^{4}G^0 {}^{3} \\ {}^{4}G^0 {}^{4} \\ {}^{4}G^0 {}^{4} \\ {}^{4}G^0 {}^{4} \\ {}^{4}G^0 {}^{2} \\ {}^{4}F^0 {}^{2} \\ {}^{4}F^0 {}^{2} \\ {}^{2}D^0 {}^{2} \\ {}^{4}F^0 {}^{3} \\ {}^{2}D^0 {}^{2} \\ {}^{2}D^0 {}^{2} \\ {}^{4}F^0 {}^{3} \\ {}^{2}D^0 {}^{2} \\ {}^{2}D^0 {}^{2} \\ {}^{4}F^0 {}^{3} \\ {}^{2}D^0 {}^{2} \\ {$	$\begin{array}{c} 0\\ 7,165\\ 236,317\\ 241,051\\ 243,315\\ 245,128\\ 246,145\\ 246,713\\ 248,515\\ 249,644\\ 252,648\\ 252,648\\ 252,691\\ 253,878\\ 257,129\\ 257,129\\ 257,294\\ 258,598\\ 261,220\\ \end{array}$	$(^{1}D)5p \ ^{2}F^{\circ}_{4} \ ^{2}P^{\circ}_{2} \ ^{2}D^{\circ}_{2} \ ^{2}D^{\circ}_{2} \ ^{2}D^{\circ}_{2} \ ^{2}D^{\circ}_{2} \ ^{3}D^{\circ}_{2} \ ^{4}D^{\circ}_{4} \ ^{4}D^{\circ}_{4} \ ^{4}D^{\circ}_{2} \ ^{4}D^{\circ}_{3} \ ^{2}D^{\circ}_{2} \ $	$\begin{array}{c} 261,260\\ 262,082\\ 262,971\\ 263,555\\ 264,124\\ 265,908\\ 266,071\\ 268,226\\ 268,894\\ 270,197\\ 270,850\\ 271,245\\ 272,565\\ 273,867\\ 275,305\\ \end{array}$

over-all separation of the triplet levels of the $4d^{9}5s$ electron configuration with the doublet separation of the normal $4d^{9} {}^{2}D$ state of the ion, indicating the existence of nearly pure *jj*-coupling between the $4d^{9}$ ion and the 5s electron for the ionized atoms isoelectronic with Pd I.

The spectrograms of cadmium, indium and tin were taken with a three-meter normal incidence vacuum spectrograph. The electrodes used for obtaining the spectra of cadmium and tin were cast from the pure molten metals while those for indium were made by packing an alloy of indium and aluminum into aluminum shells. All elec-

MILTON GREEN

INT.	λ νας.	v VAC.	CLASSIFICATION	INT.	λ νας.	ν VAC.	CLASSIFICA	TION
2	423 16	236 317	$4d^{9} {}^{2}D_{2} - 4d^{8}({}^{3}F)5p {}^{4}D^{\circ}$	11	390.92	255.807	$4d^{9} {}^{2}D_{2} - 4d^{8}({}^{1}D)$	$5\phi ^{2}D^{\circ}_{3}$
õ	420.16	238,005	$^{2}D_{0} - (^{3}F) + ^{4}G^{\circ}_{2}$	11	390.03	256.391	${}^{2}D_{2} - ({}^{1}D)$	$^{2}D^{\circ}_{2}(?)$
ž	418 45	238 977	${}^{2}\overline{D}_{a}^{2} - ({}^{3}F) + {}^{4}\overline{D}_{a}^{\circ}$	14	388.91	257.129	${}^{2}D_{3} - ({}^{3}P)$	${}^{4}P^{\circ}_{3}$
ő	117 13	230 561	${}^{2}D_{0} - ({}^{3}F) + {}^{4}F^{\circ}_{0}$	3	388.66	257,294	${}^{2}D_{3} - ({}^{3}P)$	${}^{4}P^{\circ}_{2}$
0	417.45	241 051	$2D_{1}$ (3F) $4D^{\circ}$	10	386.70	258,598	${}^{2}D_{3} - ({}^{1}D)$	${}^{2}F^{\circ}_{3}$
0	414.00	241,031	$2D_{a} = \begin{pmatrix} 1 \\ 3F \end{pmatrix} = 2D_{a}^{o}$	17	386.21	258,927	${}^{2}D_{2} - ({}^{3}P)$	4 D °3
Ň	412.41	242,477	$2D_1 = 4C^{\circ}$		(CUII)(?)	- 2 (-)	- 0
2	407.95	245,120	$2D_{1} = (3F) 2D_{2}$	10	383.05	261 063	$^{2}D_{2}-(^{3}P)$	$^{2}D^{\circ}_{a}$
3	407.30	245,465	$2D_2 = (1) D_2$	11	382.76	261,260	$2D_2 - (1D)$	${}^{2}\overline{F}{}^{\circ}$
9	407.20	245,551	$\begin{pmatrix} 2D \\ z \end{pmatrix} = \begin{pmatrix} 3E \\ z \end{pmatrix} \begin{pmatrix} 2F^{\circ} \\ z \end{pmatrix}$	0	382 14	261 684	$2D_{0}^{2}$ (3P)	2 D°
3	405.33	246,713	$\begin{pmatrix} -D_2 \\ 2D_1 \\ 2D_1 \\ (3E) \\ 4E^{\circ}$	11	381 56	262 082	$2D_{n}^{2}$ (1D)	$2\tilde{P}^{\circ}$
05	402.20	240 515	$\begin{pmatrix} -D_2 - (-T) & T_2 \\ 2D & (3E) & 4E^{\circ} \end{pmatrix}$	0	380.27	262,002	$2D_{n-1}$	2 D°.
25	402.39	240,515	$^{2}D_{3}$ (^{3}F) $^{2}D^{\circ}$	3	370 24	263 685	${}^{2}D_{0} - ({}^{3}P)$	250,
25	400.57	249,044	$^{2}D_{3}$ $^{(\circ}F)$ $^{-}D_{3}$	17	378 61	263,003	$2D_{2}$ (1)	4 nº.
9	400.05	249,969	$^{2}D_{2}$ (^{3}P) $^{4}P_{3}$	10	276 70	265,124	$^{2}D_{3} = (17)$	$2F^{\circ}$
10	399.79	250,131	${}^{2}D_{2} - ({}^{3}P) {}^{4}P^{*}{}_{2}$	10	376.07	203,400	$^{-}D_{2}$ (-0)	4D°
3	397.73	251,427	${}^{2}D_{2} - ({}^{1}D) {}^{2}F_{3}$	0	370.07	203,908	$^{-}D_{3} - (^{\circ}T)$	4D°
11	395.74	252,691	${}^{2}D_{3} - ({}^{3}F) + {}^{4}F_{3}$	0	3/3.84	200,071	$^{2}D_{3} - (^{2}T)$	-D 3
25	303 80	253 878	$\begin{cases} 2D_3 - (^3F) & 2F^3 \end{cases}$	2	374.95	200,702	$^{*}D_{2} - (^{\circ}P)$	*.) 2 9700
25	393.09	230,010	$({}^{2}D_{3} - ({}^{3}F) - {}^{2}F_{4})$	10	372.94	268,140	$^{4}D_{2} - (^{3}P)$	$^{*}P_{1}$
1	393.60	254,065	${}^{2}D_{2} - ({}^{1}D) - {}^{2}P_{1}^{0}$	10	372.82	208,226	$^{2}D_{3} - (^{3}P)$	$^{2}D^{-2}$
9	392.46	254,803	${}^{2}D_{3}$ - (${}^{3}F$) ${}^{2}G^{\circ}_{4}$	6	370.10	270,197	$^{4}D_{3} - (^{8}P)$	$^{2}P^{\circ}{}_{2}$
9	392.29	254,914	$^{2}D_{2}-$ (^{1}D) $^{2}P^{\circ}_{2}$	6	368.67	271,245	$^{2}D_{3}-$ (^{1}G)	2 F~4
				1				

TABLE VII. Classified lines in In V.

TABLE VIII. Term values in Sn VI.

TERM SYMBOL	Relative Term Values (cm ⁻¹)	Term Symbol	Relative Term Values (cm ⁻¹)
$\begin{array}{r} 4d^9 {}^2D_3 \\ {}^2D_2 \\ 4d^8 ({}^3F)5p \ {}^4G^\circ {}_3 \\ {}^4F^\circ {}_2 \\ {}^4F^\circ {}_4 \\ {}^2D^\circ {}_3 \\ {}^4F^\circ {}_3 \\ {}^2F^\circ {}_3 \\ ({}^3P)5p \ {}^4P^\circ {}_3 \\ {}^4P^\circ {}_2 \\ ({}^1D)5p \ {}^2F^\circ {}_3 \\ {}^2F^\circ {}_4 \end{array}$	0 8,715 315,060 317,581 319,857 320,718 324,925 326,712 329,131 330,098 331,356 333,868	$\begin{array}{c} \hline (^1D)5p & ^2P^\circ_1 \\ & ^2P^\circ_2 \\ & ^2D^\circ_3 \\ & ^2D^\circ_2 \\ (^3P)5p & ^4D^\circ_4 \\ & ^4D^\circ_2 \\ & ^2D^\circ_2 \\ & ^2D^\circ_3 \\ & ^2P^\circ_3 \\ & ^2F^\circ_4 \\ & ^2F^\circ_3 \\ & (^3P)5p & ^2P^\circ_1 \end{array}$	$\begin{array}{r} 334,183\\ 334,348\\ 335,638\\ 336,530\\ 336,678\\ 339,443\\ 341,729\\ 342,861\\ 344,400\\ 344,883\\ 345,770\\ 347,021\\ 350,245\\ \end{array}$

trodes had a hard pencil lead inserted as a core. The power for the vacuum spark was supplied from a bank of condensers (3 mf capacity) which were charged through a kenotron to a peak potential of 25 kv. The primary of the transformer was operated at 110 volts and 10 amperes.

Prior to the analysis given here L. Bloch and E. Bloch⁴ had photographed and measured many of the lines of Cd IV using a high frequency electrodeless discharge as a source. Classifications for some of the stronger lines were suggested by them, none of which turned out to be correct. ⁴L. Bloch and E. Bloch, Ann. de physique 5–6, 332 (1936).

TABLE IX. Classified lines in Sn VI.

INT.	λ νας.	ν VAC.	CLASSIFICATION	INT.	λ νας.	v VAC.	CLASSIFICATION
4	326.43	306,344	$4d^{9} {}^{2}D_{3} - 4d^{8}({}^{3}F)5p {}^{4}G^{\circ}_{3}$	15	303.83	329,131	$4d^{9} {}^{2}D_{3} - 4d^{8}({}^{3}P)5p {}^{4}P^{\circ}{}_{3}$
ĩ	323.82	308.814	${}^{2}D_{2} - {}^{4}F^{\circ}{}_{2}$	3	302.94	330,098	$^{2}D_{3} ^{4}P^{\circ}_{2}$
ō	321.15	311.381	${}^{2}D_{2}^{-}$ ${}^{2}D_{3}^{\circ}$	10	302.33	330,764	$^{2}D_{2} ^{4}D^{\circ}_{2}$
18	317 40	315,060	${}^{2}D_{3} - {}^{4}G^{\circ}_{3}$	9	302.00	331,126	${}^{2}D_{2} - {}^{4}D_{3}^{\circ}$
16	316.23	316.226	${}^{2}D_{2} - {}^{4}F_{3}^{\circ}$	10	301.79	331,356	${}^{2}D_{3} - ({}^{1}D)5p {}^{2}F^{\circ}_{3}$
1	314.88	317.581	${}^{2}D_{3}^{-} - {}^{4}F^{\circ}_{2}$	10	300.34	332,956	${}^{2}D_{2} - ({}^{3}P)5 \not P {}^{2}D^{\circ}_{2}$
12	312 64	319 857	$^{2}D_{2}$ $^{4}F^{\circ}_{A}$	12	299.52	333.868	${}^{2}D_{3} - ({}^{1}D)5p {}^{2}F^{\circ}_{A}$
10	312.01	320,092	${}^{2}D_{2} - ({}^{3}P)5p {}^{4}P^{\circ}_{1}$	8	299.27	334.146	$^{2}D_{2} - (^{3}P)5p ^{2}D^{\circ}_{3}$
15	312.11	320,410	$^{2}D_{0}$ $ ^{2}P_{0}$	8	299.09	334.348	${}^{2}D_{3} - ({}^{1}D)5p {}^{2}P^{\circ}$
17	311.80	320,718	${}^{2}D_{2}^{2} - ({}^{3}F)5p {}^{2}D^{\circ}_{3}$	5	297.94	335.638	${}^{2}D_{3} - {}^{2}D^{\circ}_{3}$
16	311.00	321,388	${}^{2}D_{0} - ({}^{3}P)5_{D} {}^{4}P^{\circ}_{0}$	4	297.47	336,168	${}^{2}D_{9} - ({}^{3}P)5p {}^{2}S_{9}^{\circ}$
5	300.04	322,643	${}^{2}D_{0} - ({}^{1}D)5p {}^{2}F^{\circ}$	10	297.02	336.678	$^{2}D_{2}$ 2 $^{2}D_{2}$ 2
17	207 77	324,040	${}^{2}D_{2} - ({}^{3}F)5h {}^{4}F^{\circ}_{3}$	10	295.59	338 306	${}^{2}D_{0} - ({}^{1}G)5p {}^{2}F^{\circ}$
17	207 13	324,920	${}^{2}D_{0} - ({}^{3}F)5b {}^{2}F^{\circ}$	5	294.60	339 443	${}^{2}D_{2} - ({}^{3}P)5p {}^{4}D^{\circ}$
13	207.45	325,211	${}^{2}D_{0} - ({}^{1}D)5 + {}^{2}P_{0}^{\circ}$	5	294.24	339 859	${}^{2}D_{2} - {}^{4}D^{\circ}_{2}$
15	207.10	225,400	$2D_2$ (D) p^2 1	1	292 80	341 530	$2D_{0} - 2P^{\circ}$
10	206.09	226 712	$^{2}D = (3F)5h 2F^{\circ}$	1 1	202.63	341 720	$2D_{2}^{2}$ $2D_{2}^{2}$
10	205.08	226 026	$^{2}D_{3} = (^{1}D_{3})^{5}p^{2}P_{4}^{2}$	10	200.36	344 400	$2D_0 - 2P_0^2$
12	303.87	320,930	$^{2}D_{2} = (^{2}D)^{3}p^{2}D^{3}$	2	280.20	345 770	${}^{2}D_{0} - (1C)5h {}^{2}F^{\circ}$
15	303.31	321,322	$2D (1D) 5A 2D^{\circ}$	4	407.41	545,770	$D_3 (O) Jp I 4$
15	305.05	327,815	$-D_2 - (D) Sp - D_2$				

They did obtain, however, the correct value for the $4d^{9} {}^{2}D_{3,2}$ splitting of the ground state, namely 5810 cm⁻¹.

The term values of Cd IV, In V and Sn VI are listed relative to the $4d^{9} {}^{2}D_{3}$ level of the ground state of each ion and are to be found in Tables IV, VI and VIII. The estimated intensities of all

JULY 15, 1941

along with the wave-lengths and corresponding frequencies reduced to vacuum. The writer is very much indebted to Professor

classified lines are given in Tables V, VII and IX

H. E. White for suggesting the problem and for his valuable advice during the course of the investigation.

PHYSICAL REVIEW

VOLUME 60

Finite Self-Energies in Radiation Theory. Part I

Alfred Landé

Mendenhall Laboratory, Ohio State University, Columbus, Ohio

(Received March 8, 1941)

According to Dirac, electric particles display a finite radius $r_0 = 2e^2/3mc^2$ as the result of the damping term $(2e^2/3mc^3)d^3x/dt^3$ in the equation of motion. If the finite radius is due to radiative damping, the same must necessarily be true for the finite self-energy that is inversely proportional to the radius. An infinitely large self-energy and an infinitely small radius (Coulomb's law e^2/r) results from *Fermi's* Fourier representation of classical electrodynamics. A certain change is necessary, but the change is to produce at once a finite self-energy and a finite radius r_0 . Now, an electric particle vibrating in a field of frequency ν suffers a reduction R_{ν} of its vibrational energy due to radiative damping, the energy reduction factor being $R_{\nu}=1/[1+(\nu/\nu_0)^2]$ where $\nu_0=3mc^3/4\pi e^2$. In view of the uncertainty of position due to damping we propose that

1. INTRODUCTION

 $E^{\rm LECTRIC}$ particles can be treated from the unitary or dualistic point of view. In the unitary theory a particle is but a spherically symmetric solution of certain modified field equations, without singularity at r=0. Born-Infeld's new field equations yield a finite maximum field e/r_0^2 at r=0. The electronic radius r_0 can be adjusted so that the total field energy is $\kappa \cdot mc^2$; the fraction κ can be chosen at will. This adjustable parameter is a disadvantage since we cannot know beforehand what fraction of the total mass is of electromagnetic origin. We prefer the dualistic point of view in which particles of various masses m are taken for granted, and the field produced by them, the "radius" and the self-energy, are to be expressed in terms of e and m.

the Fourier terms in the expression for the *energy* in Fermi's classical radiation theory be reduced by the same factor R_{ν} with Doppler effect for particles in motion. The result of this reduction is that Dirac's finite radius r_0 now occurs in a modified Coulomb energy $(e^2/r)[1 - \exp(-r/r_0)]$, and the finite self-energy of a single particle becomes $e^2/2r_0 = (3/4)mc^2$. Whereas the force between charged particles of finite mass remains finite for r=0, the force on an ideal test charge of infinite mass becomes infinite for r=0. This is analogous to the difference between the field E and the displacement D in Born's unitary field theory. Of interest for nuclear reactions are the electrostatic forces between related to Sommerfeld's fine-structure constant and to the theory of mesons.

One general point is common to all theories of electric particles. The smaller the radius, the larger the mass, the product r_0mc^2 being proportional to the square of the universal charge. However, the accepted (dualistic) radiation theory leads to an infinitely large self-energy and to an infinitely small radius, as expressed in Coulomb's energy $e^2/r = \infty$ for r=0. If there are any reasons for having a finite radius then the same reasons must also be responsible for the finite self-energy.

A radius dependent on the charge and mass occurs in Thomson's formula for the scattering cross section of an electric particle as the result of *radiative damping*. A similar radius occurs in Dirac's re-examination of the classical Lorentz theory.¹ Due to the damping term

¹ P. A. M. Dirac, Proc. Roy. Soc. A167, 148 (1938).