
LETTERS I 0 THE EDITOR

l 2a &+1+) 1 xl+'yg —as/ (t+P)
~+t [r(2y+2l+1)]&

of this equation is independent of m, and hence is equal to
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As C is the normalization factor and the functions
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'Ft, &, St, ~ are normalized, we obtain from (1), (2) and (3)

the condition for C to make (g1 +x2 )dx= 1:
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where m is an integer, 0~&m~& l, and

l+1 t

since It(l, l+1) is evidently zero (as 3Ct, ~5't, ~ =0). Hence
by using the value of A +' given by (13), we have the
value of It(m, m+1). Putting m =0 in the result, we have

It(0 1)= —I1—(7'/(~+7)') I». (20)

Equation (10) is then obtained by solving (4) for l+7 and
substituting the result into (20).

The author wishes to thank Professor Infeld for suggest-

ing the problem and for his help.

' Bechert, Ann. d. Physik 0, 700 (1930), See also Bethe, Handbuch
der Physik (1933), Vol. 24, p. 315.' L, Infeld, Phys. Rev. 59, 737 (1941).The notations used here are the
same as those used in that paper.
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m 0 1

It(0, 1)= Pt, ~(x)$i, ~(x)dx.

It will be shown below that

It(0, 1)= —(e'K' —y') &/aZe)

and hence, because of (8), we have

C=.~/2'.

(10)
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This is the normalization factor required.
I o calculate It(0, 1), let us consider

By writing

m vs+1

It(m, m+1) =, F,, ,Ft, , dx.

fHm ydx = pIIm+fdX
0 0

provided f and p vanish properly at x=0 and x= ~.
By making use of (13)—(16), we can easily see that (12)
reduces to

It(m, m+1) =A +' (pm+pm) —I(m —1, m)+ fm, (17)
1

or
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Furtherniore, we have

S CHRODINGER' has developed an elegant "factor-
ization" method of solving certain eigenvalue prob-

lems, an improved version of which has recently been
given by Infeld. ' The only problem treated by these
authors which had not previously been considered and
solved by other more conventional methods is the "Kepler
problem" in a spherical space. As Schrodinger stated that
he found this problem "difficult to tackle in any other
way,

" it may perhaps be of interest to indicate briefly
how the solution may be obtained without too great

complication by conventional methods. The differential
equation can, in fact, easily be transformed into a standard

type, but the nature of the singularities of this transformed
equation makes the discussion a little different from usual
(explicit use is made of the continuity, as well as the
boundedness, of the solution). It may also be opportur. e
to offer a few remarks on the applicability of the far'. or-
ization method in general.

The problem referred to leads to the equation ((4.3) of
reference 1, or (7.1) of reference 2)

i(+ )-
(1+x2)2 1+x2 (2)

and the fundamental interval is now —~ & x &&+ ~.
Equation (2) has' regular singularities at the points

sin x—+[& sin X+2+ sinx cosz —l(3+1)]y=0, (1)~, dy

dx dx

where X is the eigenvalue parameter, p, a given constant,
and l=0, 1, 2, ~ ~ ~ .' A solution which is bounded and
continuous in the interval 0 &~ p & x is required. The
substitution x=cotx transforms (1) into
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x =i, —i, ~, and since these are the only singularities,
it may be solved in terms of hypergeometric functions. 4

A solution, valid for iarge IxI, which remains bounded
at ~, is

y=(x —i) ' (x+i) F(l+ +n*,
i+1+a—u*, 2l+2, —2i/(x —i)), (3)

where F denotes the hypergeometric function, 0. is a root
of the equation

n' —a= (X—2ip)/4 (4)

and a* is the conjugate complex of n. The second solution
behaves like Ix I

'+' at ~, and must be discarded.
The series occurring in (3) is convergent if x lies within

the circle C, defined by Ix —iI = 2. Because of the singu-
larities at &i, however, the analytic continuation of (3)
along the real axis inside C is not in general a continuous
function. A sufhcient condition for the existence of an
acceptable solution is that the series in (3) should termi-
nate. This requires the relations

l+cx+cx = —g s g =0, 1) 2)

or, from (4),

) =n' —1 —IJ.'/n', n =n'+l+1
in agreement with the eigenvalues found by Schrodinger
and Infeld. To show that the condition is also necessary,
we must examine the explicit form of the analytic con-
tinuation of (3) inside C. This may readily be done, since
relations between the various solutions of the hyper-
geometric equation are completely known. 4 We thus find
that the solution defined by (3) is, indeed, discontinuous
at x=0 along the real axis, unless the above condition is
satisfied.

The (un-normalized) eigenfunctions may be written

y~, —sin xg Pxl ' 'xF( ~ ~ i+1+i~/g 2l+2~ 1 e 'x)

These eigenfunctions are real in spite of their apparent
complex form as may be shown by utilizing known rela-
tions of the hypergeometric function.

The general theory underlying the factorization method
has been investigated by Coleman. ~ Although the analysis
is not quite complete, it is very probable that the method
is, in practice, restricted to certain equations of hyper-
geometric or confluent hypergeometric' type, or equations
reducible to these by simple substitutions. But this does
not, of course, detract from the elegance of the method
in those cases where it is applicable (which include most
of the soluble problems of quantum mechanics). It is,
indeed, remarkable that eigenvalue problems associated
with equations whose complete analysis is fairly cornpli-
cated, can be solved in such a simple manner.

I wish to thank Professor Infeld for letting me see his

paper in advance of publication, and for interesting
discussion. I am also indebted to Mr. Coleman for com-
municating to me his results before publication.

' E. Schrodinger, Proc. Roy. Irish Acad. 46A, 9 (1940).' L. Infeld, Phys. Rev. 59, 737 (1941).
3 The results hold, however, for any l )0,
4 See, for instance, E. T. Whittaker, and G. N. Watson, iVodern

Analysis (Cambridge, 1927), Chapter 14.
fi A. J. Coleman, not yet published.
6 Reference 4, Chapter 16.

(p being the mass of a meson, a a number of order unity)
for the applicability of the present quantum theory is not
satisfied, the cross section for the scattering of the longi-
tudinally polarized mesons by nucleons is at most of the
order of 10 " cm', while the cross section for the trans-
versely polarized mesons of high energy is roughly

c'm (g'/pG')'~a' g 10~' cm'. (2)

Moreover, the transition probability for mesons from the
longitudinal to the transverse state, which is mostly due
to the process in which charged mesons are scattered in
the electrostatic field of atoms, is very small, the cross
section being given by

2~(g2/pG2)2@2 1Og(137)2~@2X 10 2s Cm (3)

The above results lead to the conclusion that transverse
mesons, if created, are largely scattered in the upper
atmosphere, and that the greater part of the hard compo-
nent found at sea level consists of longitudinal mesons.
If we adopt the symmetrical theory of nuclear forces, the
cross section for the transition of a transverse meson from
the charged to the neutral state is also given by (2).
This behavior of transverse mesons seems to favor the
interpretation of the cloud-chamber experiments' made in
the upper atmosphere. The very penetrating component
which persists under thickness of matter might consist
primarily of longitudinally polarized neutral mesons.

We have also examined the radiative processes of
longitudinal and transverse mesons separately. We have
calculated the difl'erential cross section for the collision of
a longitudinal meson with a photon of equal and opposite
momentum and found that its highest term in powers of
the energy 8 of the incident photon is given by

(1—cosH)'d 0 (4)

where 0 is the scattering angle. This term has a very
small value in the region where condition (1) is satisfied,
whereas such a term as (1—cose)' does not appear in the
corresponding expression for the transverse mesons or in
the cross section for the creation of meson pairs by p-rays.
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OSM IC—RAY evidence shows that the cross section
for the scattering of mesons by nucleons is much

smaller than that calculated from the meson theory of
nuclear force fields, while the interaction of mesons of
unit spin with photons of high energy seems also to be
too strong to account for the observed soft secondaries of
the hard coInponent. We want to propose a way of re-
moving these discrepancies in the vector meson theory.

If one adopts the single force hypothesis proposed by
Bethe' and leaves out the contribution from the processes
in which Heisenberg's condition~


