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The photoelectric current emitted under the influence of an applied electric field is found
to contain a term analogous to the Schottky term for thermionic emission and also a term
periodic in the field intensity similar to that recently found and explained for thermionic
emission. If frequencies near the threshold are used, then for fields of 3)&105 volts crn i the
periodic term has a magnitude. of about four percent of the nonperiodic part of the current.
If the photoelectric threshold frequency for zero field is used to eject the electrons, the resultant
plot of the nonperiodic part of the photo-current against the field is a straight line for high
field intensities. This line gives the most convenient reference system for observing the periodic
term; in addition, the use of the zero field threshold gives the fractional magnitude of the
periodic term a relatively large value.

Some indications of the results to be expected
for the field dependence of a photo-current may
be seen by considering briefly the analogous
problem of thermionic emission. In this case one
has

I. INTRQDUcTIQN

''N a recent paper' the observed'' periodic
& ~ deviations from the Schottky line are ex-
plained as due to a periodic dependency of the
transmission coeScient upon the intensity of the
applied field. This periodic behavior of the trans-
mission coefficient may be interpreted as the
result of interference of the electron waves
reflected from the potential barrier at the surface
of the metal. Since this same potential barrier is
used in the theory of the surface photoelectric
effect, and since the transmission coeScient
enters the expression for the photo-current in the
same way, a periodic dependence of the photo-
current on the applied field, similar to the
dependence of the thermionic current, is to be
expected. In the present paper the influence of an
applied field upon the emitted photo-current is
investigated, and an expression for the current i

derived. It is found that the current contains th
expected periodic term, the fractional magnitud
being even larger than with thermionic emission.
The effect should be most easily observable fo
frequencies very near the threshold, for then th
fraction of the current due to the periodic ter
has its largest value.

i =ADD(F) T'e «"r—
or

i(F) e& D(F)
log = Fl+ log

i(0) kT D(0)

' E. Guth and C. J. Mullin, Phys. Rev. 59, 575 (1941).
~ R. L. E. Seifert and T. E. Phipps, Phys. Rev. 56, 652

(1939).
'D. Turnbull and T. E. Phipps, Phys. Rev. 56, 663

(1939). Cf. also W. B. Nottingham, Phys. Rev. SV, 935
(1940),

where A 0 is the emission constant = 120 amp. /cm';
D(F) is the transmission coefficient summed over
all electron energies greater than that necessary
for an electron to escape from the metal; i(F) is
the thermionic current at field Fand temperature
1'K; y is the thermionic work function at field F.
One usually plots logi+const. against F&. Then,
neglecting the variation of D(F) with F, one has
the result that the plot should be a straight line,

s known as the Schottky line. The increase of
e current with field is due to the fact that in-
c creasing the field decreases the maximum height

of the potential barrier at the metal surface and
therefore makes a larger number of electrons
available for emission. However, it has been
found that the transmission coefficient D(F) also
varies with F, i.e., with the shape of the barrier;
hence, D(F)/D(0) W1 and one does not obtain a
perfectly straight line from the plot of Eq. (1).
Rather, D(F) varies periodically with F, so that
the plot yields periodic deviations from a straight
line. In the theory of photo-emission a similar
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periodic fluctuation in the photo-current as one
changes the intensity of the applied field is to be
expected. Experimental data on the field depend-
ence of photo-currents4 are rather meager and
have not as yet disclosed this periodic behavior;
in fact, even the photoelectric analog to the
Schottky effect does not seem to have been
thoroughly investigated.

It is here assumed that the potential traversed
by the escaping electron is the usual image+ap-
plied field potential which has been so successful
in the explanation of thermionic emission; i.e.,

P'= W, —(e'/4x) —eFx.
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Here W is the difference in the potential energy
of the electron in the metal and at infinity when
F=O; x is the distance of the escaping electron
from the metal surface; F is the intensity of the
applied field; W, ' is the maximum barrier height
when the field intensity is F. (We do not consider
patch effects which come in for fields from 0 to
about 5000 volts or higher, depending upon the
wire specimen used. ) This potential is shown in

Fig. 1 of reference 1. It may now be assumed that
the current is given by the expression

$ OC N(W)P(W, v)D(W, F')dW

or

Z o: ~ N(6)P(E, V)D(E, F)dE,
4()

(3)

4 The work of E. O. Lawrence and L. B. Linford LPhys.
Rev. 36, 482 (1930)g was an attempt in this direction.
Also Dr. R. J. Cashman has informed us that he is inves-
tigating the field dependence of the photo-current experi-
mentally.' Here and in what follows we use the expression
"normal energy" to mean the part of the energy correspond-
ing to the normal velocity component of the electron.

where W is the normal energy' of the electron
before it absorbs a photon; e= W—W, '+hv is the
excess of the electron's normal energy W+hv
(after the electron has absorbed a quantum hv)

over the maximum height of the potential
barrier at the emitting surface; P(v, e) is the
probability that an electron with normal energy
TV will absorb a quantum hv and become a
potential photoelectron; D(e, F) is the probability
that an electron with excess normal energy e over
the barrier will escape through the metal surface
under the influence of an applied field of in-

FIG. 1. The photo-current as a function of the applied
field. The field intensities I" are in volts per cm. The upper
curve is for hv —hv0= 0.1 ev, the lower for hv-hv0 ——0. Both
curves are plotted with T=500'K.

tensity F. A particular case of Eq. (3) which is
obtained by considering only F=0 and assuming
that D(e, 0) = 1 forms the basis of Fowler's' well-
known theory of the photoelectric effect which is
valid for frequencies in the neighborhood of the
threshold. A priori reasons do not completely
justify Eq. (3);however, MitchelP calculated the
current by applying the standard perturbation
theory and found that Fowler's procedure, and
hence (3) also, gives a good approximation in the
neighborhood of the threshold frequency.

In Section II of the present paper Fowler's
evaluation of the integral in (3) is generalized to
include the application of a field. D(e, F) is taken
as unity and the current increase due to the
lowering of the potential barrier because of the
applied field F is obtained; this is the photo-
electric analog to the Schottky effect. In Section
III the variation of D(e, F) with e and F is
considered and the resulting expression (17) is
found to contain the expected periodic term.

II. PHQTQELEcTRIc ANALQG oF THE

SCHOTTKY EFFECT

In the first approximation one may assume
that all electrons for which W+ h v —W ' &0
escape from the metal, i.e. , D(e, F) = 1 for these
electrons; furthermore, if one considers values of

' R. H. Fowler, Phys. Rev. 38, 45 (1931);or cf. R. H.
Fowler, Statistical Mechanics (Cambridge University
Press and Macmillan, 1936), second edition, pp. 358 ff.

7 K. Mitchell, Proc. Roy. Soc. A146, 442 (1934), and
Proc. Carnb. Phil. Soc. 31, 416 (1935).
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v near the threshold value vp, then the probability
P(v, p) that an electron will absorb a quantum hv

and become a photoelectron should be inde-
pendent of the normal energy lV of the electron.
With such assumptions Fowler' has derived an
expression for the photo-current emitted at tem-
perature T and frequency v. His result is

4+mk2T2 m2 1
$ CX: + $2

h3 6 2

5' = (hv —hvp+e&Fl)/k T»0, (6)

so that the bracket term of (4) may be neglected.
This condition may be fulfilled for large fields
even for values of v less than vp. If this condition
is fulfilled, then

produced when the same field is applied under
similar circumstances to a thermionic filament.

A particularly simple case of the field depend-
ence of the current occurs when

~
—25 g

—35

+
22 32

~ ~ ~
) g)0 i ~ -'4r'(kT)'+-'[h(v —vp) j'+h(v —vp)e&F'+-', e'F

and

where

4~mk2T2 g
—25 g

—35

+ ~ ~ ~

22 32

8 =h(v —vp) /k T.

(4)

If an electric field is applied to the emitting
surface, Eq. (4) should again be valid if the zero
field threshold vp is replaced by a field dependent
threshold vp', whose dependence upon the field is
given by the relation

hvp =rsvp —8~F~,

i.e., we replace 8 by

5'= (hv hvp+e&F')/—kT. (5)

This shift in the threshold frequency arises from
the lowering of the potential barrier by the
applied field; this corresponds exactly to the
decrease of the thermionic work function when
the applied field is increased. Since decreasing the
barrier height makes more electrons available for
emission, an increase in current is expected; this
is the analog to the Schottky effect in thermionic
emission. There is, however, one essential differ-
ence: The number of electrons made available by
lowering the barrier is considerably different in
the two cases; the thermionic electrons have
energies so large that their energy distribution
(which determines the number made available by
lowering the barrier) is Maxwellian, while on the
other hand, the potential photoelectrons have
much smaller energies, so that they have a Fermi-
Dirac energy distribution. Hence, for photo-
currents the current increase observed because of
the decrease in the maximum barrier height with
increasing field is not expected to be equal to that

i ~ a+bF&+cF. (7a)

Figure 1 shows the current plotted as a function
of F for a particular temperature and for two
values of h(v —vp). It is to be noted that when
v= vp the coeKcient b in (7a) vanishes, so that the
plot of (7a) yields a straight line,

p ~ a+cF. (7b)

The effect of the field on the current when the
condition (6) is not fulfilled may be found by
substituting 8' (as given by (5)) for 5 in Eq. (4).
The expressions (7a) and (7b), and other expres-
sions derived for the field dependency of the
current, will hold accurately only for fields above
about 104 volt/cm, because of the occurrence of
patch effects for lower fields.

III. INFLUENcE oF THE FIELD DEPENDENcY oF
THE TRANSMISSION COEFFICIENT

1 x
V= W, ———

2x 2xp

The maximum height of the barrier is then

W.' = W, —(1/xp),

the term 1/xp being the amount the barrier is
lowered by the applied field. The quantity xp, the

If, for convenience, we introduce the following
system of atomic units: unit of length =a
=h'/me'=0. 528A=radius of first Bohr orbit in

II, unit of energy=e'/2a=13. 54 ev=ionization
potential of II, the equation (2) for the potential
becomes
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position of the potential maximum, is here used
as a variable in place of the field F. The relation
between xp and F is established by the equation

xp ——-', (300e/F) &10Pa/0. 528, (10)

where F is in volts cm '. For the field intensities
of interest the number of electrons which tunnel
through the barrier may be neglected; the photo-
current arises from the electrons which surmount
the barrier. Thus, in order that an electron with
normal energy T4 be emitted after absorbing a

quantum hv, it is at least necessary that

W+hv& W,'= W.—(1/xp).

Hence, according to Eq. (3)

i ~ I N(p)P(v, p)D(p, F)dp
Jp

with W,' given by (9).
The value of N(p) is given by the Fermi-Dirac

distribution, ' and the value of D(p, F) has been
worked out' for the barrier of Fig. 1 of reference
i. We give only the results here.

N(p) =4~mkT
log [1+ exp( —[p+h(v p' —v) ]/k T)],

h3

D(p, F) =
1+exp[—2x(xp'/2) 4]

QW. exp[ —7r(xp'/2) 4]
cos v

2 (1+exp[—2s (xpP/2) '*p) &]

with

(12)
16(p+ W.')' (1+exp[ —2s (xp'/2) 4]')'

4v2 2 gW. (x 3)
v= xp& — +tan —' —(y+2 log2)

~

—
( p,

3 QW, 4 E2)

where vp' is the threshold frequency at field F and is related to the zero field threshold vp by the
relation hvp =hvp (1/xp); and y = Euler's constant=0. 5772.

Thus the only unknown quantity in the expression (4) for the current is the transition probability
P(v, p). The work of Mitchell shows that near the threshold the transition probability is independent
of the electron energy. Hence, the emitted current is given by the relation

4mmkT p"
i ~

~~ D(p, F) log[1+exp( —[p+h(vp' —v)]/kT)]de
h' ~o

(13)

with D(p, F) given by (12).
We may expand the log into the following forms

( 1)n+1

log[1+exp( —[p+h(vp' —v)]/kT)] = P
vp &~i

exp( —n[p+ h(vp' —v) ]/k T) if
0 &&q ~&oon=1 n

p h(v —vp') ~ (—1)"+'
log[1+exp( —[p+h(vp' —v) ]/k T)] — + +Q — exp(n[p —h(v —vp') ]/k T)

kT kT ~ & n

( 1)n+1

log[1+exp( —[p+h(vp' —v)]/kT)] = Q
n=l

V ~vp
if (14)

0 ~&p &~h(v —vp')

V ~vp
exp( —n [p —h(v —v p') ]/k T) if

h(v —vp') &~p& ~.
Cf. R. H. Fowler, Statistical Mechanics, (second edition), pp. 341 K.
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We then have the following expressions for the current

4~mkT
p pi: ~

(i (i —i p') ( 1)m+(

D(p, F)
~

}dp+ D(p, F) Q
kT ) &0 n=l

exp(n [p h—(v v—p') ]/k T)d p

p QO ( 1) ii;+(

D(p, F) Q exp( —[p —h(v —vp') ]/k T)dp v )v, ' (15)

and
4~mkT p" ( 1)n+1

i 0- ~~ D(p, F) P exp( —n[p+h(vp v)]/kT)dp v ~&vp'.
n=i

(16)

For the purposes of summing over the electron energies we may neglect the term [W, /16(p+ W ')']
(1+exp[—2pr(xpp/2) 4]) ', furthermore, we make the approximation

(1+exp[—2m. (xp'/2) lp]) —
& (1—-', exp[ —2x(xp'/2)r p]) g (—1) '" exp[ —2n7r(x, '/2) 4].

n=o

With these approximations we may write

D(p, F) Q (—1)P exp[ —2k'(xp'/2) lp]—
k=o

I/V

exp[ —pr(xp'/2) 4](1—-', exp[ —2x(xp'/2) 4])

P (—1)' exp[ —2k7r(xp'/2) 4] cos v.

The integrations of (15) and (16) may now be carried through in a straightforward manner. The
resulting formulae give particularly simple and interesting results when h(v —vp )/kT&)0 so that the
condition exp[ —h(v —vp')/kT]«1 is fulfilled. Note that even if one takes v= vp, the threshold at zero
field, the condition is fulfilled for all values of the field above some relatively small value (since vp'

decreases as F is increased). For large values of F the condition may be fulfilled with v chosen even
less than vp. In the case that exp[ —h(v —vp')/kT]«1, the integration of (7) yields with good ap-
proximation:

g QC

4xmkP T pr 1 h(v —vp') ' g W, h(v —vp') cos I—+— (17)
h' 6 2 k T 2 (k T)' I [7r(xp'/2) &+ 1/k T]'+ (y+2 log2)'xp'/2 }1

where
4&2 2 QW,

Q — go'— +tan —'
3 QW. 4

(p+ 2 log2) (xp'/2) &

—tan —'
[pr(xp'/2) &+ 1/k T]

The formula (17)gives the desired expression for the photo-current. An expression for the current when

the condition h(v —vp )/kT&)0 is not fulfilled is readily obtained from (11) and (12). However, the
resulting expressions are rather lengthy and complicated and hence dificult to analyze. For a study of
the field dependence of the photo-current using light of a fixed frequency, an analysis of the simple
expression (17) is sufficient. In deriving (17) a small temperature-independent term has been neg-

lected in the cock.cient of the cosine. This neglect is justified as long as T is more than a few degrees
absolute. However, an examination of (17) shows that if T is allowed to become zero, then the
neglected term, which is a function only of the field, must be considered in order that the periodic
term should not vanish when T=O. Thus, if T is so small that

h(v —vp') (pr(xp'/2) l+1/kT)
C&

2 {(pr(xp'/2) &+1/kT)'+ (y+2 log2)PxpP/2} pr xp'
(18)
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FIG. 2. Field dependence of the
photoelectric current. The peri-
odic fluctuation in the current is
seen in the upper diagrams. The
dotted line shows the nonperiodic
part of the current. The lower dia-
grams show the fractional magni-
tude of the periodic term, i.e., the
periodic term divided by the non-
periodic term. All diagrams are
for v=v0 and T=300'K.
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(21)i ~ a+cF,
ir' 1 QW,

i ~ (kT)'+ —— cosu.
6 2Xp 7l Xp

where a and c are independent of F. This is the
same result as that obtained in Eq. (7b) by
assuming that D(e, Ji) =1. Hence, it is seen that
the periodic term arises from the dependence of
the transmission probability on energy and field.
Equation (21) shows that if v = vo, a plot of
i versus F should give a straight line, the simplest
reference for observing the deviations. In this
case Eq. (17) has the simple form

Even for the highest fields considered the in-
equality (18) is satisfied only if T is very near
to the absolute zero.

IV. DISCUSSION OF THE RESULTS

A comparison of (17), which was obtained by
considering the transmission coefficient, and (7),
which was obtained by assuming the transmission
to be unity, yields the expected result that the
change in the transmission coeScient as the
shape of the barrier is changed gives rise to a
periodic term which causes deviations from the
current expected from Eq. (7a). These deviations
have values as large as four percent of the total
current for fields of 3X10' volt/cm. The devia-
tions could be observed most easily in the case
where the incident light has a frequency equal to
the zero field threshold for the metal; for in this
case the equation for the expected current (neg-
lecting the periodic term) has the form

1 QW,
i ~ (kT)'+—

6 2Xp 2Xp

cos Q

X . (22)
l (ir(xg/2)&+1/kTj'+(y+2 log2)'x2'/2}&

The current, as given by (22) is plotted in Fig. 2

as a function of the field for potassium and
tungsten; the dotted portion gives the straight
line obtained by neglecting the periodic term. If
the periodic term is Ai, and the nonperiodic part
of the current io, the quantity Ai/io is then a
measure of the fractional deviation from the
nonperiodic current; this is also shown in Fig. 2

for potassium and tungsten. It is to be noted
that the period of the deviations is the same for

(20)i ~ —(kT)'+
6 2Xp

a consideration of the term neglected in (17) or since xo=const. X1/F~
gives
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both metals; the positions of the maxima and
minima are different because of the difference of
W values. Both for tungsten and for potassium
the W, values (W, = W, —x =width of the Fermi
band at absolute zero), which are needed to
obtain the W, values, were calculated from the
free electron model of a metal, assuming one free
electron per atom. This probably gives a good
value for potassium, but a value slightly too
large for tungsten, The values of x used were:

y=4.53 for tungsten, and y=2.24 ev for potas-
sium. The quantity Ai/io is seen to increase as Ii

is increased or as v —uo is decreased. Ai itself is
nearly independent of temperature, but the tem-
perature dependence of the nonperiodic i 0 makes
the fractional deviation Ai/io dependent on tem-
perature.

Part III of this work on the transition from
thermionic to cold emission will appear in the
near future.
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Syecies Classification and Rotational Energy Level Patterns of Non-Linear
Triatomic Molecules*

ROBERT S. MULLIKEN
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(Received March 17, 1941)

With the object of making existing knowledge more
readily available, the quantized energy levels of sym-
metrical and asymmetrical tops are discussed from the
viewpoint of their classification into species defined by
symmetry operations; and simple species nomenclatures are
proposed. These are then applied in a discussion of the
rotational levels of symmetrical non-linear triatomic
molecules AB 2. With SO2 as an example, the pattern of
rotational levels is studied as a function of the apex angle
2n (near-prolate-symmetrical case for large n, oblate or
near-oblate case for intermediate n, second near-prolate
case for small n). The classification of the over-all wave
functions with respect to behavior for exchange of equal
nuclei and for inversion is then considered. This gives rise to
level patterns like those of diatomic and linear molecules in

the first near-prolate case, but of interesting unfamiliar

types (expected also in molecules such as BC13 or NH3) in

the oblate case, and of relatively unfamiliar types (known
for the molecule H2CO) in the second near-prolate case.
Rotational-vibrational and rotational-electronic pertur-
bations are discussed in relation to the species classifi-
cations. The concept of gyrovibronic species, and a
corresponding nomenclature, are introduced. Top selection
rules are discussed, using a convenient tabular formulation.
Tables are given, for the case of symmetry C2„, showing
what types of transitions are allowed by the vibronic
selection rules for every type of electronic transition,
allowed or forbidden; the use of these tables is illustrated

by application to the near-ultraviolet absorption spectrum
of formaldehyde. Finally, non-linear ABC molecules are
considered.

I. INTRQDUcTIQN

RIATOMIC molecules AB2 fall into two
types, linear and bent. The quantized

rotational and electronic energy levels of /incur

molecules are like those of diatomic molecules,
but the vibrational levels introduce new com-
plexities. Bent AB2 molecules rotate like asym-
metrical tops, and their rotational levels are
arranged and classified accordingly. Often, how-

ever, the level patterns are not very different
from those of symmetrical-top molecules.

*Assistance in the preparation of materials was fur
nished by the personnel of Works Project Administration
Official Project No. 665—54—3—387.

In connection with a program of investigation
of electronic spectra and structures of AB2
molecules, it became desirable to obtain as clear
a view as possible of the classification and
arrangement of the energy levels as a function
of the shape and masses. Although everything
necessary is contained either explicitly or im-

plicitly in existing literature, ' ' these discussions
are for the most part not in, a form readily
available for application. Tables and figures

' See especially D. M. Dennison, Rev. Mod. Phys. 3, 280
(1931),and references given there.

'A. V. Bushkovitch, Phys. Rev. 45, 545 (1934): bent
AB2 molecules.


