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varied about 50'F. It should also be mentioned
that no "absolute" calibration of the apparatus
by comparison with one whose residual ionization
has been measured under an enormous shield
has ever been made. However, the cumulative
observations made with the apparatus and the
magnitudes of the several "coeAicients" obtained
from the data it yields, have satisfied the writer
that the radioactive contamination of the cham-
ber must be very small.

While Monk and Compton consider the pulses
likely due to a solar influence, they consider that
the persistence of the pulse amplitude of the

cosmic-ray fluctuations and the decrease in
Chree's magnetic pulses with distance from the
primary pulse indicate the two varieties of dis-
turbance are of diferent origin. However, the
similarities of the frequencies of the pulses ob-
tained by the same method of analysis combined
with Graziadei's association of his approximately
0.4-percent cosmic-ray intensity fluctuations of
27.2-day periodicity with solar disturbances,
indicate the desirability of further examination
of this point.

H. T. Graziadei, Akad. Wiss. Wien. tllaj 145, 495
(1936).
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The scattering of particles of spin & and mesotronic mass m by heavy nuclear constituents is
investigated with the pair theory of Critchfield and Teller, in which a nucleus appears as an
extended source of mesotrons. A rigorous formula, (19), is found for the cross section, by
obtaining explicitly the normal coordinates of the perturbed mesotron field. When the "con-
stants" are adjusted to give a model of nuclear forces with approximately the right range and
saturation properties, 0.~32m (mc'/E)4(k/mc)2. Although, in other models, o may decrease more
rapidly with the energy E, it is always about 10 '4 cm' at low energies, as contrasted with the
cross section of about 10 "cm' observed for cosmic-ray mesotrons. These results are discussed
in relation to other accounts of the pair field theory.

(~RITCHFIELD, Teller, Wigner and Lamb' 4

have developed a field theory which ex-
plains, in a qualitative way, the saturation and
spin dependence of nuclear forces. The field,
when unperturbed by nuclei, is assumed to be a
Fermi gas of charged particles with the mass of
the mesotron and described by the Dirac equa-
tion. A proton or neutron interacts with this
field by emission and absorption of neutral
pairs of "mesotrons, " and such processes can
occur not only at the point which specifies the
position of the nucleus, but over a finite region,

' C. L. Critchfield and E. Teller, Phys. Rev. 51, 289
(1937).

'Wigner, Critchfield and Teller, Phys. Rev. 50, 530
(1939).' C. L. Critchfield, Phys. Rev. 50, 540 (1939).

4 C. L. Critchfield and W. E. Lamb, Jr. , Phys. Rev. 58,
46 (1940).

spherically symmetrical about that point, and of,
roughly, the nuclear radius.

Past discussions have been concerned with
bound states of the pair field and with nuclear
forces; but here we shall find how mesotrons
are scattered by nuclei. It is of some interest to
compare our conclusions with the remarkably
small experimental cross section for the scatter-
ing of cosmic-ray mesotrons by nuclei: for meso-
tron energies of -350 Mev, Wilson' has ob-
tained an upper limit of 10 "cm' for the cross
section. Our results seem to be about a hundred
times larger. '

' J. G. Wilson, Proc. Roy. Soc. 174, 73 (1940).' R. E. Marshak and V. F. Weisskopf t Phys. Rev. 59,
130 (1941)g, have found agreement with experiment with a
similar pair-field theory, which, however, pictures the
nucleus as a point source. The divergent nuclear interaction
characteristic of such a model is fitted to experiment by
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Although it is not certain that mesotrons of
half-integer spin are present in cosmic rays or
that they intervene in p-processes, it is likely,
indeed, that a nucleus is better described as an
extended source of charged particles, rather
than a point source. In theories embodying such
a description, the formal methods of this note
may find further application.

The notation used is that of Lamb and Critch-
field;4 the coupling constant is g, the nuclear
source distribution is given by u(x) satisfying

Dividing (3) by the operator [E+i(n, V) —P],

gu(x)
QE(x) + p I'u(x')ps(x')dx

E+i(n, v) —P ~

= tl'0(x), (5)

where $0(x) must satisfy the Dirac equation and
the boundary conditions appropriate to a wave
function,

[E+i(e., v) —p]fo(x) = 0.

(5) may be rewritten in the form

S.( )+[E+P-'(., ~)][~+q']-"(.) l..
I u(x)'dx= 1; (1) where

=P,(x), (7)

I s —= gP u(x) QE(x)dx, E' = 1+g'.f
and the total field Hamiltonian may be ex-
pressed in terms of the quantized amplitude
P(x), a 4-rowed one-column matrix in the spin-
variables:

&t(x)[P f(~ &)—]&(x)dx

By multiplication with cpu(x) and integration
over all x,

[1+q(1+PE)F(q) ]f's ——
qP~ u(x)$0(x) dx. (9)

In this equation,

t~t( ) ( )d p
I' (,)&(,)d, (2) F(q) —= u(x)[A+q'] 'u(x)dx

P, 0; are the usual Dirac matrices, 5= p, =c= 1 in
these units; and the commutation laws charac-
teristic of the Fermi statistics are assumed to
hold among the components of P and Pt.

By resolving P(x) into its normal vibrations
Ps(x) we may transform H to diagonal form.
The equation governing QE(x) is self-adjoint;

[E+i(n, &) —P]P&(x)

f=4~ 4 p'~(p)'/[V'-p'] (1o)

where v(p) =v(p) is the Fourier component of
u(x); i.e. ,

u(p) = (2m. ) & dxu(x) exp[ —i(p, x)],

f4' l v(p)'p'dp= 1.

f
+rlu(x)P~ u(x')Ps(x')dx'=0; (3)

and, therefore, the spectrum of 8 is real, and
the solutions of Ps are orthogonal in the sense:

(E E') Pgf(x)gg. (x)dx=—0.

"cutting off" the nuclear forces. The smallness of the
coupling constant obtained in this way is chiefly responsible
for their small cross section. We wish to take this oppor-
tunity to thank Drs. Marshak and Weisskopf for their
kindness in sending us their manuscript before publication,

For every value of E, such that g is real,
~

E
~

&~ 1,
Po(x) is a free-particle solution of the Dirac
equation with propagation vector q, q'= (q, q):

A(x) = 1 (q) exp[~(q x)] (»)
where f(q) is a matrix depending on q and the
sign of E. If

~

E
~
(1, on the other hand, $0

vanishes identically; and then (9) becomes a
secular equation for E. Normal vibrations corre-
sponding to the discrete spectrum of solutions
are quadratically integrable and cannot con-
tribute to the scattering problem,
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In (10), therefore, q must be taken real. The
integrand of F(q) has a pole at p=q; and F(q)
is defined by deforming the contour into the
lower half-plane. This makes u(x)/(6+q') well-

defined and asymptotic to an outgoing wave, a
condition necessary for scattering:

F(q) = f(q) —2~'iq~(q)',

f(q) =4~ —~ dP[P't (P)' —q'~(q)']/(q' —0')
~lp

A useful form of these relations is obtained by
direct application of the Green's function for
outgoing waves, and explicit integration over
angles:

uxux
F(q) = —

~
dx dx' —exp[iqIx —x'I]

4~I x —x'I

27I i r'

dx dx'xx'u(x) u(x')
g "p &p

x [exp(iq I

x+x'
I ) —exp(iq

I
x —x'I )]. (14)

The real part of F(q) is given as:

occupied normal vibrations; and therefore each
normal vibration has its own scattering coeffi-
cient per unit solid angle:

Oe = (m/2)v(q)'I e"[E+P+q(a, n)]'fF.

sm'Eg'v(q) '
I-'(q)

I
1+2~F (n—qF) ' I'

X [0—n(E —p) F*(q)][E+P+q(,n)]

X[P-q(E-P) F(q)]f (q). (i8)

We may set

f(q) = exp [—p( n, q) (2q) ' tan 'q] I (0),

and average over the spin orientation of I'(0) to
obtain a result, independent of the sign of 2:

16''g'q'v(q) '
gg=—

I
1+2~F—(~qF) 2I2

x[1+q '+(IqqFI' —2qf 1) cos—'-', 6], (19)

where cos0 —= (q, x) /qx. The cross section be-
comes independent of g as g

—+ ~:

f(q) =+4m dx dx'xx'u(x)
up

167r4s(q) 4 cos'-'8
limo' =

f(q) '+4 'q'~(q)'
(2o)

Xu(x') (2q)-' sin(q
I
x —x'

I
). (15)

We may now solve (9) for fz and (7) for fE.

(2~)'*gv(q)
gg —— [P—n(E —P)F(q)]l (q), (16)

1+2rlF (qFq)'—
P (x) —i (q) exp[i(q, x)]=[E+P—i(a, &)]f

( )
exp [iq I

x- x'
I ]

4x
I

x-x'I

[E+P i(a, V) ]I's(—e'&*/4~x)

The functions which appear in the foregoing
analysis may be discussed generally in terms of a
mean width a of the source-distribution func-
tion u:

a'—= —
) u(x)A-'u(x)dx=47r s(p)'dp (21)

Thus,

f(O)=-a', f(a )=O, f-(q)-q-'
for q))a ' (22)

and

X J~dx'u(x') exp[ iq(n, x')]—

(w/2) &(e'&*/x)v(q) [E+P+q(n, n) ]Ie, (17)

where n=x/x.
The expectation value of the particle-density

operator in a stationary state of the field is a
sum of terms of the form fz)(x)Ps(x) over all

[qv(q)']=0 for q=o, a 'v(a ")' max. ,

q~(q)'«q ', (23)

for g»c '. In order that a be approximately the
nuclear radius it should be taken —1 in our
units; and one may observe that rz is measured
in units of 5.13X 10 "cm'

With a particular choice of u(x), it is not
difficult to obtain explicit formulae and numerical
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values for the cross section; e.g. for

u(x) = (27ra)-*'x-'e-*',

v(p) = m.
—'a&(1+a'p')-'

f(q) a2(1 a2q2) ('I +a2q2) 2

F(q) = —a'(1 —iaq) ',

limo~ ——I 6a'(1+a'q') ' cos'-'y
y~ 00

A more appropriate choice of u might be

u(x) = (~a'/2)-l exp( —x'/a'),

v(p) = (a'/2n. ) i exp( —a'p'/4),

f(q) = —a' gFg(1, —', , —a'q'/2);

(24)

(25)

(26)

pared to that when q is displaced by an amount
~g

We may understand the origin of the low
energy resonance by studying the discrete spec-
trum of our fundamental equation (3), which
has been defined by |to—=0, ~E~ (1, q—=iQ in (9):

00

1 —4vrt(1+pE)
i

dpp~v(p)2/(p +Q ) I e =0.

Thus t's must be an eigenvector of P, satisfying
Pf E +I E which gives rise to the secular equa-
tion for Q:

4~v[1+(1—Q')'*])~ dpp'v(p)'/

(p'+Q') =+1 (3o)
and

limo E = 2n.a [qFq( —~ ~ a q /2)
g~ QO

+~a'q'/2] ' cos'-,'8. (27)

The experimental values, which make Z-5,
can be inserted, to obtain the total cross sections
for the respective functions (24) and (26):

5&(10 '4 cm')o)10 "cm',
2 &(10 "cm') o )10 "cm',

the larger value corresponding to 2= i.
In the second case, the cross section is too

large for 8~4, a large fraction of the experi-
mental range in these experiments.

We conclude that this theory does not account
for the small scattering of cosmic-ray mesotrons.

The equation (19) for 0E shows what is
apparently resonance whenever

Real I1+2rtF(q) —v'q'F(q)'I =0 (28)

and when this condition obtains,

[os]a ——q '[1+(1+E/2''gq'v'") ' cos8],

which, when integrated over all angles gives the
expected [oz]a,, =4sq '. To satisfy (28) one
must take

«'~-,' for q&&a ', g q for q&&a '; (29)

but for q a ' one would need imaginary values
of g. The apparent resonance, in both cases,
actually makes the value of o.E very large com-

«'[1~(1—Q')'] = [I+a
l Q I]'

«'[1~(1—Q')'][aQC'+C" —aQ/2] =C",
and

with

4 = C (aQ) = (27r)-& exp( —t'/2)dt. )

As q is increased from zero, a solution of the
secular equation first becomes possible when

Q =0, E = +1 and «' = —', according to (30)
and (21). This means that there exist two dis-
crete levels, each doubly degenerate because of
the spin, one of which separates itself from the
continuum at E=+1, the other at 8= —1.
As q increases, they approach, cross at E=O;
and then each moves asymptotically toward the
point of origin of the other. The condition for
low energy resonance in o.E is precisely that for
the appearance of discrete levels at the edges of
the continuum.

The pair-field theory of nuclear forces would
require g to be quite large compared to a ',
however, and the foregoing resonance could
never occur. Instead, the high energy resonance
for q—g would be present; and, for this, there
seems to be no familiar physical picture. Its
presence appears to be connected with the exist-

The alternative sign results in there being al-
ways but one solution for Q as a, function of v,
and two solutions for E= ~

~
(1—Q') &

~

. (In
the particular cases of (24) and (26) the secular
equation has the respective forms:
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ence of the bound, lowest, state of the pair-
field considered in references (2), (4).

To see how this comes about, and also to
bring our account of the behavior of the pair-
field into closer connection with that given in
references (2) and (4), we present a phase-
shift analysis of the scattering process.

In polar coordinates, following Dirac, ' we
may rewrite (3):

[E+(ie/x)(d/dx)x+P(ie/x) j P]—gg(x)

agreement by observing that

S~(x) sinqx—
2 'qs(q)'g(1+kE)

1+n(1+kE)f(q)
cosqx, (34)

and the phase shift 81„- is defined by

f(q) = 4m xu(x) [q'+ (d/dx) '] 'xu(x) dx,
Jo

in accordance with (33) and (15). In this way,
one obtains:

+qu(x)P j dx'u(x')Pp(x') =0, (31) tan8l, —=—2s'qv(q) 'g(1+kE)

1+v(1+kE)f(q)
(35)

where j—=P[(e, L)+1], the "angular momen-
tum" operator, e—= (0., x)/x, L= —i[xXV], and
jPI„—=kgb with k any nonvanishing integer.
The perturbation term affects only those func-
tions with spherically symmetric parts, i.e.,

those with k = ~ i, because of the spherical
symmetry of u(x). For all values of ~k

~
)1, the

integral vanishes, and we have to deal with the
equation for a free particle, the solutions of
which show no scattering. In what follows,
therefore, we shall confine ourselves to k = +i.

The angular dependence of PA, (x) now occurs
only in the form of the first spherical harmonic;
and we may eliminate the angular coordinates
through the formal introduction of e.

Pl, (x) —= [1—(is/q') (E P) (d/dx) —]ip[Sg(x) /x5,

where SA, (x) is a scalar function of the radius
alone, and gI, is a 4-rowed, one-column matrix
satisfying the characteristic equation PI z

——k i z.
There results for Sq(x), the relation:

[q'+ (d/dx) ']SI,(x) +4m g(1+kE)

X xu(x) x'u(x')Sg(x')dx' =0. (32)

This is quite comparable to (3) and may be
solved in similar fashion with the aid of the
Green's function

p
+00

[q'+(d/dx)'] —'= dx'(2q)-' sinq ~x
—x' ~. (33)

The solutions of (3) and of (31) are brought into
7 P. A. M. Dirac, Principles of Quantum Mechanics

{Oxford University Press, 1935), f73.

When 81,/x is given the customary interpreta-
tion of the fractional momentum shift of a
vibration in the continuum, due to the perturba-
tion, this becomes exactly Eq. (9) of reference
4 and it leads directly to the value obtained
therein, for the energy of the bound state of the
field:

» = —(2/~) dq(q'+1) 'q(~+~+ ~-~).

(This is, of course, not quite the lowest energy
of the field; for one could also fill the two dis-
crete states of energy ——i. Their contribution
to AB would be small, however, when q is taken
»a '.)

For values of B(0, with q»a —', 8+~ remains
—0; but 8 ~

—m for q(g and —0 for g&q,
varying through the resonance value of x/2
in the neighborhood of q=g. The resonance of
the cross section at q =q can thus be connected
with the limitation of hB to finite value, of
order —g.

The problem of scattering of mesotrons when
the coupling between the nucleus and the pair-
field is spin dependent, cannot be solved in the
same manner as the problem treated here, be-
cause the reaction of emission and absorption pro-
cesses on the nuclear spin plays an essential part.

I wish to thank Professor J. R. Oppenheimer
for suggesting this problem and for many
stimulating discussions concerning its solution.
It is a pleasure, too, to recall Dr. Critchfield's
helpful and very cordial letters.

' Dr. Critchfield has independently arrived at the
formula (19) by applying this interpretation to his Eq. (9),
reference 4. With his friendly agreement, this note appears
in its original form.


