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THE VARIATION OF THE SPECIFIC HEAT OF SOLIDS WITH
TEMPERATURE.

BY ARTHUR H. CQMPToiN.

HE very considerable success of the quantum hypothesis in explain-
ing the variations of the specific heat of solids with temperature

has been taken as a strong confirmation of that hypothesis. Before
this evidence can be considered as conclusive, however, it is necessary
to see if there may not be some other satisfactory solution of the problem
of specific heat, which does not involve the conception of quanta. It has
been pointed out by several writers' that the sharp decrease of the specific
heat of solids at low temperatures can be qualitatively explained if it is
assumed that at these temperatures the atoms become so intimately
associated that degrees of freedom are lost. In fact Benedicks' has been
able to obtain an empirical expression on this assumption which, with
properly chosen constants, fits the experimental data acceptably. In
the present paper an assumption is introduced which leads directly to an
expression for the variation of the specific heat with temperature which
will be shown to agree at least as well with experiment as the expressions
derived from the quantum hypothesis.

The assumption on which the following work is based is:
If the relative energy between two neighboring atoms in a solid falls

below a certain critical value, the two atoms become agglomerated'
so that the degree of freedom between them vanishes; but as soon as
the energy increases again above the critical value, the degree of freedom
reappears.

The defence of this assumption from various lines of evidence will

form the subject of a later paper.

DERIVATION OF A FORMULA FOR THE SPECIFIC HEAT.

The energy content of the unagglomerated degrees of freedom may
be written, ac'cording to equipartition,

U„= mR'1,

~ F. Richarz, Zeitschr. f. anorg. Chem. , S8, 356; 59, x46. J. Duclaux, Compt. Rend. ,
xSS, xoxS. C. Benedicks, Ann. d. Phys. , 42, x33.

~ The term "agglomeration, " suggested by Benedicks, is used to indicate any state of
association of the atoms on account of which degrees of freedom for thermal motion dis-
appear.
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where n is the number of unagglomerated degrees of freedom, R the gas
constant for a single molecule, and T the absolute temperature. In the
case of the chemical combination of two atoms, when a degree of freedom
vanishes its energy is usually transmitted to the other degrees of free-
dom in the form of heat of formation. In the case of endothermic
substances, however, the vanishing degree of freedom absorbs a certain
amount of energy. We may assume provisionally, therefore, that
when two atoms in a solid agglomerate they retain a certain amount of
potential energy. The amount of this energy will be,

where 7 is the potential energy of each agglomerated degree of freedom,
and gN is the greatest possible number of degrees of freedom. The
total energy content of the solid is therefore,

U = U„+ U, = nRT + y(3N —n).

If we call I' the probability that a certain possible degree of freedom
shall actually exist, P = n/3N, and

U = gNRTP + 3'(i —P).
In the case of a solid the kinetic energy of a degree of freedom is on

-the average equal to its potential energy. We may assume, therefore,
that the probability for a certain value of the potential energy is equal
to the probability for the same value of the kinetic energy. By Max-
well's distribution law, the probability that the relative velocity of two
atoms along the line of their centers shall lie between

i
u ii and

i
u + du

~

is

where
IZT

CL = 2g
This is therefore also the probability that the relative kinetic energy
shall lie between —,'mu' and ,'nz(u + du)'. S-ince the probability for the
potential energy is equal to that for the kinetic energy, the probability
that the relative potential energy shall lie between —,'nw' and —',m(v + dv)'

is similarly,

Thus the probability that the total energy shall lie between —,'ru(u' + v')

and —', m Iu' + v' + d(u' + v') I is the product of these two expressions, or
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If we let e be the critical value of the energy below which a degree of
freedom remains agglomerated, the probability that the degree of
freedom shall be agglomerated is:

sm(m&+ ~)=

2Qn~=-
a& d+

2ev" =——tj"
vn e&

e a' dV,

or

where

4
a'- d+2A 7l ~ p

26
p2

m

Jp2 ~2 V~

e a'-' dV;

This integral may be determined by a series method, the solution being,

p2 I p4 I p6+ 0 ~ ~

~2 2'1 ~4 31 ~6

This is the probability that a possible degree of freedom shall be agglomer-
ated. The probability that it shall actually exist is therefore:

I = I —I

But

P I P I P—I ——+ — +21 0,' 3
~ ~ ~

p~ P' I P4
e -= I ——,+ —

1

—4—

and by comparison of series,
p2

P = e a~,

We may substitute for P'/n' its equivalent,

I p6
+ ~ ~ ~

31''

2E

P m
wheren' 4RT 2RT T ' 7 2R'

then

(&)
'rI = e z .

Substituting this value of P in equation (1) we have:

(3) U = 3NRT8 j + 3N+(I —8 r),

and the speci6c heat is:
d U 3NRr 7.

(c) C, = —= 3%Re—I + e-r —3~y»edT T
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Since there is a T' in the denominator of the last term, it is evident
that as long as 7 has a finite value, T can be made so small that C„will
become negative. This is impossible, as it implies a condition of insta-

bility, so we must place p = o, and

This is the expression for the variation of the specific heat with tempera-
ture to which our assumption leads.

TESTING TEIIS EQUATION.

The curves of Fig. I show how this formula compares with that of
Debye for the specific heat. ' The solid line is plotted from equation (6)
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and the broken one from Debye's equation,

C, xz ' Pd( gg
C„X', , e —I e* —I '

where x = 8/T. The two curves have been made to coincide at C„/C„
= o.5. That they are in general good agreement is evident at a glance.

' Debye, Ann. d. Phys. , 3g, 78g. Debye's formula is used because his has been shown
to be the most accurate of any of the existing expressions (cf. E. H. Griffiths and E. Griffiths,
Proc. Roy. Soc., A, go, SS8).
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Their comparative accuracy has been tested with the data used by
Debye and by Nernst and Lindemann' in testing their own formula.
I have taken their calculations of C„ from the observed value of C„.
The value of y for each of the substances is chosen so as to bring the
experimental values as near as possible to the two curves where they
cross. '

At lower temperatures, though the curves are not far apart, there is
an evident preponderance of experimental evidence in favor of the solid
curve. Above 1//r = o.6, however, the experimental values gradually
rise from the solid curve, cross the broken one at about 2.25, and con-
tinue approximately parallel to the solid curve but at a higher level.
The dotted curve is drawn as an approximate experimental mean.
It is evident that the data fit neither formula accurately for these tem-
peratures, but that the values of C,/C„approach a limit some two per
cent. higher than unity. That these high values of C„are not due to
proximity to the melting point is evident when one notices that none
of the experiments are made at a temperature closer than I9I to the
melting point, while in the case of KC1 the value of C„/C„rises above
unity when the temperature is only .4.o as high as the melting point.
A possible explanation of the high values of the specific heat at these
temperatures is that there may be more degrees of freedom in a solid
than indicated by Rayleigh's formula, C„= 3R. Whatever the cause
of this discrepancy, however, it is necessary on any theory that C, shall
never become greater than C„, so we must assume a value of C„greater
than 3R = 5.955, which is the value used in calculating the values of
C„/C„ in Fig. r. The ~alue 6.o8r has therefore been chosen as an experi-
mental limit which C„seems to approach.

Fig. 2 shows the same theoretical curves and the experimental data
plotted with this new value of C„. The curves have here been made to
coincide at C„/C„= o.66, in order to show more clearly the differences
between the two formula. It will be seen that this correction makes the
observed specific heats conform very well with the curve plotted according
to my expression, while they vary consistently from that of Debye.
Thus while the data can in no way be made to conform at all tempera-
tures with Debye's formula, by making a correction which would seem

necessary in any case, the data may be made to fit well the equation
j Zeitschr. fiir Electrochemie, x7, p. 8I7.
' In the following tables the values of C„ for Al, Pb, KC1 and NaC1 are taken from Nernst

and Lindemann's paper (loc. cit.), those for Cu, Ag and diamond from that of Debye (loc.
cit.), C, is calculated from the observed values of Cp according to the formula, due to Nernst
and Lindemann, C„= C„—o.o2r4Cp T/T„where T, is the melting point of the substance.
Coo is taken to be 6.o8I as explained in the text.
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C, Obs.

Diamond, ~ = 794.0'
C„Gale. C, Obs.

Silver (continued)

C„Gale.

30'
42
88
92

205
209
220
222
232
243
262
284
306
331
358
413

1169

23 5
27.7
33.4
87
88

137
234
290
323
450

23.0'
28.3
36.8
38.1
85.5
90.2

200
273
290
332
409

35.0'
39.1
42.9

0.00
0.00
0.03
0.03
0.62
0.66
0.72
0.76
0.86
0.95
1.14
1.35
1.58
1.83
2.11
2.64
5.24

Copper, v-

0.22
0.32
0.54
3.32
3.37

= 133.5'

5.50
5.66
5.75
5.87

Lead, ~ =

2.95
3.91
4.38
4.43
5.57
5.63
5.91
5.99
5.99
6.03
6.15

38.4'

Silver, 7 = 92.0'

1.58
1.90
2.26

0.00
0.00
0.01
0.015
0.63
0.67
0.75
0.80
0.87
0.98
1,18
1.41
1.60
1.87
2.13
2.62
5.18

0.14
0.26
0.56
3.32
3.36
4.54
5.40
5.60
5.69
5.86

3.04
3.69
4.38
4.45
5.60
5.67
5.98
6.02
6.02
6.03
6.05

1.58
1.93
2.25

45.5'
51.4
53.8
77.0

100
200
273
331
535
589

32.4'
35.1
83.0
86.0
88.3

137
235
331
433
555

25.0'
25.5
28.0
67.5
69.0
81.4
83.4

138
235

26.9'
33.7
39.0
52.8
63.2
76.6

- 86.0
137
235
331
416
550

NaC1,

KC1,

7. = 113.5'

0.29
0.31
0.40
3.05
3.12
3.52
3.72
4.79
5.55

v = 96.1'

0.76
1.25
1.83
2.79
3.34
4.08
4.33
5.18
5.73
5.93
6.02
6.09

2.46
2.80
2.89
4.04
4.80
5.61
5.75
5.71
5.90
5.99

Aluminum, 7 = 169.6'

0.25
0.33
2.40
2.51
2.61
3.91
5.17
5.58
5.74
5.98

2.44
2.83
2.98
4.04
4.65
5,61
5.79
5.87
5.93
5.99

0.19
0.28
2.40
2.51
2.60
3.94
5.09
5.55
5.72
5.85

0.36
0.38
0.52
3.04
3.10
3.60
3.71
4.87
5.57

0.78
1.35
1.80
2.78
3.34
3.91
4.22
5.15
5.69
5.87
5.95
5.99
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just derived. In fact, all variations from the theoretical values seem
to lie within the limits of experimental error.

DISCUSSION OF THE FORMULA.

Some interesting aspects of formula (6) appear if the exponent of e is
written in a different form. 7 is defined as e/2R, where e is the energy
required to liberate an agglomerated degree of freedom. This quantity
has the same dimensions as Planck's energy quantum A', v, both being
elementary units of energy. In fact Benedicks has shown, ' from a con-
sideration of the relation of hardness to the frequency of vibration of
an atom, that c is probably proportional to v. If we call the factor of
proportionality b, the probability becomes

/. 5 P,.O
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C=b.osj.

.b y .g

Fig. 2.

Relative Temperature, ~T
' %C I.I I.k I.3 I.+

where

b
p =—2R'

The value of P can easily be determined from the expression P = r/v,

which follows from equation (7). The values of r for the different
substances considered are determined by their specific heats as shown
in Fig. 2. The values of v may be taken as those assigned by Nernst
and Lindemann's formula for the specific heat, since their values of s

have been shown to be in very accurate agreement with the characteristic
' Loc. cit.
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frequencies of those substances whose reststrahlen can be obtained.
The diA'erent values of P as thus determined are given in the following

table.

Substance. v&&zo 1~ p )( zo11 Difference from
Mean.

Lead. . . . . . .
Silver. . . . . .
KC1. . . . . . .
XaCl. . . . . .
Copper. . . . .
Aluminium .
Diamond. . .

38.4
92.0
96.1

113.1
133.5
169.6
794.0

1.9
4.5
4.73
5.8
6.6
8.3

40.0

2.02
2.04
2.03
1.96
2.02
2.04
1.98

+0.3%
+1.4
+0.6
—2.9
+0.3
+1.4
—1.4

P is thus determined just as accurately as v is known, and since it
remains constant over so great a range of frequencies,

' equation (7) may
be considered valid, even though its derivation is not rigid.

It is interesting to see how the quantity 0 in this equation compares
with the similar quantity h of Planck's expression. 6 is determined by
the equation 6 = 2', in which the accepted value of R is about I.g5
&& Io—"erg deg. ', and p = 2.0I )( Io "deg. sec. Thus

b = 5.44 )& IO "erg sec. ,

while Planck's constant h has the value

A = 6.55 g Ip "erg sec.

The value for b found here is in excellent agreement with certain values
of h as determined by photoelectric methods: Richardson and Compton'

5.4 && Ip '~; Hughes' 5.6 g Ip "; Cornelius' 5.7 )& Ip '"; though Kad-
esch4 and Millikan' very recently have obtained photoelectric values
of h more nearly 6.55 && Io ".

Now that equation (y) has been established we are in a position to
make a new application of Debye's theory which interprets the heat
energy of solids in terms of their elastic vibrations. He considers a
whole spectrum of frequencies, the number of vibrations between the
frequencies v and v + dv being

dR = —v~dv
vm

' Phil. Mag. , a4, 574.
2 Phil. Trans. Roy. Soc., arm, aos.
' K. T. Compton, PHYs. REv. , z, 38m.
4 PHYS. REV.', 3, 367.
5 PHYS. REV., 4, 73.
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where 3N is the total number of degrees of freedom in the solid, and v

is the maximum possible frequency, determined by the equation:

r 4~V
~t

2p(r + o)yI' t 2p(r + o)x &l'* )
v~ 9X l 3(I —2o') & l 3(I —o') J J

where V is the volume, p the density, x the compressibility, and o. Pois-
son's ratio, for the substance considered. The average energy of a
degree of freedom of frequency v is, by equations (3) and (7),

(ro)
3NRTe —

~ 8.
RTe T

3N

so the total energy in the solid is

'"9N pv
U = —v' ~ RTe- r3

p &m

9NRT 2T' p.„rT 2T' 2T'&

rl ~P ff fi ~ J
r Vm + Wm +

Substituting r = Pv,
2T ~ r T 2T2 2T3&

U = 9NRT —.—e-r —+—+-
7'

According to Debye's assumptions v, and hence also v-, are not functions
of T, so the specihc heat is:

dU r T3 T2 TC„=d—= 9RX 8 —
3

—e r
~

8 —+8—+4—+ zj

and C„T', i T3 T' T
8 —3

—e rl8 —,+8-—,+4 —+r
Fig. 3 shows how this expression compares with equation (6). The

solid line as before represents the erst equation derived, while the broken
one represents equation (rr). Although the difference between these
two curves is not large, it is evident, particularly at low temperatures,
that this nev formula does not represent the facts accurately. It is
necessary to conclude, therefore, either that the energy of each degree
of freedom is not accurately expressed by equation (ro) or that some of
the assumptions on which Debye's theory is based are not valid.

It is evident that if equation (rr) is to be valid, v must not vary
with the temperature. That is, by equation (9), the quantities o and X

must be independent of the temperature. While there is no evidence
of any considerable variation in the value of 0., Gruneisen has shown'

I Ann. d. Phys. , 33, I239. Some of Griineisen's results indicating such a variation of the
compressibility with the temperature may be given:



386 ARTH UR H. COMPTO¹ t
SECOND

ERIES

I.5 go
I.o

ao /44 y I/. o Pe

Pl

Q)

.p

7
(D

a
gc . .~. =. 1)iamond, 7;=7/9;0

0 =' Copper, t'= l33.5
@=Silver, r= g2.0
@= Aluminium, x= i /of. b

e=l,cad, Z= PK'lt

j&C), v= yb. I

+=IYaCl, r= iI3.5

C =6.osi.

TRelative 7'emperature, z ~

.I .8 .t I.o I.I I.o. I p I,v I.o

Fig. 3.

ComPressibility X ro6.

A1 Fe Cu Pt Sn Pb

83'
290
373

1.32
1.46
1.70

0.606
0.633
0.652

0.718
0.773
0.801

0.709
0,763
0.820

0.374
0.392
0.398

2.1 2.5
3.2

that there is a general and decided increase in the compressibility x
with the temperature. It is evident, therefore, that account must be
taken of the variation of v with the temperature. If this is done, equa-
tion (t t) becomes:

T4 t T4
r li6 —4+ 6 —q+ 3 —~+ —

I

The order of magnitude of dr/d T is 5 && zo ', so the last term is negligible

except at high temperatures; but instead of considering r to be constant,
its particular value which corresponds to the temperature for which

C„/C„ is evaluated must be employed in order to make equation (tt)
valid. In the case of aluminum, for example, the compressibility at
373' is 29 per cent. greater than at 83'. This corresponds to a differ-

ence in v, and hence also in ~ of r3.5 per cent. , and in the specific heat
at the lower temperature of about g5 per cent. Thus if the specific
heat of aluminum at 8g' is calculated from its elastic constants at g73'
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the resulting value is some 45 per cent. greater than if calculated from
its constants at the lower temperature. This shows conclusively that
equation (t t) is not valid if r is considered independent of the tempera-
ture.

That the same argument applies to Debye's formula for the specific
heat is shown by the form of his equation at low temperatures,

C„R'T'= 77 93',

In this equation the value of the ratio C„/C„ for aluminum varies 46
per cent. according as the value of v is calculated from the elastic
constants at 373' or at 83'. It is thus evident that the error introduced

by Debye's assumption that v is independent of the temperature is
much too large to be neglected.

It can be shown, moreover, that the fundamental assumption on which
Debye's theory is based, that the heat energy of a solid lies in the elastic
vibrations of the body as a whole, does not represent the truth. It
may be shown that the velocity of propagation of a thermal disturbance
in a solid is directly proportional to the diameter of the elementary
vibrator. If, as Debye assumes, the whole substance is capable of
vibrating as a unit in its heat motion, the thermal conductivity should

therefore be very great. This may be shown more clearly in the following

manner. Consider two infinite parallel planes in an elastic medium, at
one of which the medium is maintained with vibrational energy greater
than at the other corresponding to a difference in temperature of one
degree. The thermal conductivity, or,rate at which energy is trans-
mitted from the hotter to the colder plane per unit area will then be equal
to the product of the difference in the energy content of the medium

at the two planes by the velocity of transmission of the vibrational
disturbance; i. e. :

thermal conductivity = U C(t& —t&) = U C,

where C is the heat capacity per unit volume of the medium, and V is
the mean velocity of propagation of a vibrational disturbance. For
aluminum C is about o.5 calories cm. ' deg. ', and U may be taken as
about 5 &( IO6 cm. sec. ', so the thermal conductivity should be of the
order of magnitude of 2.5 && ro' calories cm. ' sec.—' deg. —'. This is
wholly out of accord with the experimental value, which is o.5 calories
cm. —' sec. ' deg. '. In fact the dimensions themselves are different,
the rate of heat transmission according to this assumption being inde-

pendent of the distance apart of the two parallel planes. It is evident,
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therefore, that the heat energy of solids is not contained in the elastic
vibrations of the body as a whole, but is contained in the motion of very
much smaller elements. Since the lower limit of the frequencies which

enter into Debye's theory is determined by the dimensions of the vibrator,
the range of frequencies in which thermal motion occurs is thus limited.
If the elementary vibrator is of atomic dimensions, the only frequencies
to be considered are the natura1 frequencies of the atoms themselves. '
Thus the assumption that thermal motion occurs in all the possible fre-

quencies from o to v cannot be accepted.
Debye's formula for the specihc heat must therefore be considered to

be largely empirical. In order to compare the results of this agglomera-
tion hypothesis with those of the quantum hypothesis, equation (6)
should be compared rather with Einstein's formula, '

j 2 Q 1bv/RV'

+272 (slav/"'l' ~)2'

I&
'
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/. 0
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I'=Silver, g= g2.d

@= A(umtniu, m, z= / hg;$
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C„=l.o8'i.

Pe~arive Ternperar, u.re, &
~T.

~ & 7 .& .1 I.o I.I I.Q, l.3 I.V I.S;

Fig. 4.

which is a valid deduction from the quantum hypothesis. Fig. 4 shows
how these two expressions compare. The solid line represents my

~ The great increase in thermal conductivity at low temperatures may be shown to indi-
cate that the diameter of the elementary vibrator becomes comparatively large at low tem-
peratures. Under these circumstances Debye's assumption of a whole spectrum of frequencies
may be valid. This may account for the fact that at extremely low temperatures, T/7. = o
to o.22, the observed specific heats are slightly larger than indicated by equation (6). If
this be true, equation (rz) should hold at these temperatures, and Debye's "third power
law" would still be true.

2 Einstein, Ann. d. Phys. , 22, I8o.
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formula and the broken one that of Einstein. The experimental values
are the same as in Fig. 2. It is evident that Einstein's expression is
much the less accurate of the two. Thus from the standpoint of the
variation of specific heat with temperature the assumption is strongly
supported that at sufficiently low temperatures many of the atoms of a
solid become so intimately associated that they lose degrees of freedom.

SUMMA Rv.

The assumption has been made that a possible degree of freedom
between two atoms in a solid actually exists only as long as the relative
energy between the two atoms is greater than a certain critical value

An expression for the variation of the specific heat of solids with
temperature has been derived from this assumption, which seems to
agree more satisfactorily with experiment than any of the existing
formula.

Debye's expression for the variation of the specific heat with tem-

perature has been found to be largely empirical; so to compare this
agglomeration hypothesis with the quantum hypothesis my formula is
rather to be compared with that of Einstein.

The strong support of experimental evidence in this case seems to
indicate that this agglomeration hypothesis represents more accurately
the condition of the atoms in a solid than does the quantum hypothesis.

I wish to express my thanks to Professor Adams and Professor Magic
for their continued interest in this study.
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