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The paper contains a treatment of various phenomena
occurring in the passage of neutrons through domains which
are regularly or irregularly magnetized. After setting up
general equations for the behavior of the neutron spin in
different types of magnetic fields which correspond ap-
proximately to various stages of magnetization in ferro-
magnets we obtain very general results for the depolariza-
tion of an originally polarized beam. These results can be
easily extended to arbitrarily constituted beams. We report
next, briefly, on current views concerning the domain
structure of ferromagnets and discuss in detail the possi-
bilities of investigating this structure by means of experi-
ments with partially polarized neutron beams. The dis-

cussion divides itself naturally into the treatment of single
crystals, macroscopically unmagnetized polycrystals and of
polycrystals near magnetic saturation. Revising previous
unsatisfactory treatments we derive in a very general
manner formulae for the change of intensity and polariza-
tion of a neutron beam traversing a saturated or quasi-
saturated ferromagnetic medium. The formulae obtained
constitute the basis for a modified theory of the well-known
neutron polarization experiments. A closing paragraph
contains a brief comparison between theory and experiment
as far as it can be carried out without evaluating certain
phenomenological constants, a task reserved for the fol-
lowing paper.

I. INTRODUCTION

HE study of the passage of neutrons through
ferromagnets promises to lead to results
which will be interesting from two points of view.
On the one hand experiments with polarized
neutron beams should reveal important informa-
tion about the magnetic structure of the ferro-
magnets dependent upon the state of saturation,
the mechanical, and the crystallographic condi-
tion of the material. On the other hand it will be
seen that the magnetic condition of the ferro-
magnet is of decisive importance for all experi-
ments which aim to produce polarization phe-
nomena with the aid of permanent magnets.
The underlying concept is essentially very
simple. Interaction will always be set up between
the neutron spin, or more precisely its magnetic
moment, and the magnetic field of the ferro-
magnet. The effects of the interaction will depend
obviously on the variation of the magnetic field
along the neutron’s path in magnitude and
direction. One has therefore to examine how the
spin of a neutron will behave in magnetic fields
the variation of which may follow several differ-
ent sufficiently simple and general assumptions.
In the same way that magnetic fields influence
the state of polarization of a polarized beam they
will also affect and in general retard the pro-
duction of a polarized beam inside of a ferro-
magnet. The theoretical prediction of the result
of a polarization experiment can therefore only be

made when -these retarding factors are fully
taken into account. The revised theory of
polarization experiment shows that the effect of
depolarization is much greater than previously
expected so that, for example, the deviation from
magnetic saturation must lie in the neighborhood
of 0.1 percent if the experiments are not to be
affected appreciably.

II. GENERAL THEORY OF THE SPIN MOTION OF
A NEUTRON IN MAGNETIC DOMAINS

The variation of the spin axis of a neutron
passing through a magnetic domain is determined
by the “‘classical’’ equation of motion:

ds/dt=[uXH()]/h=gsXH({I), (2.1)

where s is the operator for the spin of the neutron
in units of %, u the magnetic moment of the
neutron, H the magnetic field of the domain,
g=(u/h)s the gyromagnetic ratio of the neutron,
and r its location.

From the quantum-mechanical point of view
s, u and r are operators. To see that the passage
to the classical interpretation will give correct
answers, one observes the following: (1) The size
of the regions over which the magnetic field of the
domainssuffersappreciable variation (>10"4cm)
is much larger than the wave-length of the
neutron (~10~8 cm). This circumstance allows
one to treat the positional motion classically.
(2) As will be shown later, the quantity de-
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termining the neutron polarization as measured
in the transmission experiments is the expectation
value of the spin, i.e., the classical observable.
(3) Since the equation is linear in the operators
(all the other quantities being ordinary numbers),
no error is incurred by replacing each by its
expectation value. (If there occurred terms of the

form s,sy, this replacement would be incorrect,

since $.5,55,5:.) The classical interpretation of
(1) will, hence, be used exclusively.
In applying Eq. (2.1) to determine the rotation
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of the spin axis of a neutron in traversing a
magnetic medium one assumes the medium to be
made up of a series of regions (1 -2---n) in each
of which the magnetic field H; is constant in
direction. From Eq. (2.1) and the above con-
siderations it is readily seen that in passing
through the 7th region the change of spin is such
that (1) the component parallel to H; is un-
changed (s|;=sj-1) and (2) the component
lying in a plane perpendicular to H; precesses
about H; with angular velocity w;=gH,, i.e.

S1Li=SL(i~1) COS(f g[fidt)+SJ_(i_1)XHi/I{i Sil’l(f g[fidt), (22)
0 0

where H; is the algebraic magnitude of H; with reference to an arbitrarily defined sense. If we write
stigi—y = (8i—1-Hy) -H, /I Si(i-1) = Si—1— (Si—1-H)H, /T2,

s; is given by s;=A4,8,;,_1y where 4; is the dyadict

and

H:H; H.H,; 7 ) 7 H;X
A;= +(1 - ) cos(f gH,-dt) —sm(f gHdt )}—-. (2.3)
H;? H;? 0 0 H;
By successive application of this procedure the final value of the spin syisgiven by s; =4, - -4, - - 4180.

This gives the rotation of the spin axis of a neutron traversing a given path. The magnitude of the spin
is, of course, constant. To obtain the spin of the emerging neutron beam, s; must be averaged over all
neutron paths. If the initial beam is polarized it is clear that the magnitude of the average spin of the
emerging beam is, in general, smaller than that of the incident beam and hence the medium has a
depolarizing action on the incident beam. As to the averaging process itself, it will be assumed that
the fields H; and the magnitude of the intervals 7; have no statistical connection with each other;
under these conditions the H; can be averaged before the 7;, a procedure which will be employed
consistently in what follows.

When the averaging process is applied to ferromagnetics there arises the question: What is the
magnetic field acting on the neutron? From the atomistic standpoint this field is the Lorentz H, the
strong variation of which over atomic distances gives rise to magnetic scattering. However, to find the
effect of the magnetic field on the transmiited beam one must average over a region containing many
atoms. This process, however, is precisely that which is used to establish the connection between the
equations of Lorentz and Maxwell; the result is the well-known identification of the atomic H with
the Maxwell B.

I1I. DEPOLARIZATION OF NEUTRONS IN DIFFERENT TYPES oF DoMAINS?
Case 1

The magnetic fields of the domains are directed successively parallel and antiparallel to a fixed
axis. In this case it is clear that

Sis=S810; Si;=S10c0sp+sXB/B sing; ¢>=f gBdt.
0

1 In what follows, the usual dyadic notation is employed. 4 is always of the form c;ab+-¢.qX, where ¢, and ¢, are con-
stants, and where a, b and q are vectors. This symbolism acquires a meaning only when the dyadic operates on a vector,
v1z. A-v=c,ab-v-4c.q XV.

2 We have abstained in this section from reporting on detailed calculations dealing with fluctuations, etc.; though some
of the formulae given below do not maintain their simple form in the case of a more general treatment, their content and
applicability remain unaffected.
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In averaging over the beam it is necessary to know the values of ¢ for the different paths. If it be
assumed that this distribution is symmetrical about the value ¢ =0, which amounts to assuming that
the average value of B is 0, one has

St1y=SllIo; S_Lf:S.L0<COS¢>Av- (3-1)

Case 2

The magnetic field B; of the ith domain (corresponding to the sth time interval 7;) is random in
direction, but constant both in magnitude and direction throughout ;. Le.,

(Baiaw={Byiyn={(B.iw=0, (3.2a)
(B:iByin=0 for all x, v, 3 and 15 J, (3.2b)
(BziByi)n=0 for x5y, (3.2¢)

(Ba*)w=(By*)w={(B )n=35(B*n, (3.2d)

9B;/dt=0. (3.2¢)

From Eq. (3.2a)
B; X

A

T

— - _|_( - ) cosgBr;— (singB;7;)

%

and from Eq. (3.2b) it can be seen that (4, - - A )a={A)n - *{A1)a. To find (4 ;)s one observes from
(3.2¢) and (3.2d) that

(BBiw={((1Bsi+]jByi+kB.;)iB.i+]jByi+kB.))w
= ¥ B (ii+]jj+kk) = 5(Bn
and from (3.2a) that (B;X)»=0. Hence
(Adn=3%4+% cosgBirs=1—(4/3) sin? 3gB;7;
s;=m;[1—(4/3) sin?3gB;7; |sq. 3.3)

or

The further development of (3.3) depends upon the size of the domains, as expressed by the
magnitude of the 7;. We distinguish two cases.

a. 3¢Biri&1: m[1—(4/3) sin*3gBiri]2m(1—3g°Biri?)
sexp[ —§¢* T Birt]=exp[ —3¢(Bu?) T 7:%].
sy=s0 expl — 3gABILTOnT/7a]-

Hence

Since in the applications of this formula only the order of magnitude of the exponent is of impor-

tance, one may write
sy=so exp[ —3gXBHWT7],

which, in terms of the thickness of the material traversed d, the average linear dimension of the
domain §, and the velocity of the neutrons v, becomes:

sy=50 exp[ — 3g¥XBHads/v?]. (3.4a)

b. 1gBir;=1: Using, again, a procedure which gives the order of magnitude of the exponential without
regard for numerical factors of order unity, one obtains

w1 —(4/3) sin?gB;7; 21— (4/3) sin?4gB,7, |7/ a2 (5) Trne—dl8, (3.4b)
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The physical distinction between the two cases arises from the fact that, when 3gB;r:<1, the
depolarization is produced by a succession of small rotations the magnitude of which is given by the
quantity gB;r;, whereas, when §gB;r;>1, the rotation in each domain is so large that the component
of the initial spin perpendicular to B;, s, (i_1), averages out to zero, leaving only the parallel component
Si14, the magnitude of which is independent of gB.r;. Since the average of s,,¢;_1y over all directions of
the field is 3s;_; the depolarization factor is ¥ per domain or 3-»=3-%* for the whole specimen.

Case 3

The total field B of each domain is the sum of two fields By and B; of which the first, By, is constant
throughout the time interval T'; the second, B;, is constant within the subinterval r;, its direction
being perpendicular to that of B, but otherwise random. As regards the relative magnitudes, B;<B.
Furthermore, it will be assumed that the initial direction of the spin s is parallel or anti-parallel to
that of By. Expressed mathematically these conditions read :

B.;=0 (z-axis parallel to By), (3.5a) B;<B,, (3.5d)
(BziByj)n=0 unless x=1v,i=7, (3.5b) S:=5,=0, (3.5¢)
(Bl =By =3Bn, (3.5¢) 9B./ot=0. (3.51)

By arguments similar to those of Case 2 it is readily seen from (2.3) that

0B0+B B BOB0+B B Sil’lgBoTl
e (BB | ( PRBE Sl
BOQ+B 2 B02+B 2 ( 2+B 2)

where the brackets denote averages over the directions of the B; (not the magnitude) and where use
has been made of (3.5d) to replace |Bo+B;| by By in the arguments of the trigonometric functions.

It is clear from the form of the dyadics that if condition (3.5e) is satisfied for s, it will be satisfied
for s at any time; i.e., the average of s is always parallel to By as it must be since this direction is the
only preferred direction of the whole process. This circumstance permits the dropping of the dyadics
(BiBi)a and (ByX ). Furthermore s-BB,=Bgs. Hence

By? By? B,?
;= 7r1|:—-——-|— (1 _— cosgBm]s0= m[l - ( 1 ——~——) (1 —cosgBon)]so
By+By? B+ B By+B:

271'1[1 - (B 2/Bo2) sm2 gBoT ]So:exp[ 2 Z (B 2/302) sm2 gBoT ]So

with use of condition (3.5d).
As in Section 2, two cases are of interest: a. 1gBor;<1. Then,

sy=s¢exp[ —3 2 : g2B:*r:® =50 exp[ 5% B:n(rHn T/ a].

As in 2, one replaces 7%, by (r)%=1?, obtaining

b. LoBori>1 s;=8 exp[ — 3¢XB 7T ] =80 exp[ — 3¢(Bi*)ndd/v*]. (3.6a)
. 28DoT4 .

Sr=28o exp[-— Z»L (Blg/BOQ)] =S8 exp[—(Bﬁ/Bﬁ)Av(T/r):]: So pr[" (<Blz>Av/Bo2) (d/a)] (36b)

The physical distinction between the cases @ and b can be described as follows: In case a gBori/2 <1,
each domain gives rise to a small rotation of the spin ~gr;(B,+B;)Xs. Since by hypothesis s is
parallel to By, only the random field B; contributes to this rotation with the amount gr;B;s. These
rotations accumulate according to formula (3.6a). If, on the other hand, gBor;>1 the component of s
which is perpendicular to Bo+B; undergoes a large rotation, and if we average over B; and ; this
component reduces to zero. There remains, therefore, only the component parallel to Bo+B; with a
magnitude sBy/|Bo+B;|. Averaging this vector component over all directions of B; leaves us with
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a vector parallel to By which has the magnitude

s(B¢*/Bo*+B?) ~exp(—B#/B).

This gives semi-quantitatively a depolarization coefficient per domain equal to exp(—B?/B¢?) and,
correspondingly, a depolarization coefficient exp(—#nB?2/B¢?) =exp[ —(d/8)(B:?/B¢?)] for the total
thickness of the ferromagnet.

Case 4

(a) The field of each domain is again made up of two components. The first, By, is the same for all
domains; the second, B;, constant throughout the time interval 7, is completely random in direction.
The magnitude of B; is now taken to be of the same order as that of B,.

(b) The Larmor period is large compared to the time spent in a domain: g|B,+B;| ;1.

(c) The initial direction of the spin vector is the same as that of Bo. The constancy of B; in time 7;
and the statistical independence of the B; again permit the reduction of (3) to the form

(Bo+B:)(Bo+B:) (Bo+B:)(Bo+B.)
<Ai>Av—< B0+B1)2 > < BO+Bi)2

> cosg |By+B;| 7;
" smgﬂrl[Bo-}— ;|

Bz >< Ave
BB ((Bo+B:) X)

The mathematics of the averaging process is complicated by the dependence of |By+B;| on cos(B,, B;)
which must be taken intc account in averaging over the direction of B;. One can get around this
difficulty by employing condition (b). Expanding cos(g|Bo+B:|7:) and sin(g|Bo+B;|7;) in terms of

their argument, one obtains:

A = _”g 7'12[(B0+B1)2

(Bo+B:)(Bo+B:) ] —¢7:(Bo+By) X,

which, when averaged over the directions of B, gives

(An=1—3g¥7}[Bo*+B*—BBo—

Now, by condition (c), BoBo-s=By’s hence

(An=1—5grB#m=exp[ —

or

3B D

3¢r:B:)w ]

sy=soexp[ —§ Xi (g*r:B:Hn =80 exp[ — 3¢ BHn(rnT /7]

=g exp[ —

IV. DOMAIN STRUCTURE OF FERROMAGNETS

According to present ideas, a ferromagnetic
material consists of domains of microscopic size
in each of which the atomic spins are lined up to
give a sponianeous magnetization. In the unmag-
netized state the directions of these spontaneous
magnetizations are such that the macroscopic
magnetization is zero. The application of an
external field causes these directions to shift in
such a way as to reduce the angle between the
magnetization and this field. The net effect is
then no longer zero; in other words the system is
magnetized.

18X BHntT]=so exp[ — 5g%B:Dads/v?].  (3.7)

The nature of the domains is determined, as is
to be expected, quite sensitively by the physical
state of the material. For the purposes of this
paper these states are classified according to the
following scheme: (1) single crystals, (2) unmag-
netized polycrystals, which will now be discussed
in order.?

(1) Single crystals
The distinguishing feature of crystal ferro-
magnetism is anisotropy of magnetization. It is

3The case of magnetized polycrystals, in which the
magnetic inhomogeneities are due to the slight deviations
of the magnetizations of the component crystals from the
direction of the external field is discussed in Section VII.
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found that the increase of magnetization in an
applied field is strongly dependent on the direc-
tion of this field with respect to the crystal axes.
For instance, in the case of iron, a field of only a
few gauss suffices to produce saturation parallel
to a cubic axis, whereas saturation along a
[1, 1, 1] plane requires a field of almost 400
gauss. Thus, for iron, the cubic axes are the
preferred or ‘‘easy’ axes of magnetization,
whereas the [1, £1, 17 planes are the “diffi-
cult” axes. For a more complete discussion of the
experiments the reader is referred to the standard
texts,* 5 it will suffice, here, to state the concepts
which have resulted from them. The process of
magnetization is, at present, regarded as pro-
ceeding in the following manner. In the unmag-
netized state the domains are lined up along the
preferred axes in such a way that the macroscopic
magnetization is zero. When a field is applied, the
domains readily shift their directions to that
preferred axis which makes the smallest angle
with the field, the ease with which this change is
accomplished being determined by the coercive
force, which is very small for single crystals.
Further increase of the field causes the mag-
netization vector to be rotated away from the
preferred axis, macroscopic saturation being
attained when this vector is brought into coinci-
dence with the direction of the field.

Up to this point, the properties of domains
have been discussed solely from the standpoint of
their role in macroscopic phenomena. The most
important progress in recent times, however,
has been achieved by the method of colloidal
magnetic powders.® The principle upon which
this method is based is identical with that behind
the elementary demonstration of magnetic fields
by the use of iron filings: The magnetic powder is

acted on by a force which drives it to the place of .

strongest field strength. In practice, a suspension
or colloidal solution of magnetic powder is placed
on a smooth surface of the specimen. The
resultant pattern, which is determined by the

4F. Bitter, Introduction to Ferromagnetism (McGraw-
Hill Book Company, Inc., New York and London, 1937),
Sections 57-62.

5E. C. Stoner, Magnetism and Matter (Methuen and
Company, London, 1934), Chapter XI, Section 6.

8 For a comprehensive review of this method, see
reference 4, Sections 33, 34.
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fields arising from the presence of surface domains,
is examined with a microscope.

Unfortunately, the detailed interpretation of
the results is subject to a serious limitation.” It
has been found that the patterns formed on
mechanically polished surfaces, in general, differ
from those formed on naturally smooth surfaces.
The question arises as to whether the observed
domain structure is really characteristic of the
whole crystal, or whether it is merely a surface
phenomenon connected with some magneto-
mechanical effect of the polishing operation.

The only experiments which seem free from this
objection are those of Elmore,® who investigated
the powder patterns of cobalt. The surfaces on
which the patterns were observed were prepared
by electrolytic polishing. It was found that
mechanical polishing, followed by electrolytic
treatment, did not change the type of pattern;
hence it was reasonably certain that the surface
structure is independent of the treatment and
that, consequently, this structure could be
identified with that existing in the interior. The
observations themselves indicated the existence
of plate-like or thread-like domains with mag-
netization alternately parallel and anti-parallel to
the hexagonal axis. (Cobalt possesses a hexagonal
crystal structure.) As this axis is the only pre-
ferred direction, this result coincides quite satis-
factorily with those of the anisotropy experi-
ments. It was also found that the shortest
dimension of the domain always lay perpendicular
to the hexagonal axis, its magnitude lying be-
tween the limits of 1 to 70u.

(2) Unmagnetized polycrystalline media

The domain structure of polycrystalline media
is obviously much more complicated than that of
single crystals. The origin of these complications
is twofold. First, the axes of easy magnetization
vary in a more or less random fashion through the
specimen with the result that at the boundary of
the crystal grains discontinuities in magneti-
zation give rise to free magnetic charges; these
charges, in turn, set up a magnetic field whose
reaction on the domain magnetization can be
quite appreciable, even to the extent of rotating

7W. C. Elmore, ‘‘Properties of the surface magnetization
in ferromagnetic crystals,” Phys. Rev. 51, 982 (1937).
8 W. C. Elmore, Phys. Rev. 53, 757 (1938).
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this magnetization somewhat from the preferred
axes.? Secondly, the usual polycrystalline samples
are in a more or less strained condition. Strains
produce two effects: the setting up of new pre-
ferred axes'® and the increase of the coercive
force and hysteresis.

Direct information concerning the domain
structure of polycrystals has been obtained almost
exclusively from experiments on the Barkhausen
effect. It is noticed that when a ferromagnetic
material is subjected to an increasing external
magnetic field, there occur sudden reversals of
the magnetization of the domains; these reversals
are detected by amplification of the pulse pro-
duced in a secondary coil surrounding the speci-
men. A systematic investigation of the size and
direction of single reversals in iron, conducted by
Bozorth and Dillinger!! has revealed the follow-
ing: (a) On the steep part of the magnetization
curve, the direction of the reversals is mainly
parallel to the applied field. The average volume
of a single reversal is of the order 10~ to 10~8 cm?®.
(b) On that part of the curve above the knee
(B~14,000 gauss, H~35 gauss) the direction is
mainly transverse with respect to the field. The
volume of the reversals is of the order of 1012
cm?. (¢) With fields high enough to produce a
quasi-saturated condition %o reversals have been
noticed ; the approach to saturation seems to take
place mainly by the process, described in the
preceding section, of a rotation of the magneti-
zation vectors of the individual crystal grains
away from the preferred axis toward the direction
of the external field. The Barkhausen jumps are
thus linked up with the irreversible hysteresis
processes occurring mainly in low fields ~0 to 20
gauss. (d) The above observations, including the
numerical values of the volume of the reversals,
hold for all types of iron, ranging from well-
annealed to cold-worked specimens, as well as for

‘nickel and Permalloy. Since the size of the

crystal grains differs considerably for these
various cases, the volume of a Barkhausen re-
versal may be larger than, equal to, or smaller
than the volume of a single grain.

9 When there is no free charge a field B=47xM is still
present; the torque per unit volume exerted by this field,
47M XM is, however, zero.

10 Reference 4, Section 54-58, Chapter VII.

11 R. M. Bozorth, Phys. Rev. 39, 353 (1932); R. M.

Bozorth and J. F. Dillinger, tbid. 34, 772 (1929); 35, 733
(1930).
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These results have been interpreted by some
authors'? as indicating that the size of the
domains is independent of the crystalline struc-
ture. On the basis of this concept a single domain
would include regions of widely different elastic
and crystalline condition, a conclusion which one
would accept only with extreme reluctance. If, on
the other hand, the domains are of the same size,
a single Barkhausen jump must involve the
simultaneous reversal of the magnetization of
several domains.

V. APPLICATIONS OF DEPOLARIZATION OF NEU-
TRONS TO THE STUDY OF THE DOMAIN
STRUCTURE OF SINGLE CRYSTALS

The concept of the domain structure of cobalt
asan alternating series of parallel and anti-parallel
magnetizations, as obtained from Elmore’s ex-
periments, will be used as a starting point in the
discussion of depolarization effects in single
crystals. The results for this case can be written
down immediately from Section III (1), provided
it can be shown that the magnetic field B is also
cither parallel or anti-parallel to a fixed direction.

Since
B=H-+4M
and

H=v f divM(r))/ |t —1'|dx'dy'dz,

the only deviation from the conditions of III (1),
can arise from the existence of a “‘free charge’ on
the surface of the crystal; in the interior, the
direction of magnetization is always parallel
to the domain boundaries, i.e., perpendicular to
the direction of variation of M, with the result
that divM =0. It can also be shown that, by
suitable experimental arrangement, the surface
effects can be avoided. Therefore, one has B=4rM
which, when substituted into (3.1) gives

S1s=Syo{cosdrMgb),
S117=S8ny,

(5.1a)
(5.1b)

where 6 is the excess time spent in the positively
oriented domains. The consequences of these
formulae will now be treated in the order
enumerated :

2 R. M. Bozorth, Phys. Rev. 39, 353, 375 (1932);
E. C. Stoner, reference 5, page 413; W. F. Brown, Phys.
Rev. 53, 482 (1938).
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(1) Depolarization of the perpendicular com-
ponent

As stated in IIT (1), the magnitude of this
effect depends upon the distribution of 8, which,
in turn, depends upon the domain structure.
Now, whether the domains have the form of
layers or threads, it seems highly unlikely that
the parallel regions would be exactly compen-
sated by the antiparallel ; one would, in general,
expect that the excess of one over the other would
be of the order #§ where § is the average linear
dimension of the domain and # a numerical
factor of the order of magnitude unity. If the
beam is directed perpendicular to the hexagonal
axes, a tentative estimate of the uncompensated
path can be attained by taking =1 and 6 of the
order of magnitude of the sizes observed by
Elmore 1 to 70u. Taking the corresponding value
of 6=4§/v to be the width of the distribution
function, f(6), of the neutron paths over the
possible values of 6, one finds that the argument
of the cosine of (5.1a) varies over the interval
|¢| <4wMgé/v which, with M =1400 gauss (for
cobalt), g=2e/M.c (M,=mass of neutron), is of
the order of magnitude 3X10%. It is thus
apparent that any amount of depolarization can
be secured depending on the value of é. In the
case of one extreme, §=1y, {|¢|)w~0.3 radian,
and (cos¢)w~1. For the other extreme §="70p,
(l¢|)w=20 radians; tentatively assuming the
distribution function for ¢ to be constant up to
¢ =20 and zero for ¢ greater than this value, one
obtains {(cos¢)n~1/20 or residual polarization 5
percent of the initial value.

In order to obtain a suitable variation of § and,
hence, of ¢ it is not necessary to employ different
samples. If the beam is sent through the crystal
with an inclination of x with respect to the
hexagonal axis, all the domain lengths are in-
creased by a factor

cscx, i.e. ¢,=dqCscy,

where ¢o represents the value of ¢ for x=90°.
The depolarization effect for any angle x is, then,

(cos¢z),xv=fcos(¢0 cscx)g(po)ddo,

where g(¢) is the distribution function for ¢
corresponding to f(6). By studying the depolari-
zation as a function of x one can obtain the
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Fourier components of g(¢) over a large range
and hence obtain some idea of the shape of this
function, itself. The width of the distribution, in
particular, is determined by the angle x at which
the residual polarization drops off appreciably
from unity, i.e., when (¢o)a cscx~1, from which,
in turn, one can obtain an estimate of the
domain size to be compared with the results of
Elmore.

(2) Constancy of the parallel component

The preceding discussion has shown that ap-
preciable depolarization effects are to be expected
whenever the magnetizations of the domains are
not parallel to the spin of the incident neutrons.
Depolarization experiments should therefore pro-
vide information concerning the directional
properties of single crystal domains. Examples of
such experiments are as follows:

(a) Unmagnetized cobalt crystals.—In this case
the magnetizations are parallel to the hexagonal
axis—hence no effect on the polarization (cf.
(5.1b)). However, heat treatment or the appli-
cation of stress may cause deviations which
could then be detected by depolarization.

(b) Magnetized cobalt crystals.—One can test
for nonparallel domains at all stages of the
magnetization curve. One would have to take
into account the depolarizing effects arising from
the external field; this should not be difficult in
view of the extremely small value of this field.

(¢) Unmagnetized iron crystals—In an ordi-
nary single crystal of iron the preferred directions
of magnetization are the three cubic axes. A
neutron beam should suffer depolarization on
passing through such a medium regardless of the
direction of its original polarization. However, it
may be possible, by the application of stress
along one of the preferred directions, to align the
magnetization of all domains parallel and anti-
parallel to this direction. In that case, one could,
as before, arrange an experiment in which no
depolarization took place.

(d) Demagnetization of tron.—Although a crys-
tal without previous magnetic treatment may
have domains whose magnetizations are oriented
along all of the three preferred axes, the demag-
netization of a sample, magnetically saturated
parallel to any one of them, might occur unidirec-
tionally, i.e. the total magnetic moment would be
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cut down by the formation of domains whose
magnetizations point in the opposite direction.
This hypothesis could be tested by a depolariza-
tion experiment. If such an arrangement of the
domains actually exists, one could investigate its
stability towards heat treatment and the appli-
cation of small stresses.

VI. APPLICATIONS OF DEPOLARIZATION OF NEU-
TRONS TO THE STUDY OF DOMAIN STRUC-
TURE OF POLYCRYSTALLINE MEDIA

Formulae describing the depolarization of
neutrons in polycrystals are contained in III (2);
one has only to investigate how far the as-
sumptions underlying that treatment are fulfilled
in this case.

(1) Randomness of domains

The first theory, discussed at the end of IV (2),
states that the domain size is independent of the
crystalline structure; the direction of magneti-
zation of these domains must then be assumed to
be random.® As far as the second theory is con-
cerned, the domains in different crystals certainly
have no correlation with each other, because of
the arbitrariness of orientation of crystal axesin a
polycrystal. For domains contained in the same
crystal, the discussion of V has shown that there
exist domain arrangements of magnetizations
parallel and anti-parallel to a fixed axis in the
case of cobalt, which has only one easy axis, but
not in the case of iron, which has three. The
general effect of such arrangements is to cut
down the depolarization. The correction to the
formulae arising from these considerations will be
presented at the end of this section: for the
present, it will be assumed that the magnetiza-
tions are randomly oriented.

(2) Constancy of the field B; over the ith domain

This assumption is open to two objections:
(a) The magnetization of the domains in polycrystalline
media may not be constant throughout the domain, but

¥ One might think that the domains would tend to line
themselves up in such a way as to avoid as much as
possible the creation of magnetization charge; this can,
however, be produced merely by having the normal
component vary continuously across a boundary, the
tangential component being free to change by any value.
Such an arrangement would not be random in the sense
of IIT (2), bu@ it_s effect on the depolarization would be
the same to within a numerical factor of the order unity,
of IIT (3), case (1).
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may vary gradually so as to give a continuous transition
between different domains. In single crystals the domains
are lined up parallel to the easy axes; the transition region
between any two domains, in which the magnetization
rotates from one preferred direction to another, has been
estimated theoretically to be ~10~% c¢m, which is com-
patible with the observations of Elmore. The application of
these ideas to polycrystalline media is, however, not
advisable, due to the presence of elastic inhomogeneities
and internal magnetic fields, both of which may appreciably
alter the direction of magnetization so as to result in a
broader transition region.

(b) Even if the magnetization were constant over a
domain, the same could not be said for the induction since
this quantity is not proportional to the magnetization; one
must add to the 47M term the field arising from the exist-
ence of magnetic polesat theboundariesof domains. In gen-
eral, this field is not parallel to the magnetization; in fact,
the well-known boundary conditions for the fields—normal
component of B tangential component of H continuous—
preclude this relationship except under most artificial
conditions.

These objections indicate that a treatment more suitable
than ITI(2), would be one which provided for a continuous
variation of the field along a neutron path. However, the
authors are of the opinion that this refinement is-unneces-
sary, for the following reasons:

(a) The main characteristic of the motions considered in
III is that the time in which the magnetic field changes
appreciably is not larger than the Larmor period of the
neutron spin, i.e., from the quantum-mechanical point of
view, the motion is non-adiabatic. Now, in the present
case, even though the transitions between the different
magnetic fields may be continuous, i.e., they may require
times of the order 7;, the variation is sufficiently rapid for
the motion to be classed as non-adiabatic. This feature is
immediately apparent when one recalls that the spin of a
thermal neutron precesses, on the average, about 1 to 2
radians in a region of 1073 cm. Since the linear dimensions
of the largest domains do not exceed this quantity, the
transition from one field to the other will a fortiori take
place in a small fraction of a complete precession. Thus, the
non-adiabatic character of the motion is preserved.

(b) In view of these considerations, the treatment of
TII (2), should give results of the correct order of mag-
nitude, the only effect of the variation of B; in the time
interval being a change in the numerical factors of the
exponents of the depolarization formulae (8.1a) (8.1b) of
the order of magnitude. However, one would not want any
greater accuracy since the size of the domains may be
expected to vary over a correspondingly wide range.1s

The assumptions underlying III (2), can then
be taken as essentially valid; the existence of
magnetic charge will be approximated by

11, Landau and E. Lifshitz, Physik. Zeits. d. Sowjet-
union 8, 153 (1935). .

% A more accurate treatment would be necessary if one
were to investigate, say, the distribution of domain sizes;
such problems are not contemplated in the present paper.
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the insertion of a demagnetizing factor, i.e.,
Bi2(4r—v)M where vy~ (4/3)w. Inserting this
relation into (3.4a) and (3.4b), one obtains:

(a) For (dm—v)Mgr/2K1,

sy/so=exp[ —3(4r—v)*(¢M /v)*ds]. (6.1a)
(b) For (4w —vy)Mgr/221,
Sp/so=e"%8, (6.1b)

These formulae will now be applied to distinguish
between the two theories discussed in IV (2).

(1) Domain size ~107%—1078 cm?® independent
of crystal structure.—(4w—v)Mgr/2 has an upper
limit of 2. The depolarization is then given by
(6.1b) for all materials investigated by Bozorth
and Dillinger,'° in particular for all types of iron.
With §~107® cm a sample of thickness 5X 1073
cm suffices to depolarize the beam completely.

(2) Domain size of the order or smaller than the
size of the crystal grains.—In this case the depolar-
ization should depend quite strongly on the
previous treatment of the specimen. If the
crystal grains have linear dimensions <3X10™*
cm, (47— v)Mgr/2 has an upper limit of 0.25 and
the depolarization is then given by (6.1a). It
can then be seen that, even if the domains are
assumed to be identical with the crystal, a
sample the linear size of whose grains is ~10~* cm
would give a depolarization effect of an altogether
smaller order of magnitude from that of (1). In
fact:

lgldr—y)M/v]*ds Z3(1.7X10%)2X10~*d =10%,

and, hence, the polarization of a beam passing
through a sample 5X10~% cm should be cut down
by a factor not smaller than e~}~60 percent.
The difference in depolarization predicted by
the two theories should be especially noticeable
for thin films whose thickness is of the order of
6u. The first theory then predicts that the linear
dimensions of the domains should be of the same
order of magnitude as the thickness of the film.
One can then obtain results of the correct order of
magnitude by employing (6.1a) for both theories.
The first, predicting domain sizes of the order of
magnitude of the film thicknesses, gives a
depolarization effect s,/so=e"¥=70 percent. Ac-
cording to the second theory, for which the
domains are not larger than the crystals (in this
case <107% cm), no effect should be observed.
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Before (6.1a) and (6.1b) can be employed to establish the
application of depolarization experiments to more general
problems of polycrystalline domain structure, the possi-
bility of ordered arrangements of the domains within one
crystal grain must be investigated in some detail. This will
now be done for the cases of iron, nickel, and cobalt.

(1) Iron and nickel: In crystal grains composed of these
substances, the magnetization may be oriented along any
one of several directions ((1, 0, 0) directions for iron,
(1, 1, 1) for nickel). The only arrangement which can cut
down the depolarization effect is one of alternately parallel
and antiparallel domains (see next paragraph). From the
energetic standpoint, however, there is no reason why this
arrangement is to be preferred. Hence magnetizations along
all “easy axes’’ may be present. The passage of a polarized
neutron beam in a region where the directions of the domain
magnetizations change by 90° (iron) or by 63° (nickel)
gives rise to strong depolarization effects which are, if
anything, somewhat underestimated by the assumption of
randomness of direction, and thus tend to compensate the
reduction due to the presence of parallel-antiparallel
arrangements. As far as order of magnitude estimates are
concerned, therefore, the existence of ordered domain
structures within crystal grains should not affect the
validity of (6.1a), (6.1b) for iron and nickel.

(2) Cobalt: Here, the existence of only one preferred axis
should cause appreciable cancellation of the rotation of the
neutron spin in separate domains. The problem has been
treated for two types of arrangements: plate-like and
cylindrical domains, (case of g(4r—vy)Ms/(2v)<K1). The
results are:

(a) For domains in the form of plates

sy/so=exp(—3(4w Mg)*ds/v2), (6.2a)

where & now represents the average thickness of the plates.
(b) For domains in the form of cylinders:

sy/so=exp(— (4w Mg /v)26d[ (5/80)l0g280/6]), (6.2b)

where § is the average thickness of the cylinders and §, the
average linear dimension of the crystal grains.

The resemblance of (6.2a) to (6.1a) is quite satisfactory,
the only difference apart from numerical factors being that
the & of (6.1b) is the domain length averaged over its
shape, whereas for (6.2a) it is its shortest length. The
form of (6.2b) does differ somewhat from these two except
in the case §~4o; it may be mentioned in passing, however,
that the theoretical treatment of single crystal domains by
Landau and Lifshitz!? indicates that the cylindrical arrange-
ments require more energy than the plate-like and hence
should not occur.

Equations (6.1a, b) (6.2a, b) establish the con-
nection between depolarization experiments and
domain size. Such experiments, then, should yield
important information on the general problem of
domain structure in polycrystals, e.g., its depend-
ence on grain size, internal strain, chemical
composition (presence of impurities) and previ-
ous magnetic history.
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VII. DEPOLARIZATION OF NEUTRONS IN PoLy-
CRYSTALLINE MEDIA NEAR SATURATION

The magnetic domains whose nature has been
discussed in the three preceding sections are
characteristic of ferromagnets in small external

fields <10 gauss. When this field is increased to a -

value <200 gauss, these domains are wiped out.
As was stated at the beginning of VI (1), the
anisotropy experiments show that, under such
conditions, the main, if not the sole, process
governing the wvariation of magnetization in
single crystals is the rotation of the magnetic
vector (towards the direction of the external
field). The angle between the two is determined
by equating the torque exerted by the crystalline
field to that arising from the action of the
magnetic field; this equation has the form:
T(8, ¢)=MXH, where T(6, ¢) is a vector
function of the polar coordinates, 8 and ¢ of the
magnetic vector with respect to the crystal
axes.!6

The application of these ideas to the behavior
of polycrystalline samples in high fields leads to
the following picture. Each crystal grain pos-
sesses a magnetization whose magnitude is equal
to the saturation value; the direction of this
magnetization deviates somewhat from that of
the external field. If the specimen has not been
subjected to special mechanical treatment, e.g.,
plastic deformation, the axes of the microcrystals
will be oriented at random ; it then follows that
the deviations of the magnetizations of the
separate crystals are also random. The macro-
scopic magnetization is given by the average of
the component of the magnetization parallel to
the external field.

This model is readily seen to correspond to
that of III (3), as in VI, the assumption that the
random field B; is constant in time 7; is not true
in the actual physical case; however, again, the
variation of the size of crystals in a single speci-
men and the consequent uncertainty in the
depolarization formulae renders any attempts to
obtain better accuracy quite purposeless. The
field will hence be considered constant, its rela-
tionship to the magnetization will be described,

16 When strains are present, the energy is dependent
upon the direction of the magnetization with respect to
axes defined by the strain. The net effect is merely to
set up new crystal axes with new anisotropy constants.
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as in VI, by a demagnetizing factor. Thus
B;=(4r—v)sM;=(8/3)xsM,,

where 6M; is the vector deviation of the magnetic
vector of the 7th crystal from the macroscopic
magnetization. The dependence of the depolari-
zation formulae (3.6a) and (3.6b) on B; is given
in terms of its average square,

(B 2(87/3) % (6M;) 2.

Now (6M,~)2=M:——M|2u where M, is the satura-
tion value of the magnetization and M; the
component parallel to the macroscopic mag-
netization, M. Then

<(5M1) 2>Av = MSZ - IMOZEZM()AM,
where AM=M,— M, is the deviation of the
macroscopic magnetization from its saturation

value. By of course, is given by the familiar
relation By=47rM,+H. Thus, from (3.6a, b)

sy/so=exp[ — (87/3):MoAMéd /v?],

if 2mgMod/v<1; (7.1a)
s;/so=exp[— (4/3)(AM/Mo)d/s],
if 2rgMod/v>1, (7.1b)

where 6 is the average linear dimension of the
crystal grains. The value of § at which (7.1a)
goes into (7.1b) is given by

5=/ (2mgMs)=1.5%105/2X 108

~7%X10 cm.  (7.2)

The applicability of these formulae rests on
the assumption that the magneticinhomogeneities
arise solely from the angular deviation of the
crystal magnetizations from the macroscopic
magnetization. Now it is conceivable, although
highly unlikely, that even at high fields there
persist regions whose magnetizations are oriented
at random, i.e., Barkhausen domains which have
not yet flipped over. The contribution of such
regions to the observed difference between the
macroscopic and saturation magnetization has
been shown to be negligible. The presence of
these domains, therefore, cannot change the
depolarization unless they exert an effect dispro-
portionately large compared to their influence on
the magnetization.
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The disproof of the existence of such an effect
follows readily from Eq. (3.7) of III (4). This
equation represents the depolarization due to a
medium consisting of randomly oriented domains
in the presence of an external field. In the present
case these random domains occupy only a
fraction of the total volume of the specimen ; this
fraction is given by n =AM/ M, where AM, is the
deviation from saturation due to the presence of
these domains. Thus the quantity d in the
exponent of (3.7) must be replaced by

nd = (Alwl/Ms)dé(A]”1/ﬂlo)do
Furthermore,

B¢§(4T—7)Mi~(8/3)‘n’Mi; |M1! NMSEM().

Therefore:
sy/so=expl —3g2(8w/3) M AMdAS /v ].

The exponent of this equation, apart from
numerical constants of the order unity, has the
same functional form as that of (7.1a). Hence, for
a given AM the two cases can differ only in the
values of § the domain, or crystal, size. Now, in
most of the practical cases, the crystal sizes are
not far from the borderline between (7.1a) and
(7.1b) as given by (7.2). Therefore, whatever the
size of the domains, their effect per unit AM is,
at most, of the same order as that of the crystal
grains. The depolarization due to unoriented
domains is, hence, important only if the corre-
sponding AM is an appreciable fraction of the
total AM, a hypothesis which cannot be admitted.

Finally, it should be mentioned that, in ma-
terials possessing an average magnetic moment
different from zero, there will be a polarization
effect which will either add to, or subtract from,
the depolarization. The polarization will be
discussed fully in the next section ; at this point it
is sufficient to point out that, both from theo-
retical estimates, and from the experiments, no
appreciable modification of (7.1a), (7.1b) need be
feared.

The order of magnitude of the depolarization
effect in high fields will now be estimated. If the
crystals have linear dimensions not less than
107® cm, gBy7/2>1 and (7.1b) is to be employed.
For the usual samples of soft iron, § ranges from
10~% to 10~2 cm. In order, then, for a reduction of

971

the polarization to 1/e of the initial value in 1 cm
of material to take place, the relative deviation
from saturation, AM/M,, need only be 0.1
percent to 1 percent.

In conclusion, (7.1a) and (7.1b) can be used to
investigate the properties of ferromagnets near
saturation. One determines the depolarization as
a function of the macroscopic magnetization.
The ratio of log(s,/so) to AM should be a constant
=2(4/3)(d/8)(1/Mo) or 3g*(87/3)*Medé from
which one can obtain an estimate of § to be
compared to the observed grain size. If these
predictions are not fulfilled, it will be necessary to
revise the concepts which have been advanced to
explain the magnetic behavior of ferromagnets in
saturation fields. ’

VIII. TRANSMISSION OF NEUTRONS IN SATU-
RATED POLYCRYSTALLINE MEDIA

The transmission of neutrons has been treated
heretofore as a purely atomic problem. One first
calculated the atomic scattering cross section for
beams in the different spin states. To find the
effect of a differential layer of material on the
transmitted beam, one multiplied this quantity
by the number of atoms in the layer and sub-
tracted the resultant total scattering intensity
from the incident intensity. The results of these
calculations expressed in differential form are:

d/dx(I/v)= —N /v+wa, (8.1a)
do/dx= —No+wl /v, (8.1b)

where [ is the current density, ¢ the spin density,
v the velocity of the neutrons, A the sum of the
absorptions due to capture and total scattering,
both magnetic and nuclear, and w a constant
depending on the details of the atomic scattering
process and the direction of the beam with
respect to the magnetic field.'”

Now, it has been shown in the previous section
that depolarization effects can be avoided only in
the case of extreme saturation; if this situation
does not obtain, the polarization resulting from
the scattering process will be cut down. From the
standpoint of the treatments heretofore given,
this feature can be taken into account by the
insertion into the second equation of a term
proportional to the polarization, the coefficient

1 J, S. Schwinger, Phys. Rev. 51, 544 (1937).



972

of proportionality being determined by the rate
of depolarization as given by (7.1). It is the
opinion of the present authors, however, that the
transmission formulae are inadequate in other
respects, and that it is necessary to reinvestigate
the whole problem in detail.

When one is dealing with a case of coherent
scattering the fundamental unit is not the atom
but the microcrystal. The procedure of multi-
plying the atomic cross section by the density of
atoms to obtain the absorption of the trans-
mitted beam is correct for gases, liquids, and
amorphous solids; for crystalline substances the
method is applicable only in the case of wave-
length small compared to the separation of the
atoms. Now, in order to obtain appreciable
magnetic scattering, it is necessary that the
wave-length of the neutron be large compared to
atomic radii; otherwise, the interference of the
scattered waves arising from different parts of
the atom cuts down the amplitude of the
magnetic scattering. Since the separation of the
atoms is of the same order as their linear dimen-
sions, it is clear that crystal structure plays an
important role in the polarization process. The
method of adding over atomic cross sections must
therefore be renounced.'® The remainder of this
section is devoted to a derivation of the trans-
mission formulae from the standpoint of scatter-
ing in crystalline media. An important result of
the calculations will be the confirmation of (21);
the numerical values of A and w, however, will
obviously be different from those given in
previous treatments.

Before any calculations are performed, the
meaning of the term microcrystal must be

Vi=2"g Var exp(ig-1);

g=gini1t+gana+gans,;
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clarified. From x-ray studies it is known that
crystals which are macroscopically perfect are
usually composites of much smaller units, whose
linear dimensions are of the order 105 cm. These
sub-units have significance only with respect to
wave-mechanical properties; in all other respects
the crystal acts as a single entity. Indeed, such a
system can conceivably be formed of units whose
crystal axes are all oriented in the same direction
but whose relative positions are variable over a
distance of the order of the lattice spacing. The
medium is then homogeneous from the standpoint
of elastic and magnetic properties, but waves
(x-rays, neutrons, electrons, etc.) emanating
from the different sub-units do not superpose
coherently. In order to obtain the intensity of
scattering due to the whole crystal, one must
square the amplitude of each of these waves, and
sum the resultant intensities. In the calculations
which follow, the term single crystal denotes a
unit of polycrystalline material which is elastically
homogeneous, whereas its sub-units, each of
which scatter as a coherent whole, will be
designated as microcrystals.

The Schrédinger equation for the system,
microcrystal plus neutron, is

—(B/2Mn)VY+ VY =EY,

where M, denotes the mass of the neutron and V
the interaction between the neutron and macro-
crystal; this interaction is the sum of the po-
tentials of the constituent atoms. Now, the unit
cell of an iron crystal, which has a body-centered
structure, can be regarded as a superposition of
two simple cubic cells. The potential of one of
these is

n; integral,

where the g's are reciprocal lattice wave vectors. The potential of the two cells is then

V=3¢ (Var exp(ig- 1)+ Vir exp(ig- {r+3a1+322+3a3})),

1a;+}a,+%a; being the coordinate of the origin of one of the cubic systems with respect to the
origin of the other, expressed in terms of the lattice vectors a;. It is convenient to define a new
quantity Vg such that V=3, Vyexp(ig-1); Vo= Va(14+exp[}ig- (a1+as+as)]). Now gi-a;=2mn;.
Therefore V,=2V, if n1+n2+n3 is even, zero if this sum is odd. Vs of course, is calculated from

V(r) by means of the inverse Fourier integral

18 Halpern, Hamermesh and Johnson, Phys. Rev. 55, 1125A (1939).
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Vear= (1/a3)f V(r) exp(—ig-1)dro

where 7 is the volume of the unit cell.
V(r), itself, is the sum of the nuclear and magnetic potentials arising from the atoms of a con-

stituent simple cubic cell:
V= Vnuc+ Vmag~

For V... one takes a fictitious form which gives the same scattering for an individual nucleus and
which is suitable for the application of the Born approximation. V.. represents the interaction
of the neutron magnetic moment with the field set up by the electronic currents, i.e., Viag= 0B,
where u, is the magnetic moment of the neutron, ¢ the Pauli spin operator!® and B the magnetic
field of the electrons.

One can now proceed to calculate the scattering of a microcrystal by the well-known Born method.
Let

¢=exp(1’K0 . r)X+\[/11

where x is a two-component column matrix on which the neutron spin operator acts.?’ Then
(V24K = 2 M, /0% Ve, K:=2M,E/h?,

the solution of which is:

$2(R) = (11,/207) [ Texp(R | R—x])/ [R=x| IV (a(s)ar,
which, for R large compared to the linear dimensions of the microcrystal, becomes:

Ya(R) = (Mo/20H%) g Vex(e®®/R) f exp[i(Kot+-g—K) -rldr,

where K, and K are the propagation vectors of the incident and scattered waves, respectively.
The integration gives:

A e'KR 11 —expli(Kos+g.—K)I]\ f1—exp[i(Koy+gy,—K,)I]
ViR)=—— 3, Vix ( : )( ; )
27h? R 1(Koet+g.—K3) 1(Koy+g,—K,)
X(l—exp[’i(K02+gz—Kz)l:|)
i(Koutg.—K. '

where 2 is the volume of a microcrystal, assumed, for the sake of simplicity, to be a cube.
The corresponding scattered current per unit area of a sphere of radius R is:*

s=vzl/1*¢1
2M 2 5 x*| Vglx(l —cosl(KoI—{—gx——K,))(l—cosl(Koy-i—g,,—Ky))(l—cosl(Koz—}—gz——K,))
B £ (K()a:+gz_Kx>2 (K0:+g:c—Kz)2 (K0z+gz—'Kz)2 '

w2ht R?

19 It is assumed that the spin of the neutron is 3.

20 In the calculation of the scattered intensity the zeroth Fourier coefficient of the potential is neglected. Ordinarily this
feature is trivial since the resultant change in zeroth-order energy is negligible compared to the kinetic energy of the
neutron. In this case, however, a certain complication arises due to the fact that the coefficient has opposite signs for the
two spin states, i.e., the ‘‘indices of refraction” of waves in these states are different. A numerical calculation indicates that
the phase difference between the waves becomes appreciable when a distance of the order 1078 cm has been traversed. If
the single crystal were composed of one microcrystal, this difference would actually have to be taken into account; since it
is assu;ned Ehat the scattering units have linear dimensions of the order 1078 cm, the zero Fourier coefficient can forthwith
be neglected.

2t The different Laue spots are assumed not to overlap, in which case the cross terms (g5g’) drop out of the expression
for the scattered current.
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For variations of K, and K, of the order of g, the quantity (1 —cosK/)/K? resembles a & function
in that it has appreciable values only for K=0. Since

4o
f dK (1 —cosKl) /K2 =1,
the scattered current becomes -
s=Q2rM2B/hY) 2o [(x*]| Vel 2x)/R*]6(Ko+g—K),

where the § function is three dimensional.
To find the total scattered current, one integrates over a sphere of radius R:

S=v [Wsd T = @rdt /1) e (0 Vel [ [ LoKortg—K)/RAR/ 2wy,

where (R/2)dxdy gives the expression for a surface element in Cartesian coordinates. Taking the
2 axis along the direction of K,+g one obtains

S=2rMo/h') g (x*| VglX)ff(1/R2)5(Kx/R>5(Ky/R)5(KZ/R— | Ko+g|)(R/2)dxdy,
where K,.=Kx/R, etc.; since 8§(ax)=8(x)/a the result of the integration is:
S=2nM,Fo/WK?) g (x*| Ve|x)6(| Kot+g| — K).

One now takes cognizance of the mosaic structure of the crystal by adding the integrated in-
tensities originating from the component microcrystals. Since the crystal axes of these smaller
units are assumed to cluster around the value indicated by the macroscopic properties of the system,
all of the contributions have the same form. Thus

s=2 S=SL/P=(2r M. L¥/WK?) ¥p (x*| Vel x)6(| Ko 8| —K),

L3 being the volume of a single crystal. Apparently the same formula is obtained if the single crystal
is treated as perfect instead of mosaic; the difference, however, is contained in the § function, whose
value and width are still proportional to / and 1//, respectively.

One has now to average over all orientations of the single crystal, i.e., over the direction of the
vector g. For this purpose the explicit dependence of ¥, on g must be determined. The potential
V(r) of one of the two component simple cubic structures of the system is given by the relation

> aa*d(r—r;) —u,o-B, (8.2)

where a is the lattice spacing, a a constant given in terms of the nuclear cross section, and where
the summation runs over all atoms contained in a simple cubic lattice. Here, as pointed out at
the beginning of this treatment, use has been made of the trick of replacing the actual nuclear
potential by a fictitious potential suitable for the application of the Born perturbation method.
B is the magnetic field due to the atomic magnets; it is determined by the equations

divB=0; curlB=47 curlM.
Expressed in terms of Fourier components, these equations read®

g-B,=0; gXBy=4rgXM,.
Taking the cross product of the second equation with g/g? one obtains:

B.=—(47/g?)g X (g X M,).

22 The Fourier coefficients of ¥ and B due to a simple cubic structure are written as Vg and Bg instead of Vg; and
Bg; as at the beginning of the section.
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A superposition of the Fourier components of two cubic systems as described at the beginning
of this section gives:

Vg totalzz(a_ﬂn(f‘Bg) y or Vg tota]:()

depending on whether the sum of the components of g in the reciprocal lattice system, n1+ns+#ns,
is even or odd. One then has:

5= (87 M,2Liv/WK?) ¥ 6(|Ko+g| —K)x*[|al+u’0-By*o-By— - By¥a—ua*o B, lx.
If each atom is taken to be the center of a unit cubic cell, the quantity
+a/2 atal2 atal2
M, = (1/a?) f_ b [ S M@ exp(—iK vz Cvith dsudydzo=dro]
is real by asymmetry ; hence B, is real. Thus
s= (8 M L¥v/hK?) 3¢ (| Ko+g| —K)x*[| a|2+us0 - Beo-Bg—2u,0-Bear]x,

where ap is the real part of a. The second term can be simplified further by use of the property of
the Pauli matrices:
(¢-A)(o-c)=A-c+ioc-AXc,

where A and ¢ are any two vectors.? Substituting, also, for B, in terms of M, one has:
s= (8 ML /WK?) 35 6(| Kotg| —K)x*[ || *+ (87/g*) uno- {gX (8 X M) far
— (167%/g*) ua"Mg- {g X (X M,) } Ix.  (8.3)

From this equation it is apparent that the average of s over the direction of g is given in terms
of averages of the quantities

8(|Ko+g| —K) and (1/g)[gX(gX)]8(|Ko+g| —K)=—(1—gg/g?) (| Ko+g| —K),

now ,

@) (3(|Kotg| —K))u=2K(6(K*— (Ko+8)*) )n=2K(5(g’+2K-g) )

=Kf 8(g2+2Kg cosh) sindd=1/2g if g<2K=K,; 0if g>2K,
0

T 2T
(b) ((gg/g?)o(|Ko+g| —K))w= (2K/47r)f f [ cos¢ sinf+j sing sinf+k cosf) (i cos¢ sinf
P +j sing sinf+k cosf)5(g2+ 2K og cosh) sinfdbd o,
where 6 and ¢ are the polar coordinates of g with respect to a Cartesian system whose z axis is

parallel to K¢ and where i, j, and k are orthogonal unit vectors, such that k=K,/K;

(g8/22)8(| Kot-g| —K) = (1/2¢) f [3(ii+j) sin®0-+kk cos?073(g/2Ko+cos) sinddd

=(1/2¢) {3 (ii+jj) (1 —g?/4K?) +kkg?/4K?} = (1/4g)[(1 —¢*/4K?) +kk((3g?/4K?) —1) ],
(c) ([eX(gX)Io(|Ko+g|—K)/g*mw=—{(1—gg/g*) (| Ko+g|—K))n
=—(1/4g)[(1+g2/4K?) +kk(1 —3g%/4K?) = — (1/4g)[(1+g2/4K?) + (K Ko/K?) (1 — 3g2/4K?) .

2 P, A. M. Dirac, Quanium Mechanics (Oxford University Press, 1930) first edition, page 248, Eq. (25).
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The average of s is, hence,

s=(4r M *Lov/WK?) g<ox (1/@)x*[| | *—2mpno - { (14g2/4K*) +(KoKo/K?) (1 —3g2/4K?) |

‘Mear+4m’u Mg {(1+¢7/4K?) 1+ (KoKo/K?) (1 —3g2/4K?) } -Mg]x. (8.4)

Here the first term in the square brackets represents the nuclear scattering, the third the magnetic
scattering, and the second the interference resulting from the superposition of nuclear and magnetic
scattered amplitudes. It is this interference which leads to a polarization of neutrons; one can see
that the sign of the second term and, consequently, the magnitude of the total scattering is different
for the different spin states. ’

The average weakening of the beam is given by the ratio of the scattered current s, given by
(8.4), to the incident current I=vL2 Thus

A =5/I=Lx*[kn+t km+Kic2]x,

where
Kn= (47rMn2/ﬁ4K2) Zg<2K| [e4 ] 2/g, (8.58.)
km= (4 M.?/WK?) 3 ocox (dpa®/g)Mg? {1+2/4K?+ (Ko.Ko./K?) (1 —3g2/4K?) }, (8.5b)
ki= — (47 M2/ K?) ¥ g<ox (2mpa/g) | M| ar {14¢2/4K?+ (Ko.Ko./K?) (1 —3g2/4K?)}, (8.5¢)
the magnetic vector being directed along the z axis. It will be noticed that terms in A proportional
to o4, o, have been dropped; the lack of influence of such terms is due to the precession of the
spin about the direction of the magnetic field; the rapidity of this precession obliterates any pos-

sible effect of polarization in directions other than that defined by the field.

For the state x3
A =L[Kn+Km+K£];

A=L{kp+Kn—xi).

for the state x_4

Let it now be supposed that, at a depth x, the intensities of x; and x_; are, respectively, I, and I_;.
Then

AIT=A(LA+ 1) =[I{(X+L) = Ii(X) ]+ [T (X + L) — I_4(X) ]
= — L[ (kp+km) (Ly+ 1) — k(I — 1) ]
=LI(kn+ km) — Lk,
where ¢ =Io,. For { itself, one obtains the difference equation
Ar=[L(X+L)—L(X)]-[T4(X+L)—I4(X)]
=L (kn+ km) — LIk

At this point the effects due to true absorption (capture) and incoherent scattering processes
should be included. This is readily done by adding to the quantity (k.4 «,) the absorption coefficients
for these processes, k. and «, respectively. -Denoting the sum «kn,~+ k,~+ k.4 &, by the single letter «,
and replacing «; by the notation —w one has, finally

AI/L=1Ix+w;, A¢{/L=—{k+wl,

which, in differential form, read:
dl/dx= — kI 4wy, (8.6a)

dt/dx= — g +wl (8.6b)
to be compared with (8.1a), (8.1b).
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In conclusion, the relations (8.5a, b) for the absorption and polarization coefficients will be
expressed in terms of the nuclear cross section and the macroscopic magnetization. (a) The quantity
a which symbolized the amplitude of nuclear scattering, can immediately be related to the nuclear
cross section, o; one need only calculate this cross section with the potential V= aa?®4(r).* Using
the Born perturbation method, one obtains:

at=moht/ M, ar=[(mc)*h?/M.a*] coss,

where § is the phase difference between the incident and scattered nuclear wave. Due to the non-
existence of a resonance level of iron for thermal neutrons, |cosd| is expected to be quite close to
unity. (b) The quantity, which represents the magnetic scattering, is defined by the integral
(1/a®) S M exp(—1g-r)d7o where M is the density of atomic magnetization. Remembering that
this integral goes over only one atom, located in the center of the volume of integration, one obtains

M, = (1/a*)u.F(g)-

Here, u, is the atomic magnetic moment and F(g) = S exp(ig-r)pn.d7o where p, is the distribution,
normalized to unity, of the atomic magnetization. y, itself can be expressed in terms of the macro-
scopic magnetization M= Nu, where N=2/a? is the number of atoms per cubic centimeter.25
Hence M,=M,F(g)/2. (c) Inserting these values for a« and M, into (8.5) one obtains

kn=(No/4w)(N*/a®) Liczan 1/1, (8.7a)
Km=(M2N2au2Mo2/28) 3 1<coan(1/ D) [F(1/a) 12 {14+ \%2/4a%+ (cos?0) (1 — 3A%/4a?) }, (8.7b)
w=(M.NM, cosé(mwa)t/(2nh2a®)) 3 icoan(1/1) F(1/a) {1422 /4a?+ (cos?6) (1 — 3N%2/4a?) }, (8.7¢)

where 6 is the angle between the magnetization and the direction of the beam, A=27/K is the
wave-length of the neutrons, and the summation over 1=ga/2w, whose components are integers,
goes over values of 1 for which ;41,413 is even.

IX. TRANSMISSION OF NEUTRONS IN INCOMPLETELY SATURATED POLYCRYSTALLINE
FERROMAGNETIC MEDIA

Equations (8.6a) (8.6b) describe the transmission and polarization of neutrons in a medium
in which the magnetic induction B of Maxwell’s equations, i.e., the average over atomic distances
of the Lorentzian magnetic field H always points in one direction. For polycrystals, as has been
seen in Section VII, this condition obtains only when the medium is completely saturated; in all
other cases, the deviations of the fields of the constituent crystals give rise to depolarization effects
as given by (7.1a) and (7.1b). These equations have the general form:

Sfz=S0.67 7%
from which one obtains, for the differential change of the polarization:
ds,/dx= —ps,
or, in terms of the variable {=¢.,I=2s.]
di/dx=—pt.
To obtain the effect of this depolarization on the transmission of neutrons, one merely inserts the

24 Cf. (8.2).
26 The factor 2 comes in because of the body-centered structure.
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term —p{ into (8.6b). The complete transmission equations now read :2
dl/dx= —«I+wt,
d¢/dx= — k¢ —p+wl.

These equations can be simplified by the substitution

I:je-xx; g- — ne—xa:
to give:
dj/dx=wn,

dn/dx= —pn+wj.

(9.1a)
(9.1b)

(9.2a)
(9.2b)

Since the quantity of interest in the experiments is the relative change in transmitted intensity
AI/I=Aj/j, one need not refer back to this substitution, but merely treat j and 7 as the particle

and spin current, respectively.

Equations (9.2) will first be solved for the important case wx<1, i.e., transmission effect small.

In this case, one can replace j in (9.2b) by j, the initial current. Thus

dn/dx = —pn+wjo,
which has the solution

n=mnoe"?*+ (wjo/p) (1 —e7»%),

where 7, is the initial polarization. Substituting in (9.2a), one obtains:

J=Jjo(1+(w*/p*) (px —14-e77%)) +(now/p) (1 —e™%).

Equations (9.2) can also be solved exactly; the result is

sinh[x((p/2)*+w?*)]

noe~?% sinh[x((p/2)2+w?)*]

J'=J'oe"’”[ +cosh[x((p/2)*+w*)}] l +

((Qw/p)*+1)

((p/2w)*+1)}

= noe~?*{ cosh[a((p/2)*+w?)¥] -
7= 1n0e {cos Lx((p/2)*+w?)?] ((2w/p)*+1)}

Two cases are of practical importance:
(1) wxl, px~1, ie pDw.
Here (9.4) reduces directly to (9.3).
(2) wxLl, p~w, e pxKI.

In this case (9.4) reduces to
J=Jo{1+w*/2} +newsx,
n="no+jowx,

sinh[x((p/2>2+w2>ﬂ‘ |, sinblx((p/2)+w)}]
’ (p/2w)r+1)t

(9.3a)

(9.3b)

. (9.4a)

(9.4b)

which can also be obtained from (9.3) for px<<1 by expansion of the exponentials in these equations.

Thus (9.4) reduces to (9.3) for wx<1 and all values of p.

The applications of (9.3) to the different types of transmission experiments will now be discussed.

(1) Single transmission

This experiment consists of the measurement of neutron transmission through a ferromagnetic
magnetized and unmagnetized ; the relative difference is called the single transmission effect. The

2% In what follows, the constant x and w will be treated phenomenologically; their numerical evaluation will appear in

the following paper by O. Halpern, M. Hamermesh, and M. H. Johnson.
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theoretical estimate of this effect is obtained directly from (31) with the initial condition n=0. Thus
Aj/jo=(G—jo)/jo=(w*/p*) {px—14e 7=} = (wi?/2) f(px), (9.5)
f&)=2(t—1+e%)/8. (9.6)

When there is no depolarization f(px) =1 and (Aj/j¢) =w?x?/2 in conformance with previous results.
In all other cases the maximum transmission effect is reduced by the factor f(px). For small px,
f(px)==21—px/3; for large px, f(px)=22/px.

To illustrate the sensitivity of the single transmission effect to the degree of magnetic saturation,
let it be supposed that the average crystal size is 1078 ¢cm??” i.e., §=2X 107 cm. The corresponding
value of p is, by (7.1b), (3) X103AM/M,. If AM/My=1 percent and the thickness of the sample
d=1 cm, pd=20/3 and the transmission effect drops to 30 percent of its maximum value.

The presence of depolarization is most easily detected experimentally by observations on the
dependence of the transmission effect upon the thickness of the ferromagnet. In the absence of
depolarization, this dependence is quadratic (Aj=j,w??/2); the depolarization has the effect of
cutting down the increase with thickness; in the limit px>>1 the dependence is linear.

where

(2) Double transmission

In this experiment one compares the transmission through two ferromagnetic plates magnetized
in the same direction to that obtained with the magnetizations oppositely directed. Let d; and d,
be the thickness of the two plates, w; and w, their polarization coefficients, which are equal in
magnitude but may differ in sign depending on whether the magnetizations are parallel or anti-
parallel, and p1, p. their depolarization coefficients. From (9.2) the current and polarization of the
beam emerging from the first plate are

Jr=Jo {14 (w:?d:?/2) f(prdy) }, (9.7a)
n=(wijo/p1) {1 —exp[ —prdi]}. (9.7b)
Using these values as initial conditions for the second transmission, one obtains:

Jo=J1 {14 (ws?ds?/2) f(pads) } + (mwe/p2) {1 —exp[ — pids ]}

or
2d12
Je=Jo {1+ (ws?ds*/2) f(pads) } { 1+ ) ~f(prd1) ¢ + jo(wiwa/prps) {1 —exp[ — prdi]} {1 —exp[ —pada]}.
(9.8)
The double transmission effect is the relative difference in j, for the two cases w;=w, and w;= —w,.
Thus:
Aj/jo= (2w*/p1p2) {1 —exp[ —prd1} {1 —exp[ —pad:]]}
= 2wd1d2g(p1d1)g(pads), (9.9)

where g(¢§)=(1—e%) /¢ It should be noticed that only when »=0 does one obtain the maximum
effect Aj/jo=2w?d:d., in conformance with previous estimates; in all other cases the effect is cut
down by a factor g(pidi)g(pads), which, for large pd becomes 1/(pidipads).

It can be seen that the depolarization is much more destructive in double transmission, as com-
pared to single transmission. Using the previous illustration of AM/M,=1 percent, §=2X10"? cm,
one obtains, with di=d;=1 cm, a reduction by a factor (3/20)2=0.025. One thus sees that very
small deviations from magnetic saturation suffice to wipe out any double transmission effects which
are due to the magnetic scattering in ferromagnets.

2 This estimate is appropriate to the case of Armco iron, as communicated to the authors by Dr. T. D. Yensen of
Westinghouse Research Laboratories.
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X. COMPARISON WITH EXPERIMENTS

The application of the formulae developed in
Section IX cannot be carried out immediately,
essentially for two reasons. The quantity w as
mentioned before, is here treated phenomeno-
logically, while it will be evaluated on a strictly
atomistic basis in the following paper.2® Secon-
darily, it so happens that experimental papers
in the field do not contain precise information on
the deviation from saturation, which determines
according to, e.g., (7.1), the depolarization con-
stant p. Still, a few general statements of a
semi-quantitative nature can be made.

The earliest experiments?® were mostly carried
out with a magnetization which probably did
not exceed 70 percent. It is clear without any
detailed calculation that the value of p in this
case becomes so large that no sensible value of w
could lead to an observable polarization. This is
the more true since it will be shown in the
following investigation?® that even for ideal satu-
ration the theoretical value of w is rather small.

A similar objection must be raised against
later experiments® in which also poor saturation
AM/M,>10 percent was obtained. One is forced
to the conclusion that the observations are
theoretically inexplicable for any reasonable
value of w.

The most detailed observations so far reported
are those by Powers® who studied single as well
as double transmission effects with wvarious
samples of iron and under various conditions of
magnetization. His single transmission experi-
ments made with Armco iron were carried out
with a deviation from saturation which, accord-
ing to the author, amounted to approximately
1.5 percent. According to formulae (9.5), (9.6)
and (7.1a), and with the experimentally well-
established value?” for the crystal size the
reduction factor due to depolarization should
have been % or smaller.

Powers’ double transmission experiments were
carried out with Swedish iron and a value of
AM/My~8X10~2 The great sensitivity of
double transmission experiments to deviations

28 Reported in Frisch, von Halban and Koch, Phys.
Rev. 53, 719 (1938).
(129 %offman, Livingston and Bethe, Phys. Rev. 51, 214
937).
30 P, N. Powers, Phys. Rev. 54, 827 (1938).
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from saturation (cf. (9.9) and (9.10)) makes it
hard to understand how under such conditions
a double transmission should have been - ob-
servable. (9.9), (9.10) and (7.1b) indicate that
for any reasonable value of the most accurately
known crystal size in Swedish iron, the observed
effect should have been a.fraction of a percent
of the value obtainable with complete saturation.

If the picture of the constitution of ferro-
magnets and of the neutron’s magnetic moment
as used in this paper should be maintained, we
are forced to conclude that the experimental
data need revision. It may be that the saturation
achieved in some of the experiments is far better
than reported, though it is not easy to see how
the theoretically required value of AM/My~10-3
can be reconciled with the reported value of
AM/My~1071.

The authors are indebted to Professor E.
Fermi for the discussion of an interesting
possibility, which, though not actually helpful,
deserves analysis in this difficult situation.
Obviously (cf. (7.1b)) the depolarization would
be diminished if the number of incompletely
magnetized domains could be diminished or, in
other words, the size of the domains increased.
In the present paper the size of each domain
was identified with the size of the crystallite
which, in turn, is in certain cases?” experimentally
determined. This seemed almost inevitable since
every crystallite has its own direction of easy
magnetization which lies nearest to the direction
of the magnetizing field.

The new assumption would introduce blocks
comprising many crystallites with the direction
of easiest magnetization being determined for
the whole block by internal stresses. Obviously,
the existence of such sufficiently large blocks
would diminish depolarization strongly.

There exist, on the other hand, difficulties
which make the assumption of such blocks
rather impossible. It is not easy to see how the
existence of such large stresses which overcome
the crystalline energies, will affect the magnetiza-
tion only, without influencing appreciably the
elastic and crystallographic structure. Further-
more, the saturation curve of polycrystalline
iron can be semi-quantitatively understood by
using the magnetization curve for single crystals
of iron and averaging over all directions of the
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crystalline axis. This fact seems to indicate that
“the turning of the magnetization into the
direction of the field” has to overcome mainly
crystalline forces. Finally it has been pointed
out by Becker and Doering® that stresses
sufficiently large to overcome the crystal orienta-
tion energy cannot be realized in iron since they
would have to exceed the breaking strength of
the material.

3t R. Becker and W. Doering, Ferromagnetismus (Julius
Springer, Berlin, 1939), p. 104.
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It should be emphasized as a guide for future
experiments that it is not at all necessary to
use completely polarized neutron beams for the
investigation of the properties of ferromagnets.
Polarizations as claimed to be present in the
various experiments discussed would be amply
sufficient to allow investigations of ferromagnetic
structures.

The authors wish to express their thanks to
Dr. T. D. Yensen of Westinghouse Research Lab-
oratories for a very instructive communication.
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We investigate in this paper phenomena, occurring in
the passage of neutrons through matter, which originate
from the crystalline or polycrystalline constitution. While
the procedure is in many respects closely similar to that
followed in the theory of x-rays, important and quantita-
tively decisive differences arise from the complicated
coherence properties of the alomic scattering. The theo-
retical formulae developed in the first two paragraphs
permit us to interpret in a quantitative manner a series of
experiments which show deviations from the so far almost
always assumed additivity of nuclear cross sections. We
also obtain information concerning the relative phases of
the scattering amplitudes of nuclear isotopes. We next
show for illustrative purposes how the Larmor precession
of the spin of the neutron passing through the magnetized
medium, and the well-known differentiation between the

INTRODUCTION *

ONTINUING earlier investigations! on the
transmission of neutrons through macro-
scopic bodies, and in particular on macroscopic
and microscopic magnetic effects, we present in
this paper a discussion of the influence of crystal
structure on scattering and polarization of neu-

* A preliminary report of this work appeared in the
abstract: Halpern, Hamermesh and Johnson, Phys. Rev.
55, 1125A (1939).

1 1. O. Halpern and M. H. Johnson, Phys. Rev. 51, 992
(1937); I1. dbid. 52, 52 (1937); III. ¢bid. 55, 898 (1939);
IV. Halpern and Holstein, bid. 55, 601 (1939); V. ¢bid.
59, 960 (1941) (this issue). These are referred to through-
out the paper by the corresponding Roman numerals.

action of the vectors “B’ and “H" can be explained as a
simple dispersion phenomenon. The preceding formulae
permit us to determine quantitatively the transmission
and polarization of neutron beams passing through ferro-
magnetic bodies. The main uncertainties which enter into
attempts to evaluate experiments, arise from our incom-
plete knowledge of the velocity distribution of the incident
beam and of the form factor which enters into the formulae
for magnetic scattering. We present a detailed discussion
of these uncertainties. Even neglecting depolarization
effects which are due to incomplete saturation and which
would still further diminish the theoretical value for
transmission effects, we find that the observed values are
considerably higher than those theoretically predicted and
are not in good agreement with each other.

trons. It has been the accustomed procedure to
consider the nuclear cross section for the scatter-
ing of slow neutrons as a strictly additive prop-
erty independent of the physical state or the
chemical constitution of the sample investigated.
On this basis the total cross section of a chemical
compound could, for example, be determined
from a knowledge of the cross sections of the
constituent elements.

Such a procedure is valid only if we are dealing
with a substance of strictly amorphous structure
(a gas). In all other cases the crystalline structure
of the material becomes significant; it will turn
out to be of importance even for substances



