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crystalline axis. This fact seems to indicate that
"the turning of the magnetization into the
direction of the field" has to overcome mainly
crystalline forces. Finally it has been pointed
out by Decker and Doering" that stresses
suSciently large to overcome the crystal orienta-
tion energy cannot be realized in iron since they
would have to exceed the breaking strength of
the material.

R. Becker and W. Doering, Ferromagnetismus (Julius
Springer, Berlin, 1939), p. 104.

It should be emphasized as a guide for future
experiments that it is not at all necessary to
use completely polarized neutron beams for the
investigation of the properties of ferromagnets.
Polarizations as claimed to be present in the
various experiments discussed would be amply
sufficient to allow investigations of ferromagnetic
structures.

The authors wish to express their thanks to
Dr. T. D. Yensen of Westinghouse Research Lab-
oratories for a very instructive communication.
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We investigate in this paper phenomena, occurring in
the passage of neutrons through matter, which originate
from the crystalline or polycrystalline constitution. While
the procedure is in many respects closely similar to that
followed in the theory of x-rays, important and quantita-
tively decisive differences arise from the complicated
coherence properties of the atomic scattering. The theo-
retical formulae developed in the first two paragraphs
permit us to interpret in a quantitative manner a series of
experiments which show deviations from the so far almost
always assumed additivity of nuclear cross sections. We
also obtain information concerning the relative phases of
the scattering amplitudes of nuclear isotopes. We next
show for illustrative purposes how the Larmor precession
of the spin of the neutron passing through the magnetized
medium, and the well-known differentiation between the

action of the vectors "B"and "H" can be explained as a
simple dispersion phenomenon. The preceding formulae
permit us to determine quantitatively the transmission
and polarization of neutron beams passing through ferro-
magnetic bodies. The main uncertainties which enter into
attempts to evaluate experiments, arise from our incom-
plete knowledge of the velocity distribution of the incident
beam and of the form factor which enters into the formulae
for magnetic scattering. We present a detailed discussion
of these uncertainties. Even neglecting depolarization
effects which are due to incomplete saturation and which
would still further diminish the theoretical value for
transmission effects, we find that the observed values are
considerably higher than those theoretically predicted and
are not in good agreement with each other.

INTRQDUcTIQN

CONTINUING earlier investigations' on the~ transmission of neutrons through macro-
scopic bodies, and in particular on macroscopic
and microscopic magnetic effects, we present in
this paper a discussion of the influence of crystal
structure on scattering and polarization of neu-

*A preliminary report of this work appeared in the
abstract: Halpern, Hamermesh and Johnson, Phys. Rev.
55, 1125A (1939).' I. O. Halpern and M. H. Johnson, Phys. Rev. 51, 992
(1937); II. ibid. 52, 52 (1937); III. ibid. 55, 898 (1939);
IV. Halpern and Holstein, ibid. 55, 601 (1939); V. ibid.
59, 960 (1941) (this issue). These are referred to through-
out the paper by the corresponding Roman numerals.

trons. It has been the accustomed procedure to
consider the nuclear cross section for the scatter-
ing of slow neutrons as a strictly additive prop-
erty independent of the physical state or the
chemical constitution of the sample investigated.
On this basis the total cross section of a chemical
compound could, for example, be determined
from a knowledge of the cross sections of the
constituent elements.

Such a procedure is valid only if we are dealing
with a substance of strictly amorphous structure
(a gas). In all other cases the crystalline structure
of the material becomes significant; it will turn
out to be of importance even for substances



982 HALPF RN, HAMERMFSH AND JOHNSON

composed of small microcrystals, and to change
completely the scattering results for macroscopic
crystals. The theory leading to these results is in

its essentials the same as that for x-ray scattering,
but shows great quantitative differences due to
peculiarities which are characteristic of the inter-
action between neutron and atoms.

In discussing any crystal phenomenon it is
essential to separate the coherent and incoherent
scattering processes which have previously been
found to play so great a part in the theory of
x-ray scattering; but while the theory of x-ray
scattering by a single chemical element had to
take into account only those incoherent processes
which are produced by inelastic collision of the
incident particles with the lattice vibrations
(strictly inelastic scattering), we have in the
case of neutrons two more causes for incoherent
processes. These are: first, the existence of spin
dependent forces between the neutron and the
atom, which may be of a nuclear or magnetic

type; and secondly, the disorder in the lattice
caused by the random distribution of the iso-

topes, which in general will produce scattered
neutron waves, whose amplitude and phase will

show no correlation for the various isotopes.
The second part of the paper is concerned with

the quantitative evaluation of polarization ex-
periments. We have previously' pointed out that
the existing' theories of polarization effects,
which fail to take into account the crystalline
structure as well as the various types of scatter-
ing, have no direct field of application, and that
it is also necessary to calculate in detail the
effect of incomplete ferromagnetic saturation on

the intensity of the scattered and transmitted
beam. We find that the previous estimates of
polarization effects are of a higher order of magni-
tude than those obtained by the rigorous theory.
These calculations of course have to be used

together with the results of IV and V on mag-
netic depolarization.

Among previous investigations of the passage
of neutrons through crystals, papers by Wick4

and Pomeranchuk' may be mentioned. Pointing

' Cf. V.'F. Bloch, Phys. Rev. 50, 259 (1936); J, Schwinger,
Phys. Rev. 51, 544 (1937).

4 G. C. Wick, Physik. Zeits. 38, 403, 689 (1937).' I. Pomeranchuk, I'hysik. Zeits. Sowjetunion 13, 65
(1938).

out that the elastic scattering of neutrons does
not offer much interest, since it is closely
analogous to the problem in x-ray scattering,
Wick shows that an essential difference arises in

the inelastic scattering due to the interaction
with the lattice vibrations. This difference arises
from the nonrelativistic motion of the neutron
(energy =momentum X U/2, not momentum X U

as in the x-ray case), which tends to reduce the
inelastic scattering. Similarly, Pomeranchuk dis-
cusses mainly the slowing down of neutrons in

crystals for neutrons of long wave-length. The
physical aspects which are relevant in our paper
have not been treated by these authors.

I. rHE GENERAL SCATTERING FORMULAE

FQR AToMs

Before considering the effect of the crystalline
structure of the scatterer on the results of trans-
mission experiments we wish to review briefly
the theory of the passage of neutrons through a
material consisting of independent scatterers.

We shall be dealing throughout with slow
neutrons, so that only the "s" wave need be
considered; also inelastic nuclear scattering can
be excluded since the energy of the neutron is
too small to excite the nucleus to higher states.
If one takes account of the different isotopes
present in the scattering sample, the amplitude
of the coherent scattering from a single nucleus
is given by

C= P„~b„~'(2i„+1) '[Z„ao"+(i~+1)u~"], (1.1)

where ~b, ~' gives the relative abundance of the
pth isotope, i „ is the nuclear spin of the pth
isotope, and ao& and a~" are the amplitudes of
the scattered wave for total angular momenta
i„——', and i„+~, respectively (neutron spin = ~~).

The intensity of the incoherent nuclear scat-
tering is proportional' to:

Z =P„~f„~ (2i„+1)-
X L~, (~,+1)(&r"—&0")'] (1 2)

In addition to this purely nuclear scattering,
there will be an interaction between the magnetic
moment of the neutron and the magnetic field

due to the current distributions of the electrons
in the atom. Since in most cases one deals with

' See Sections III and VI of III.
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materials in the crystalline state, the orbital
currents are either absent (ground state S), or
almost completely quenched by the crystalline
field, so that the magnetic properties of the
atom are due almost entirely to spin currents.
For the amplitude of the magnetically scattered
wave we have:6

XL(e s) (e S) —(s S)] X,Q &, (1.3)

where 350 ——mass of the neutron; y = its magnetic
moment in nuclear magnetons;

(1.4)

11„=(2vr3E, /kk) l2Dr-'e*'"(q s)X., (1.5)

where
e'y5

D — Ps
mc'

q=e(e k) —k. (1.7)

Then the total coherently scattered wave
(including both magnetic and nuclear sca.ttering)
becomes '

1l,.= (27r3IIO/hk) **r 'e'"'(C+2Dq s)X.. (1.8)

In addition to the above scattering processes,
there will be possible capture of the neutron
which would lead to a decrease in intensity of the
transmitted beam. The cross section 0.„,for this

where k and k' are the initial and final propaga-
tion vectors of the neutron; s is the spin of the
neutron in units of k/2n. ; X, is the spin wave
function of the incident neutron; J's is the form
factor of the spin distribution of the ion, and
Q~ is the spin function describing the orientation
of the spin 5 of the ground state of the ion.
(The incident flux has been normalized to 1.)

In the case of ferromagnets at saturation, the
spins of all the ions are rigidly aligned along a
direction given by the unit vector k.

In this case only elastic collisions in which the
spin state of the ion is unchanged are possible,
and the expression for the magnetically scattered
wave becomes

straight absorption will for slow neutrons follow
the 1/e law.

II. SCATTERING BY CRYSTALS AND AGGREGATES

OF CRYSTALS

Before proceeding with calculations, we wish
to fix the nomenclature to be used throughout.

The basic unit in the crystal is the unit cell
which, by the repetition of a set of translations,
fills out the whole space, forming a microcrystal.

The microcrystal is a composite of unit cells
which are in perfect arrangement and scatter
coherently.

A single crystal is composed of microcrystals
all of which are oriented approximately the same,
but whose relative positions are fixed only within
a distance of the order of the lattice spacing.
(1Vlosaic single crystal. ) The single crystal will

act macroscopically as a homogeneous body, but
in the propagation of de Broglie waves of the
order of the lattice spacing, the separate micro-
crystals will not scatter coherently. To calculate
the scattering from the single crystal, we must
first calculate the scattered amplitude for each
of its microcrystals and then sum the intensities.

A polycrystalline material is composed of
many small single crystals, or crystallites, ori-
ented at random. The crystallites in general
contain many microcrystals. To calculate the
scattering from a polycrystalline sample, one
must average the scattering of its sub-units over
all orientations of the crystallites.

By the perfectness of a crystal we mean the
linear dimension of the microcrystals compos-
ing it.

To calculate the total scattering from a poly-
crystalline sample, we must integrate the usual
diffraction integral over all final directions of
the neutron, and then average over all orienta-
tions of the constituent microcrystals.

We consider the nuclear scattering of neutrons
of wave-length ) by a material having simple
cubic structure with lattice distance a, and only
one type of nucleus in the lattice. Using the
well-known relation

2 cos00=
~

l
~
X/a (2.3)

l = (l,'+ l '+l ') '*; l lVIiller indices,

one obtains' for the scattering due to "reflection"
' A. H. Compton and S.K. Allison, X-Raysiri, Theory and

Experiment (Van Nostrand, 1935).
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from the plane l; o. ) 1¹4—— (2 9)
0 Nj.N2¹()

I)———
4x 4 Ec) coseo

N, N, N, t).q
' 1

Sx &aj il[

In (2.6) 0 is the cross section for the coherent
scattering=4+C' (Section 1.1); Ni, N„N3 are
the numbers of planes in the microcrystal along
each of the crystal axes. Finally this is to be
summed over all triples for which it i (2a/lj.

14o. X 1

S~ a5 [I[
(2.10)

If the single crystal (crystallite) is I cm on a
side, ~the ratio of scattered to initial beam will be:

so, for a beam incident exactly at the Bragg
angle, the total scattered intensity should be
proportional to N;4. If the microcrystals have
sides I; then the scattering will be

No (X) ~
I &I(2~l& 1

S~ (a& | ili

where N is the total number of unit cells.
Before considering this fundamental formula in

detail, we wish to examine the case where the
initial beam is sharply defined and is incident
exactly at the Bragg angle, and calculate the
total scattering for this fixed orientation of the
crystal. In this case we expect the scattering to
be large. This is of interest in examining the
influence of secondary extinction, a term which
refers to the fact that the incident beam, in

going through the specimen, is being depleted
due to scattering from individual microcrystals,
so that low lying microcrystals are shielded from
the full intensity of the beam by microcrystals
lying above them. This effect will be noticeable
if the scattering of the given wave-length in the
specimen is large, so to estimate its importance
we choose this most favorable case of incidence
at the Bragg angle. Also, for simplicity, we
consider the microcrystals to be perfectly aligned,
but nevertheless scatter incoherently. Slight vari-
ations in orientation would produce a broadening
of the range of reflection, but have little effect
on the final result.

This calculation seems impossible to perform
analytically, but for our purposes only a rough
estimate is needed. Each term in (2.8) represents
the scattering for a given reHection averaged
over all possible orientations. Since the range of
initial directions in which scattering occurs
appreciably is ),/a;N;, we ca.n take as a rough
estimate of the scattering at the Bragg angle

Lt~z 1
¹aX2/L. (2.11)

Sea' [l [

For Fe, a rough estimate of the effect can be
made: l is 10 ' cm, while the size of the crystal-
lites is L 2&&10 ' cm.

0 = 7.3 X 10 ' cm (the reason for this choice
will be seen in Section III).

a=2.9&&10 ' cm, X=1.5X10 ' cm.

Using these values we obtain:

I/Io=Ll(1 2/4) X10' 6X10 '. (2.12)

So even in this favorable case of reflection
exactly at the Bragg angle, the secondary extinc-
tion will be very small for polycrystalline iron.
Only for large single crystals (L 1 cm) will it be
important. In what follows we shall deal chiefly
with polycrystalline samples for which we may
neglect the extinction.

Equation (2.8) has been obtained for the
scattering of neutrons of a single wave-length by
crystals of simple cubic structure. In (2.8) we
have not included the effect of the temperature
motion of the nuclei in the crystal. The theory
of this temperature motion has been given by
Debye and Wailer. ' The effect of the thermal
vibration is to decrease the coherent scattering
of a crystal of cubic symmetry by the factor

P. Debye, Ann. d. Physik 43, 49 (1914); I. VJaller,
Zeits. f. Physik 51, 213 (1928); Dissertation Uppsala
(1925).
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exp( —2M ) where:

67t' p(x) 1 sin'-', 8
+—

4ns.kO x
(2.13)

where 0 is the angle between final and initial
direction of the beam, m, =mass of the atom
forming the lattice, k is the Boltzmann constant,
p(x)/x is the Debye function, and x=0/T,
where 0 is the Debye temperature and T the
absolute temperature of the crystal. For the
reHection corresponding to index fl f, we have
fl f

X/2a =sin-', 0, so the factor giving the decrease
in coherent scattering from the crystal becomes

where
exp( —A

f
l

f
')

3Lt' 1 (p(x) 1
A= —- +—.

mkO a2 x 4

(2.14.1)

(2.14.2)

For Fe, O~ =453

and taking T=302', x = 1.5,

~(x)
Y(x) = 0.70, 0.46;

p(x) 1
+— 0.71.

x 4

It should be noted that the temperature factor
does not depend on the wave-length; for a given
Debye ring (definite fl f) it is the same for all
wave-lengths. The 4 represents the effect of the
zero-point vibration.

Then the final scattering formula becomes for
simple cubic lattice:

1Va /X

Sz Ea) 1l 1&2~/&

exp( —A fl f')
(2.15)

and for body-centered lattice (e.g. Fe)

exp( —A fl f')
(2 16)

N~ (Xy '

8~ E, g) even j l j &2'/X

We see that the contributions to the total
coherent scattering of the polycrystal from differ-
ent rings decreases with increasing flf due to
each of the factors in the summand. A given
value of fl can be realized in many different
ways; e.g. , l

f

= v2 can be gotten for (0, 1, 1);we
must count all permutations and changes of sign
in finding the multiplicity j( f

l
f ) of a term in the

sum; for
j(ll I) =12.

lattice the factor N which gave the number of
unit cells represented also the total number of
atoms in the crystal, whereas for the body-
centered case, the number of unit cells=-,' the
number of atoms. Our formulae will be correct
for body-centered lattices if we use N to desig-
nate the number of atoms in the lattice and
take

2
even j l j (2a/X

Also for Fe, taking a=2.86A; ns, =56&(1.661
X10 "g we get A =0.0194 so the temperature
factor for iron becomes

exp( —0.0194
f
l

f
'). (2.14.3)

As the index fl f
of the Debye ring increases the

coherent scattering is cut down more and more;
for

f
l

f
=4, the factor is already 0.73.

In the case of Fe, a second correction must be
made. Fe, at room temperature, forms a body-
centered cubic lattice, with two atoms to each
unit cell. This introduces a crystal structure
factor which has the following effect:

AII refiections for which P; l; is odd disappear;
all for which g; l„ is even are quadrupled in
intensity. (We shall refer to these as odd and
even fl f, respectively. )

In our scattering formu1a for simple cubic

Since there have not yet been made significant
experiments with monochromatic beams of slow
neutrons it is necessary to generalize the for-
mulae given for the case of rather wide velocity
spectra. We shall in this section present some
calculations made for ilLustrative purposes only by
using a Maxwellian distribution. In Sections VI
and VII calculations will be presented using
empirically determined distribution functions.

In the case of a Maxwell distribution, the
calculations can be carried out analytically; we
so find for the scattered intensity produced by a
body-centered lattice:

¹ t'X&q '

4~ Ea)
4'(7'&

I
L

I
/2o) exp( A

I
L

I

')
x E (2.17)

even f l j
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2
4'(~) =—

I

exp'(-y')dy (2.1/. 1)

where XA—N. The approximation by integra1
glVCS

g~ ——f2/(2MokT) '*,

where T is the temperature of the neutron
souI ec.

So the effective coherent cross section 0 of the
crystal, as determined by using a beam of
thermal neutrons, will be related to the coherent
cross section for independent nuclei o by:

C(Xg ff f/2a) exp( —2 ff f')
X (2.18)

even jg t

These scattering formulae will be applied to the
evaluation of experimental results in Section III.

Let us consider limiting cases for the various
scattering formulae. (We consider only simple
cubic lattices; similar arguments hold for crystals
with basis. )

In (2.8), we can approximate the lattice sum

by an integral; this gives

() q
2 )2aj2

42rld/= 1.
0 Sm Eu) &0

The validity of this approximation by integral
increases with increasing number of lattice
points, i.e. , decreasing X. So for small X, we find

the effect of the crystal structure disappearing,
Rs ls to bc cxpcetcd fIoITl gcncl Rl rcasonHlg.

In Eq. (2.15), where the effect 'of the tem-
perature vibration is included, this limiting case
gives a quite different result. Here replacing the
SU1Tl by Rn lntcgI'Rl glvcs

o () q21-=
i

—
f
—(1—exp( —(2a/l ) a)),

&2a) A

so that as X~O, o/o~O. Again this result is

easily interpreted. The inclusion of the tempera-
ture CA'eet means the introduction of a form
factor for the nuclear position in. the crystal;
any f'orm factor ~0, for X—+0.

In the expression for simple cubic crystals
corresponding to (2.18), let us consider the case

2 Ot)

=4)' 2jC(v)dv
0

and integration by parts gives o/o =1.
Let us consider (2.8) as X increases. With

increasing X the number of terms in the sum
decreases, but the intensity of each ring increases
as X'. As X increases, there will be definite points
at which Debye rings disappear (The

I
I

I
'th weal

disappear at X=2a/fl f), and a discontinuous
drop in intensity occurs; then because of the )'
factor) thc 1Iltcnslty lneI cRscs Until the next
Debye ring is cut out. If ) &a, only the 6rst
Debye ring is left and

3g—A

-~—4 & "&i(1)=
0. 8x

) Rs X~26.

For X&2a, the coherent scattering disappea. rs

completely.
Apart from the coherent scattering we have to

discuss two types of incoherent scattering which

form a background between the Debye rings.
There is 6rst the inelastic scattering originating
from processes involving energy transfer between
the neutron and the lattice. This ine1astic scatter-
ing is, in the ease of x-rays, given by formulae
a,nalogoUS to;

o(1 o
—2M')JQ (2.19)

In the case of neutrons conditions are more
dificult, as mentioned already in the introduc-
tion. The inelastic cross section which wouM

already be small for x-rays in case the Debye
temperature is considerably larger than the
temperature of observation becomes of even less
signiheance for the scattering of slow neutrons.

The incoherent background due to the presence
of isotopes constitutes a phenomenon which, with
x-rays, is not of great importance numerically.
It is due to the fact that the scattering ampli-
tudes of various isotopes constituting the crystal
have, in general, diAerent magnitude as well as
diAerent sign. The spherically symmetrical back-
ground is produced with a scattering cross section
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given by9

f,„a,,&+(i„+1)a," '

u I 2i +1

i„a,&+(i„+1)a&& q
'

—
I ZIb. I'
( n 2i„+1

i„(i„+1)(ag& —ap")'
+P Ib„I

" "
. (2 20)

(2~„+1)'

We shall see later on that it probably accounts
for the larger part of incoherent scattering
occurring in so well-analyzed a substance as Fe.

III. DIscUssIQN oF ScATTERING ExPERIMENTs

The deliberations of Section II contain the
theoretical basis for the explanation and evalua-
tion of scattering experiments. In particular,
they give account of certain characteristic phe-
nomena which were observed when neutrons
were scattered from the same substances present
either in different crystal forms or in different
chemical combinations. "

We shall first discuss the observations made
with Fe, since they will turn out to be of great
importance not only for the evaluation of scatter-
ing experiments, but also for the quantitative
determination of the polarization effects in ferro-
magnets as given in Section VI.

Experiments were performed first on a poly-
crystalline sample (o.„&,„.=12.0&0.2X10 "cm')
and then on a single crystal of Fe (0„„,&, „.=7
X10 " cm'), using a thermal distribution of
neutrons at room temperature. The case of the
single crystal may be described as follows: The
resolving power of the microcrystals, which are
all oriented in approximately the same direction,
will limit the scattering to small regions in the
neighborhood of those wave-lengths for which
Bragg reHection occurs. These neutrons, for
which the coherent scattering is large, represent
only a small fraction of the total incident neutron
intensity; hence for the entire incident neutron

The first two terms alone represent the incoherent
scattering due to isotope disorder; the last term is due to
spin dependence of nuclear forces. (See Section III of III;
and reference 5.)"M. D. Whitaker and H. G. Beyer, Phys. Rev. 55,
iioi (1939).

beam, the effective coherent scattering will be
negligibly small.

Thus the difference between the results in the
two cases represents just the coherent scattering
of the incident distribution by the polycrystalline
sample. This gives for the effective coherent
cross section 0- =5)& 10 '4 cm'.

The ratio 0./0. with the temperature factor
included has been calculated numerically for
iron, with thermal neutrons. Using this calcu-
lated ratio a /~ = 0.81, and the experimental
value of Whitaker and Beyer 0=5)&10 " cm'
we find o- = 6.25 &10 " cm', so the nuclear
amplitude

C=(0/4x) l=7.05X10 "cm.
We can similarly understand on the basis of

our formulae the small deviations found by
Whitaker and Beyer when the cross section of
certain molecules was compared with the sum of
the cross sections of the components. No general
predictions can be made as to the sign of this
effect, but since the crystal cross section for
reasonable velocity distributions of the neutrons
may differ by approximately 20 percent from the
value for the amorphous state we can readily
see that change of lattice, of basis, and of tem-
perature factor can lead to cross-section changes
of the order of magnitude of 10 percent. One
must also keep in mind that some of the com-
ponents (e.g. , Cu) may possess rather large
microcrystals and therefore show a partial extinc-
tion effect which will disappear when Cu enters
into the chemical compound.

Similarly, in the case of alloys (e.g. , Permalloy
investigations by Whitaker and Beyer, "and Nix,
Beyer, and Dunning" ) the presence of an ordered
crystalline structure should produce marked
changes in the coherent scattering, and give rise
to deviations from additivity; changes in the
percentage composition, or treatment which
break up the ordered crystalline structure should
then lead back to the value given by additivity.

On the basis of our previous discussion, the
current belief that the scattering cross section
for slow neutrons is independent of the neutron
energy can no longer be accepted. The ratio
0./o has been calculated by use of expression
(2.16) for Fe for monochromatic beams of vary-

"Nix, Beyer and Dunning, Phys. Rev. 5'7, 566A (1940).
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ing wave-length. The results are plotted in Fig. 1.
As already mentioned in Section II, increasing
wave-length will mean a decrease in the number
of Debye-Scherrer rings, but the intensity of
each remaining ring goes up as X'. Iron with
lattice distance 2.86A is body-centered, so that
the lowest order appearing will be (1, 1, 0) with

~!l~ =42 and j(~l~) =12; the coherent scattering
from iron disappears for X)2a/&2=4. 04A. The
limiting value for the coherent scattering at
room temperature as X—&4.04A is, from (2.18)

o./o =(2/8pr)2 e '" 12=1.29.

/, 0.

.6.

FrG. 1. Variation of crystalline cross section as a function
of neutron wave-length.

IV. DIscUssIoN oF THE SIzE oF MIcRocRYsTALs
AND ESTIMATE OF TILE SCATTERING

AMPLITUDE OF Fe ISOTOPES

It is of interest to see that the preceding
formulae, together with the observations of the
difference in cross sections for the crystal and
polycrystalline state of iron, enable us to draw
some conclusions about the size of the micro-
crystals and the scattering amplitudes of the Fe
isotopes.

For a rough discussion, it is sufficient to
describe the weakening of a beam passing through
an aggregate of crystallites as follows: The beam
will be reduced in intensity by the factor exp( —p')
where y'=Lloyd/8prap (see (2.11)) when it strikes
a crystallite at the Bragg angle. The probability
of such an event is given by a/t, which represents
the resolving power of the perfect microcrystal.
This probability must be multiplied by a factor
which gives the number of possible strong re-
Hections for one and the same wave-length.
Although only a rougk estirnote of this factor can
be made, it is sufficiently accurate for our pur-
poses to put it equal to 15. The total weakening
of a beam is now determined by the various
mutually exclusive alternatives that the beam
strike 0, 1, 2, etc. , properly oriented crystallites
when passing through a thickness d of the
substance. The probability of rI, favorable en-
counters is given by: P„=e n "/n! where
a = 15ad//L (Poisson formula). Denoting the
size of one crystallite by L, we obtain for the
intensity transmitted:

I=Ip Q P exp( —ny')
n=0

= Ip exp[ —n(1 —exp( —p')]. (4.1)

This must be compared with the experimentally
found absorption law I=Ip exp( —Rod) where o.

refers only to the coherent cross section of the
polycrystal. Now two alternatives are possible:
Case (1):exp( —tp')~0 (large extinction). In this
case I= Ipe so 15ad/IL =Dad. Using the em-

pirically determined value a. = 5 (see Section III),
we obtain as an upper limit, 1-5)&10—4 cm.

This upper limit for the size of the perfect
microcrystal is, of course, highly exaggerated. It
takes its maximum in the case of large extinction
since the weakening of the beam by passing
through one crystal grain is then almost com-
plete. It is also of interest to point out that in the

case of marked extinction no polarization egect
could be observed, since it is due to the slight
increase or decrease of the atomic cross section
produced by the interference of nuclear and
magnetic scattering. If the nuclear scattering is

already so large as to produce extinction, a slight
change in the total atomic cross section cannot
be of importance. A single crystal as distin-
guished from a polycrystalline body has complete
extinction, and therefore cannot give an ob-
servable polarization effect.

Case (2):This corresponds to the absence of ex-
tinctionor, quantitativelyspeaking, exp( —p') 1.
Since the numerator in

exp[ —15(ad/lI ) (1 —exp( —p')) ]
is now ver& much smaller, the number of layers
of the perfect microcrystal must be correspond-
ingly reduced in order to keep the value for the
scattering constant, and equal to the observed

exp[ —¹d].In the limiting case exp( —p')
= 1 —p, ', the expression for the absorption reduces
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to exp( —nu') =exp( —15ohd/87ra4), and so be-
comes, as was to be expected, independent of the
size of the microcrystal. This case corresponds to
the condition found in nature, and leads to a
value of 0.=17)&10 " cm'. Since this case is

precisely the one which we considered in Section
II, the fact that the values of 0. obtained by both
arguments agree so closely, considering the
roughness of the estimate, would indicate that
our choice of some of the constants used is
correct.

Recently, Miller and Du Mond" have given
estimates of the length of perfect lattice in Ag
and Al of approximately 500 lattice distances.
They also find that after distortion and working
the length is reduced to 150 to 200 lattice
distances. Similar behavior in Fe would lead to
negligible extinction.

We can also attempt to evaluate approxi-
mately the coherent cross section of the two iron
isotopes which are present in the ratio of 92:8."
Since the total cross section of iron is found to be
12 nuclear units (i.e. , 12X10 "Xcm') and the
capture cross section to be approximately 3.5
n.u. , we have to account for 8.5 units as being
due to coherent and incoherent scattering. Of
this, 5 n.u. are found to be coherent scattering,
while the incoherent contribution of 3.5 n. u. is
due to three causes: inelastic scattering by the
lattice, incoherent nuclear scattering, and back-
ground due to isotope disorder. The inelastic
scattering is small, while the incoherent nuclear
scattering also probably does not contribute
much to the total background. The isotope Fe"
has probably no spin, being a 4n nucleus, while
the isotope Fe~4 would have to have an anoma-
lously large cross section to contribute a large
portion of the observed background since it forms
only 8 percent of the element. Lumping together
these first two causes, and ascribing to them for
purposes of a rough estimate a cross section of
one nuclear unit, we obtain a value of 2.5 nuclear
units for the disorder contribution as given by
QC„f„' (QC„f„)'wh—ere C„ is the concentration
and f„=( 4)'*vXthe coherent amplitude of the
pth isotope, which for the case of two isotopes

12 P. H. Miller and J. W. M. Du Mond, Phys. Rev.
57, 198 (1940).

"Actually, Fe has four stable isotopes. The concentra-
tion of Fe" is negligible; Fe" and Fe" have been lumped
together and are referred to as "Fe'4."

reduces to
(4.2)

either

or

(a) f~ ——3.11; f~ ———2.72

(b) fg ——2.18; f2=8.01.

(b) may be excluded as being highly improbable;
it would lead to an unusually high cross section
of 65 n.u. for the less abundant isotope Fe'4.
We finally obtain the following estimate for the
coherent cross sections of the two nuclei:

Fe": o- 9.7 n.u.
Fe'4: 0- 7.4 n.u.

In addition to this, it should be noted that the
amplitudes have opposite signs

V. AN INTERPRETATION OF THE LARMOR PRE-
CESSION OF THE SPIN DURING PASSAGE

THROUGH M AGNETI ZED M EDIA

We wish now to apply our results to the propa-
gation of neutrons in a ferromagnetic medium
(Fe), magnetized to saturation, with the spins
of all ions rigidly aligned along the direction of a
unit vector k.

The total scattered wave from an ion will be
given by (1.8):

P„=(27rMO/hk) 'r "e'"'(C+2Dq ~ s)X,.

The presence of the magnetic term introduces the
possibility of changes in polarization due to the
difference in scattering of the two spin states of
the neutron. To put the possibility of such rota-
tion of the plane of polarization clearly in evi-
dence, let us consider a neutron beam of wave-
length P traversing a lattice whose spacing is less

According to Section III, a crystalline cross
section of five nuclear units corresponds to an
amorphous cross section of approximately seven
nuclear units. We can, with these data, attempt
to determine the scattering amplitude and phase
for the two isotopes. The equations are:

(0.92fg+0.08f,)' = 7 (0.92) (0.08) (fg
—f2)

2 =2.5.

There is no restriction of generality in assuming
that the amplitude of the abundant isotope shall
have the positive sign. We then obtain the
following two sets of solutions for the ampli-
tudes:
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than —,'X. Then no Bragg maxima can occur and
the coherent scattering is confined to the forward
direction. We shall resolve the spin along the
direction of the magnetization, which is the most
convenient representation.

Suppose k along the x axis; then q has com-
ponents (e,' —1, e,.e„, e,e,).Then, in summing over
the lattice, the cross terms drop out because of
the symmetry of the crystal, and only the x
component (~ ~

to k) remains. We conclude that
no depolarization can be produced by this
process.

Nevertheless, the two polarization states are
scattered differently. We shall treat the propaga-
tion of each of the polarization states as in
classical dispersion theory by adding to ' the
incident wave at any point the scattered waves
from the centers in the medium, and determine
an index of refraction. For simplicity, let the
plane OXI contain one scattering center per
unit area (see Fig. 2). Let k be along the e axis.
We must calculate the total wave at the field

point P, where OP=a.

k= (0, 0, 1) dxdy =a' sec'0 tanOdOdp

e = (1/2 sin-', 8) ( —sinO sing, —sinO cosy, 1 —cosO)

q= ~~( —sinO sing, —sinO cosy&, —
I 1+cosOI).

The magnetically scattered wave from plane
OXV is:

~ gikr

2D f
J~ (q s)dxdyX, =

r

where r= QI'

of a weight factor. Partial integration gives:

2m m

~0 laika+ ~, laika sec8 Sinede
ik ik ~0

The second term

xa
I
"e'"

= ——
Jka

we proceed neglecting this term. If we had in-

cluded the nuclear part, this scattered wave
from plane OXY would be:

2m ( e2yS)
eisa

ik 4 mc')

for the two polarization states. But the total
wave at point P will be the sum of the incident
wave at P and the scattered waves from all
planes below P. If the phase of the incident wave
at P is taken at zero, its phase at OX V is e 'k'.

So for a thickness d, the amplitude of the total
wave is

2ird e'yS qc~
ik mc' )

d p e'ySy
=I exp —2xi—

~

C~
k E mc')

where I is the incident wave, and we have
assumed one scattering center per unit volume.
This gives for the index of refraction:

laika sece

=2Da'Jt Jr sec'0 tanOdOdy (q s)X,.
a sece

2~ p e'yS)
n~= —

(
Ca

k E mc2)

As we have seen previously, only the s corn- and for the rate of rotation of the direction of
ponent remains, giving: polarization: (n+ —n ) (velocity of the beam)

rsvp /2

2D7ra
J 0

secO tanOdOe"' "'(1/COSO) (a-', )
2x 2e2yS bk 4me2ySS

k mc' M0 3f0mc'
(5.1)

D~ ~/2

d(eisa sec8) (1pcosO)
ik ~0

The integral will be oscillatory at the upper
limit, as in all Fresnel diffraction problems, but
just as in the optical case, such convergence
difhculties can be eliminated by the introduction 4ireyM/Moc. (5.2)

From the macroscopic viewpoint, this rate of
rotation should be given by the velocity of the
Larmor precession of the neutron in the macro-
scopic field of the crystal. The magnetic moment/
unit volume is M = eAS/mc so that (5.1) becomes:
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Fir. 2.

The total rotation of the plane of polarization is,
of course, obtained by adding to (5.2) the
precession due to the over-all magnetic field H.
After adding this term which cannot be specified
without knowledge about accidental outside
fields, as well as the shape of the body, we can
summarize the results by saying that it is the
vector:

8 =I+4+M, (5.3)

which determines the total Larmor frequency of
precession. Our derivation allows some insight
into the manner and the mechanism by which
the inhomogeneous magnetic fiel of the indi-
vidual atoms averages out and leads to the well-
known result for the rotation of the plane of
polarization.

It can be shown easily that an analogous
result holds when the direction of magnetization
is no longer assumed to be parallel to the direc-
tion of incidence but allowed to make an arbi-
trary angle with it.

'4 See II and III.

VI. POLARIZATION EXPERIMENTS WITH FERRO-
MAGNETS; GENERAL PRINCIPLES AND

CHQIcE QF FQRM FAcToR

Polarization effects accompanying the passage
of neutrons through ferromagnets are due solely
to the interference between nuclear and magnetic
scattering. Since it was proven that the magnetic
scattering by free electronic spins is always in-
coherent" we have to limit the discussion to the
case in which the electronic spin remains un-
changed during the collision process. This is the
case only for ferromagnets, and neutrons of

sufficiently small velocity. Similarly, only the
coherent part of the purely nuclear scattering is
relevant. Neither the incoherent nuclear scatter-
ing (i.e. , transition with change of spin of nucleus)
nor the background due to isotope disorder con-
tribute anything to the magnetic polarization
phenomenon; this is true for the latter since the
magnetic scattering amplitude is the same for
all isotopes, and therefore disappears from
QC„f„'—(QC„f„)' We. can therefore limit our-
selves to the experimentally determined co-
herent nuclear cross section. "From the preceding
remarks it becomes apparent that the considera-
tion of the crystalline structure of the material
is decisive in any calculation of polarization
effects. Not only does it allow us to take properly
into account the coherent and incoherent con-
tributions, but it is also, as previously remarked,
essential in the introduction of the form factor
for the magnetic scattering.

It would be permissible (cf. Section II and
I ig. 1) to approximate the crystalline aggregate
by an amorphous body for sufficiently small
wave-length. But since the distribution of the
magnetically active currents in an atom extends
over a domain which is not small even com-
pared with the wave-length of thermal neutrons,
the case of small wave-length would become
uninteres'ting, since the atomic form factor would
almost annihilate the effect to be expected.
Choosing, on the other hand, sufficiently large
wave lengths, we are no longer allowed to
neglect the crystal structure. Coherent scattering
disappears in the case of Fe for wave-lengths
larger than 4.04A. There does not therefore exist
a range in which the theory based on an
amorphous structure is even approximately
correct.

A quantitative evaluation of polarization
phenomena requires, therefore, knowledge of the
wave-length of the incident neutrons, as well as
of the form factor of the scattering atom which
is a function of wave-length and scattering angle.
We shall, in this section, assume, first, that

'5 The background produced by inelastic collisions
between the neutron and the lattice vibrations should,
strictly speaking, also be considered. We~neglect it in the
following discussion because, it would be very small even
for x-rays, still smaller for neutrons (cf. reference 4) and
mostly present for large scattering angles, where its eEect
is strongly cut down by the form-factor.
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monochromatic neutrons are incident, and dis-
cuss choice and inBuenee of the form factor.
Section VII contains the morc. general treatment
of an incident spectrum together with a nu-
merical evaluation of the results.

Polarization effects can be observed through
experiments on the scattered or transmitted
bcR1Tl; only expel 1IHents of the second type hRVC

so far been performed, for reasons of available
intensity. Ke shall therefore limit ourselves to
this group of phenomena; the treatment of the
scattered bcRITls eRn cRslly bc CRrrlcd out with
the aid of the formulae presented here and in

pl cvlous notes.
As the incident beam is resolved along the

direction of magnetization denoted by k, the
additional scattering per unit solid angle for the
two spin states is given by"

dC'sad!e 0 .r= ~2CD(rI k)dQ= a2CD!J'dQ. (6.1)

This can be taken over to the crystalline case
immediately since both the amplitudes C Rnd D
refer to coherent processes only. The magnetiza-
tion is assumed to be perpendicular to the direc-
tion of incidence, as is the case in all experiments.
In the crystalhne case, for a ring of index ill,
the average of g' over azimuth gives

(q')A„———',(1+sin'-,'0) = —,'(1+
l
I

l
9,'/4a'). (6.2)

The form factor Ii which is contained in D is
function of ill only. (From now on we shall
write the form factor separately: D =e'pS/mc'. )

The final result for the additional cross section

p, for the case of a simple cubic crystal, including
temperature effect, is:

and comparing with

0 nuelea. r effective

1
g

8~ &a)

exp( —2 ll l
')

(2.15)

we obtain:

= fTnuc off '

where a contains the cross sections for all other
causes of weakening of the beam (capture, in-

coherent scattering, nuclear coherent scattering),
and x is the total thickness traversed. This gives
for the fractional chRngc ln tfRnsIHlsslon

gVOX- (6 6)

f(I I I)J'(III) l
1+ l (6 4)

I E / &2a/) E. 4a' )
where f(ill) rs the fraction of the scattered neu-

trons in the ring of index
l
I l.

The same formula will apply to any other ease

(average over velocity drstrrbutlon; body-cen-
tered crystal). The "p" is always given by:

o.,h.,e !(D/C) Laverage over the rings of
~(II I)(1+ I&l') '/4")]

To find the additional scattering m for R centi-
meter thickness, we multiply by 'the number N
of atoms/cc (for iron %=8.48X10"); w=Xp.
Then the fractional increase in transmission on
ITlRgnCtlZRtlon ls:

(1s Nsx mz+1s r—!es+t—uz, s—rr~z)/s r!rrz (—6 5)—

(X) 2 exp( —2 ill')r ——
&a) i!i&2.!~

fgl2
x~(lfi)l 1+

4a' )
D 1 (X) ' exp( —A ill')

=4-C' ——
I

—
l

C 8m &a~ i!i&~.!& ill

&&~(III) l
1+

4a' )

This result applies to both single and double
tl ansIHlsslon cxpcl 11Tlcnts.

While the amplitude C of nuclear scattering is
independent of the scattering angle, D will de-

pend on it through the magnetic form factor.
Its determination o6ers a certain difficulty due

(6.3) to our incomplete knowledge of the constitution
of the magnetically active 3-d shell of Fe. For
the purposes of a rough estimate we have pre-
viously" used Slater's" hydrogenic function for
the wave function of the electrons in question.
This method, which was also adopted with even

"See III, Section VI. We here neglect small effects
proportional to D'.

"See Section VII of III."J.C. Slater, Phys. Rev. 36, 57 I;1930),
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steeper decrease towards the outside by Van
Vleck, "does not seem to lead to reliable quanti-
tative values as successfully as it might have for
other applications reported by Slater.

Bethe'P used the well-tabulated density func-
tion of Hartree for the 3-d shell of Cu+, which
was derived by the method of the self-consistent
field. To adapt this density distribution to the
case of iron with a smaller central charge,
Bethe "expanded" the effective radius of iron
with respect to copper in the inverse ratio of the
effective charges and calculated the form factor
by numerical integrations.

In the present paper we also use the Hartree
distribution which has so far proved to be of
higher accuracy than our demands would require.
But in place of the slightly rough numerical
integration carried out by Bethe, we use the
analytic expression for the Hartree distribution
as adapted by Slater. "It is interesting to observe
that the actual density distribution can be well

represented by the sum of three hydrogenic
functions of which only two are really significant.
The result of this analytic calculation agrees with
Bethe's formula for suKciently small values of
(sin —', 8)/X, but our probably more correct method
gives a decidedly sharper decrease of the form
factor at large angles.

For a Cu+ 3-d electron, the (radial density)'

gp rP —r3(ge 5r+ee dr+ fe pr)— ——

To calculate the form factor, we must evaluate:

ji' —Jt e(Pr cccp sin8d8, dr (6.7)

where P=2k sin-', 8; k=2'/X; X in Bohr units.
F will consist of six terms:

F=Z f'

where f; is of the form:

f =J~'e'""-'sin8d8 f„exp(.—m, r)r'dr,

l;
mi

1 2 3 4 5 6

323.1 35.95 1.008 1.0 0.0561 0.00079
12.58 8.94 7.57 5.30 3.93 2.56

f;= d—r r' exp( m;r—)[e'"" e'"—"]
zp p

5 tt,
—

3p (m; —zp)' (m;+ip)'

2 6!1, 1 —(10/3)(p/m. ) 2+(p/m, ;) 4

m [1+(p/m;) 2]6

Normalization is obtained by requiring that for
p~0, F—+j. So we must divide by the normaliza-
tion factor +162 6!l;/m . When this is done,
we obtain the form factor: F=+16 F;, where

The unit of length is the Bohr radius ap. 6 =6.29;
d = 2.65; g = 1.28. Slater gives the following data:

inner intersection =3.78; i.e. ,

1 —(1o/3) (p/m')'+(p/m )'

L1+(p/m*') 'j' (6.8)

gg—(3/3. 78) (6.29) —ct.—(3/3. 78) 2.65

and outer intersection = 1.15; i.e. ,

This gives

ee—2.65(3/1. 15) —fe 1.28(3/1. 15)—
a = 17.975c
f= 0.02804c.

So we can write:

gp=rP=r [317.975e '""
+e '""+0.02804e '""j

"J.H. Van Vleck, Phys. Rev. 55, 924 (1939).
"Hoffman, Livingston and Bethe, Phys. Rev. 51, 214

(1937).
' J. C. Slater, Phys. Rev. 42, 33 (1932).

1 2 3 4 5 6
n; 0.227 0.276 0.025 0.298 0.136 0.038
m; 12 58 8 94 7 57 5 30 3 93 2 56

The form factor consists of these six terms, each
similar to the single-term expression given in

III. Figure 3 gives a comparison between F and
the form factor F~ as given by Bethe. They
coincide for small values of p, but F falls below

F& and decreases more rapidly for large p.
For a Debye-Scherrer ring of index ~f~,

p=2x'o~f~/d. We see that F is a function only
of ~l ~. For application to Fe, we have reduced
the wave-length to 75 percent to take account
of the contraction of the charge. The values of

p for the first few rings are indicated in Fig. 3.
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I.O, coincide, in order to show clearly the diA'erence

in shape. ) This choice brings with it the disad-

vantage of a numerical integration since no
analytic representation of this velocity distribu-
tion is available. The velocity distribution shows

qualitatively all the features to be expected.
A second point to be taken into account is

the change in the velocity distribution while the
neutrons pass through iron. The coherent scat-
tering as well as the background are approxi-

FIG. 3. Form-factor of 3d shell of iron.

VI I. EVALUATION OF POLARIZATION EXPERI-
MENTS CONTINUED j VELOCITY DISTRI-

BUTION OF TIIE INCIDENT

NEUTRONS

The strong dependence of the scattering into
rings of diRerent values of ~l~ on the wave-

length, as it becomes apparent from the formula

(2.16) and from the discussion at the end of
Section III, makes it necessary to refine the
calculations of Section II, as far as the velocity
distribution is concerned. It has been frequently
observed that the Maxwellian distribution used

in paragraph 2 for the purpose of illustration
cannot really claim to be an accurate representa-
tion of the velocities present in the incident
beam of "thermal neutrons. " Neither are the
long wave-lengths (small velocities) really pres-

ent, since the inelastic transitions are far too
slow to produce them (cf. Pomeranchuk'); nor
can it be expected that the curve falls off at
high velocities in an exponential manner, since
the whole sp ctrum should extend even beyond
the Cd absorption limit.

Absorption experiments with "cooled" neu-

trons also fail to show real agreement with the
1/v law, when temperatures of the neutron
source are used for comparison.

We have therefore made use of the velocity
curve which has been obtained by Dunning" and
collaborators giving the frequency of neutrons
as a function of their mechanically determined

speed. The result is contained in Fig. 4, where a
Maxwell distribution has been included for
comparison. (The distributions as shown are not
normalized; their maxima have been made to

"Dunning, Pegram, Fink, Mitchell and Segrc, Phys.
Rev. 48, 704 (1935).

l.s 2.7 3.6 +5 5.4

hei. „t& (~)

FIG. 4. Comparison of velocity-selector and
Maxwellian distributions.

~«p=3.5X10 "cm'
op

fp(v)dv Jt—fp(v)dv, (7.1)

where fp(v) is the neutron distribution indicated
in Fig. 4 and tabulated in Table I. This gives,
after numerical integration,

&p=8 9X10 'P; o„„=o'p/v. (7.2)

The velocity distribution f,(v), after a thick-
ness x has been traversed is given by:

f,(v) =fp(v) exp( —Napx/v). (7.3)

Using Eq. (7.3), the velocity distribution has

mately velocity independent; the capture on the
other hand follows the 1/v law, and therefore
removes the low velocity neutrons preferentially.
Since it is the long wave-length, low velocity
neutrons which determine the polarization, this
correction will turn out to. be of significance.

In order to determine the velocity distribution
of the neutrons as a function of the thickness of
sample traversed, we have proceeded as follows:

The observed capture cross section cr„p of Fe
for thermal neutrons is 3.5X10 '4 cm'. This
represents an average of the capture cross section
o„p=op/v over the thermal distribution, i.e. ,
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been calculated for thicknesses of 1, 2, 3 and 4
cm, and then a normalization factor introduced
so that

t
5.4

f*(v)dv =1

The function f, (v) is tabulated in Table I.
We must also replace the calculation of o/o

given in Section III on the basis of Eq. (2.17),
by a similar calculation using the correct neutron
distribution fo(v) Fro. m Eq. (2.16) we obtain:

2 (X) 2

0/0 = fo(v)dv
0 8x &u&

exp( —A
)
I

~

')
(7 4)

where fo(v) has been assumed to be normalized.
The order of summation and integration may
be reversed, giving

even }II

exp( —A)l~') 2 f' h )'
8~ (Ma)

fo(v)dv
(7.5)

[$ l,h/2Ma

T@BI-E I. Values off (v}.*

e(km/sec. ) fo(e)

0.9 0.88
1.64

1.3 2.72
1.5 3.78
1.7 4.20
1.9 4.42
2.1 4.55
2.3 4 62
2.5 4.63
2.7 4 58
2.9 4.48
3.1 4.30
3.3 4.'12

3.5 3.96
3.7 3.81
3.9 3.66
4.1 3.52
4.3 3.39
4.5 3.25
4,7 3.12
4.9 3.00
5.'1 2.87
5.3 2.74

ft(&)

0.38
0.826
1.521
2.286
2.694
2.972
3.175
3.328
3.423
3,462
3.455
3.369
3.277
3.191
3.107
3.015
2.929
2.843
2.748
2.656
2.572
2.475
2.377

f2(~)

0,164
0.416
0.852
1.382
1.728
1.998
2.215
2.397
2.531
2.6].6
2.663
2.639
2.606
2.571
2.534
2.483
2.436
2.384
2.322
2.261
2.205
2.135
2.063

f3(7')

0.071
0.210
0.476
0.836
1.109
1.343
1.545
1.727
1.871
1.977
2.054
2.068
2.075
2.071
2.066
2.045
2.027
1.999
1.963
1.925
1.890
1.841
1.789

0.031
0.105
0.266
0.505
0.711
0.903
1.078
1.244
1.383
1.494
1.584
1.620
1.648
1.669
1.685
1.686
1.686
1.677
1.660
1.639
1.620
1.588
1.552

JP'4f dv= 16.63 12.408 9.562 7.284 5.256

~ More 6gures have been included in these tables than
are physically significant. This has been done to assist the
reader in following a sample calculation and in reproducing
the graphs smoothly.

l 2.

F16. 5. Variation of polarization eAect as a function of
neutron wave-length.

From Eq. (7.5) we see that 0/0 consists of a
sum of terms for diferent ~ll, each involving
a numellcai 1Ilteglatlon of fo(v)/v from v
= ~I~h/23IIa to ~. This has been carried out,
giving e/o =0.75, which corresponds to C=7.33
X10—"cm.

Using y =1.93 2' 5=1.07, giving D =e'yS/mc'
=5.8 X 10 " X=8.48 X 1022, we have calculated
m for monochromatic beams of various wave-
lengths, using Eq. (6.4) and the ratio 0/o. given
ln Flg.

The values of m obtained are shown in Fig. 5.
The breaks in the curve occur at wave-lengths
where a Debye-Scherrer ring is cut out, as has
already been described in connection with Fig. 1.

For an incident beam of thermal neutrons,
Eq. (6.6) will no longer apply, but will be
1eplRccd by

for the transmission effect of a sample of thick-
ness d; we write m(x) because the polarization
will now vary with distance traversed, since the
velocity distribution f,(v) is changing because of
preferential absorption of low velocity neutrons.

To cvRIURtc the polR11zat10n effect, we hRvc
calculated m(x) for x=0, 1, 2, 3, 4, cm using the
values of f (v) tabulated in Table I and using
Eq. (6.4). The fraction f'~'~' is here given by the
~l~th term in Eq. (7.5), divided by the total
value of that sum. The results are shown in
Table II. It should be pointed out that the
polarization factor (1+

~
I

~

'X'/4a') depends on the
wave-length. Ke have throughout used an

~4 L.gf. Alvarez and F.. Bloch, Phys. Rev. 57', 111 (1940}.
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TABLE II. Ualues of m(x). ~

A=
ill@2
4a2 F(ll I) f(ll I) fF (A)

ft(~) f2(~) fs(~) f4(&)

f(ill) fF(A) f(ill) fF(A) f(ill) fF(A) f(ill) fF(A)

2
4
6
8

10
12
14
16
18

1.14
1.29
1.43
1.57
1.71
1.86
2.00
2.00
2.00

0.39
.22
.13
.08
.047
.027
.013
.010
.008

0,281
.076
.183
.061
.086
.021
.094
.009
.043

0.125
.022
.034
.008
.0069
.0011
.0024
.0002
.0007

0.252
.071
.181
.062
.089
.022
.098
.010
.046

, 0.112
.020
.034
.008
.0071
.0011
.0025
.0002
.0007

0.231
.068
.178
.062
.092
.023
.106
.010
.050

0.103
.019
.033
.008
.0074
.0012
.0028
.0002
~0008

0.207
.063
.171
.061
.092
.023
.109
,011
.052

0.092
.018
.032
.008
.0074
.0012
.0028
.0002
.0008

0.193
.061
.170
.062
.095
.024
.115
.012
.056

0.086
.017
.032
.008
,0076
.0012
.0030
.0002
.0009

Remainder 0.0004
Total = .200
%0(x) = .0676

0.0005
.186
.0627

0.0004
.176
.0588

0.0004
.163
.0549

0.0005
.156
.0529

* More figures have been included in these tables than are physically significant. This has been done to assist the reader
in following a sample calculation and in reproducing the graphs smoothly.

Thickness
'Po EEect
Experimental

TABLE III.
0.8 1.3
0.14 0.35
0 76 1.78

1.95 4.0
0.75 2.9
3.32 6.0

As can be seen from the table, there exists a
considerable discrepancy between theoretical and
observed values for the transmission. We have
also, in our comparison, to take into account

2~ P. N. Powers, Phys. Rev. 54, 827 (1938).

average value for X=1.53A. This is justified
since it is a slowly varying function of ). Also,
as the distribution changes while passing through
the sample, the average wave-length decreases,
so that, at worst, we are over-estimating the
polarization effect.

We obtain from the data of Table II for the
transmission effect the results shown in Table III
where experimental results" " are listed for
comparison:

the marked depolarization effect due to deviation
from saturation. ' The data given by the experi-
menters do not allow us to draw any very
definite conclusion about the state of saturation
obtained, and we shall therefore defer the more
detailed discussion of that effect until later. The
presence of the depolarization effect is clearly
indicated by the marked deviation from the law:

polarization effect ~ (thickness)'.

We do not, at the moment, see any possibility
of reconciling the observed data with the present
accepted views about the magnetic interaction
between neutron and iron atom, and the con-
stitution of the iron crystals. We intend to return
to a fuller discussion of the questions involved
in this field in a later paper. "

"O. Halpern and M. H. Johnson, Phys. Rev. 57, 160
(1940).


