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A Determination of the c44 Elastic Constant for Beta-Quartz
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A careful determination of the elastic constant c44 of beta-quartz has been made using the
method of Atanasoff and Hart. The results obtained, F44=35.75X10"dynes/cm', differs by a
factor of nearly two from the only other published value. A study of the behavior of this
constant in the range 0' to 650'C, the consistency in the value obtained from different cuts from
different crystals and other facts seem to justify the value of the constant here determined.

HE work described here is an outgrowth of
several researches which have been per-

formed at this laboratory in the past few years.
Wilson has investigated the piezoelectric oscilla-
tions of quartz plates. Atanasoff and Hart' later
calculated the elastic constants of quartz from
measurements of the frequencies of the piezoelec-
tric vibrations of plates cut from the crystal at
specific orientations. This work has demonstrated
the advantage of using high order harmonics in
measuring the wave velocity to avoid edge effects.
Since these researches had been confined to
alpha-quartz, it was proposed to apply this tech-
nique to the determinations of the elastic prop-
erties of beta-quartz. The only measurements of
the elastic properties of beta-quartz are those of
Osterberg and Cookson' who used an interference
method with monochromatic light to determine
whether the crystal was oscillating and, if so, the
mode of oscillation.

A detailed derivation of the mathematical
expressions applicable to alpha-quartz plates of
any orientation with regard to the crystallo-
graphic axes is given in the work of Atanasoff and
Hart. ' However, we are interested in a different
crystal structure, that of beta-quartz, and these
expressions need some modification. Since the
work of Bragg and Gibbs4 and also that of
Wyckoff' has established the symmetry class of
beta-quartz to be C6 rather than D3 as in alpha-

' R. G. Wilson, "A study of the piezoelectric oscillation
of quartz plates, " unpublished Thesis, Library, Iowa State
College, Ames, Iowa, 1936.

J. V. AtanasofF and P. J. Hart, Phys. Rev. 59, 85
(1941},preceding paper.

3 H. Osterberg and J. W. Cookson, J. Frank. Inst. 220,
361—371 (1935).

'W. Bragg and R. E. Gibbs, Proc. Roy. Soc. I ondon
A109, 414 (1925).' R. W. G. Wyckoff', Am. J. Sci. 11, 112 (1926).

quartz, the matrix of the elastic constant. s, using
Voigt's' notation, becomes:

C11 C&2 C13 0
C11 C13 0

c33 0
C44

0 0
0 0
0 0
0 0
C44 0

2 (c11 c12) ~

(c~~/2 —c~~/2 —z') (c22 —~') (c44 a') =0. (—2)

To ascertain which modes of vibration will be
excited when the crystal has the symmetry of
beta-quartz, an examination of the piezoelectric
tensor is necessary. ln Voigt's' notation it has
the components:

eg4 0
0 —e14

0 0

0
0
0.
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The term e&4 implies the subscripts e]23 or eI32

being a term of a third-rank tensor. Hence an
alternating electric field applied in the x1 direc-
tion excites vibrations involving strain compo-

' W. Voigt, Lehrbuch der Zri stallphysi k (Teubner, Leipzig,
1928), 585—586 and 830—831.

The c14 constant which is present in the matrix
for alpha-quartz is zero here. An expansion of the
secular equation (see Eqs. (I) and (III) of refer-
ence 2) for an infinite X cut plate will now be:

(cu Ic ) (egg/2 —c&2/2 —a ) (c44 —K ) =0, (1)

where ~' has the value, 4ps'f'/n', p being the
density, s the thickness of the plate, and f is the
frequency of the nth harmonic. An expansion of
the secular equation for a I' cut plate (see Eqs.
(II) and (IV) of reference 2) takes the following
form:
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TABLE I. Dimensions of the plates.

CRYSTAL 1

X cut
Crystal 2
Y cut

0.4472

2.198

1.305

0.4445

z

2.238

2.180

nents 023. These excited vibrations are therefore
shear modes. Hence the factor,

c44 —~'= 0 (3)

is the part of the secular equations (1) and (2)
for both X and L cuts with which we are
concerned and c44 the elastic constant here
determined.

The quartz plates used in this investigation
were chosen from those used by Atanasoff and
Hart' in their work on elastic constants. The
orientations of the plates were accurate to within
three minutes of arc as checked by Clark and
Gross at the University of Illinois from Laue
x-ray patterns. Twinned portions were in each
case eliminated after examination in polarized
light. Etching of these crystals also verified the
uniformity of the material. The dimensions (in
centimeters) of the plates used are listed in

Table I. The experimental method used was
identical with that of Atanasoff and Hart. '

Typical data obtained near the temperature
of 600'C are exhibited in Tables II and III.
From the term involving c44 in Eqs. (1) and (2),
the elastic constant for beta-quartz at 600'C is:

c44 4ps f'/n'= 35.——75 X10"dynes/cm'
from the X cut plate

c44 =4ps'f'/44' = 35.78 X10"dynes/cm'
from the Y cut plate.

By means of linear interpolation, the value of
the frequency at 600'C has been estimated from
Tables II and III for use in the above calculation.
The value for the density of quartz used is that
of Day, Sosman and Hostetter, ~ namely 2.517
g/cm' at 600'C. To calculate the value of the
new thickness at the high temperature from that
measured at room temperature, the change in
linear dimension was estimated from the work of
I.e Chatelier as reproduced in Vigoreux.

' A. L. Day, R. B. Sosman and J. C. Hostetter, Am. J.
Sci. 37', 16 (1914).

P. Vigoreux, Quartz Resonators and Oscillators (His
Majesty's Stationery 0%ce, London, 1931).

TABLE II. The frequency f/n of the Y cut beta-quartz
plate. Frequencies are given in kilocycles per second and
temperature in degrees centigrade.

TEMPERA-
TURE

587
592
594
598
603
606

592
598
602
606

OBSERVED
FREQUENCY

f
9582.8

10422
11259
10433
10440
10446

2917.4
2921.0
2922.6
2924.7

HARMONIC
OF CRYSTAL

23
25
27
25
25
25

7
7

. 7
7

416.64
416,88
417.00
417.32
417.60
417.84

416.77
417.28
417.52
417.82

' R. B. Sosman, The I'roperties of Silica (Chemical
Catalog Company, New York, 1927), p. 466.

In Fig. 1 there is plotted the value of c44

throughout the range from O'C to 650'C. The
values below the transition point are those of
Atanasoff and Hart. ' The point at 562'C is not
known accurately because of a lack of knowledge
of the elastic constant c~4 involved in the secular
equation (IV) as given in the paper of Atanasoif
and Hart. ' However, the curve at this tempera-
ture must be above the point plotted, otherwise
the values of c24 would be imaginary. On the
other hand, the crystal class of beta-quartz re-
quires this constant to be zero. The shape of the
dotted portion of the curve is suggested by di-
rect observations of elastic coe%cients near the
critical temperature. ' For some reason, the
electrical response of a crystal in the neighbor-
hood of the critical point is very weak and this
accounts for the absence of data in that region.
The cause of this weak response is uncertain, but
it is unlikely that the piezoelectric constant
involved falls to a small value near the critical
point. It may be that irreversible changes induced
by the vibrations absorb their energy. This ex-
planation is supported by the observed fact that
the oscillations can be followed closer to the
critical point when approaching it from the high
temperature side.

The value of the elastic constant c44 calculated
above is in sharp disagreement with the value
of 19.36X10" dynes /em' given by Osterberg
and Cookson' at the same temperature. In de-
termining this constant for beta-quartz, Oster-
berg and Cookson' have employed a theory
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which is closely related to one given by Mason, "
yielding an expression of the form:

or

TABLE III. The frequency f/n of the X cut beta-quartz
plate. Frequencies are given in kilocycles per second and
temperature in degrees centi grade.

TEMPERA-
TURE

611
598
592

618
618
618
618
618
618
618

OBSERVED
FREQUENCY

2910.0
2902.8
2899.3

8738.1
7072.5
6240.5
5409.7
3746.0
2912.0
2083.2

HARMONIC
OF CRYSTAL

21
17
15
13
9
7
5

y/n

415.71
414.69
414.19

416.10
416.03
416.03
416.13
416.22
416.00
416.65

where F is the observed frequency of oscillation,
c44 is the elastic constant calculated for beta-
quartz, p is the density, while x, y and s are the
half-dimensions of the rectangular parallelepiped
quartz specimen along the indicated axes. This
theoretical treatment was admittedly an ap-
proximation, but some such approximation was
found necessary. A more exact theory of vibra-
tion is required to permit the calculation of the
elastic constants with any accuracy for the lower

modes. Their theory seems to stand in the
following relation to an accurate theory of finite

plates for which their treatment is proposed.
(A) Certain body constraints are assumed which

simplify the differential equation describing the
problem. (8) Certain boundary conditions are
left unsatisfied by the solution chosen for this
differential equation.
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FIG. 1. Variation of the elastic constant c44

with temperature.

The imposition of constraints upon a vibrating
system, as in A, has the effect of raising the
frequency of vibration. " Hence, if a measured
frequency of vibration is inserted into either
formula above, the elastic constant c44 so calcu-
lated would have a value lower than it would for
the case in which no constraint was supposed in
the theoretical development. Leaving some
boundary conditions unsatisfied, as in 8, how-
ever, has the effect of removing constraints upon
the vibrating system. This would cause the fre-
quency of vibration to be decreased. ' Thus the
mathematical treatment of the problem used by
Osterberg and Cookson is open to question. In
fact, the elastic constant c44 as calculated by
them has a different value for each type of vibra-
tion studied. Also the values obtained for this
constant on crystals of different dimensions do
not agree. This certainly indicates that the
mathematical methods used in deriving these
results are not adequate and it may even be that
there has been an error in the identification of
the modes of vibration.

It is a pleasure to thank Dr. Philip J. Hart for
considerable assistance in the experimental part
of this paper.

"EV. P. Mason, Bell Sys. Tech. J. 13, 446—448 (1934).
"R. Courant and D. Hilbert, Methoden der Mathema-

tischen Physi k (Julius Springer, Berlin, 1931),Part II, p. 244.


