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Work Function and Temperature*
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The change in height of the potential energy barrier at the surface of a metal with the
expansion of the metal due to heating is investigated. Also, the change of the normal maximum
energy of an electron in a metal is calculated as a function of the temperature of the metal.
These calculations show that the work function of a metal is a linear function of its temperature.
These results, when combined with the thermionic emission equation, show that the thermionic
emission constant is a characteristic of the metal, and is no longer the same for all pure metals.
The calculated results for the thermionic emission constants for several metals show fair
agreement with the experimentally determined values.

EVERAL suggestions have been offered in an
attempt to resolve the difference that is

found to exist between the thermionic emission
constant, Ao, predicted by theory and the value
which is obtained by experiment. According to
modern statistical theory, this constant, which
appears in the Dushman equation relating the
thermionic emission current density, Jz ~, with
the temperature

Jrp=ApT e & u& '=ApT'p "' (1)

has a value of 120 amperes cm ' degrees ' for all
pure metals. Actually, however, a value approxi-
mately one-half of this theoretical value has been
found to apply for many pure metals, although
values which are widely different from 60
amperes cm —'degree ' have been reported for
several metals. In this expression E~'denotes the
height of the potential barrier at the surface of
the metal, Ej/I is a quantity which is charac-
teristic of the metal (and will be considered in
some detail below), E (defined as the difl'erence
between Ee and E&&r) is the work function of the
metal, all in electron volts, Ep is the electron
volt equivalent of temperature ( = k T/e 10"
= T/11,600; with k = Boltzmann's constant,
e = charge of the electron in coulombs), and where
T is the temperature in degrees Kelvin.

In order to verify this equation experimentally,
a graph based on the logarithm of this equation is
plotted. That is, since

log&p (Jra/T') = log&p A p
—0.434(11,600E )/T, (2)
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then a plot of log&p Jrp/T' versus 1/T should
be a straight line having a slope equal to
—0.434(11,600E ) and an intercept equal to
log10 Ap. Logarithmic plots of this type yield the
low values mentioned.

A careful analysis by Nordheim' showed that
Eq. (1) should actually have the form

Jp&, =Ap(1 r)p e 'e',— (3)

where r is a reHection coefficient. This factor
expresses the ratio of the number of electrons
reflected back into the body of the metal at the
surface to the total number of electrons which are
moving in the escape direction. However, calcu-
lations show that the reflection factor is less than
0.07 for the type of potential variations which
exist at the surface of the metal. A physical
argument by Becker and Brattain' likewise leads
to the conclusion that r must be very small. The
presence of the reflection coefficient in Eq. (3)
does not, therefore, resolve the difference.

More recently Herzfeld' and Becker and
Brattain' concluded from thermodynamic con-
siderations that the work function, B,appearing
in Eq. (1) is not a constant, but is a quantity that
varies with the temperature. This conclusiori has
received experimental confirmation. 4 The magni-
tude of the variation observed for tungsten is
just of the right order to resolve completely the
difference between the theoretical value and the

' L. Nordheim, Proc. Roy. Soc. 121, 626 (1928).' J. A. Becker and W. H. Brattain, Phys. Rev. 45, 694
(1934).' K. F. Herzfeld, Phys. Rev. 35, 248 (1930).

4 A. L. Reimann, Proc. Roy. Soc. 163, 499 (1937);
J. G. Potter, Phys. Rev. 58, 622 (1940); F. Kruger and G.
Stabenow, Ann. d. Physik 22, 713 (1935).
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Po&col ial Ene~olq (ev) be written with good approximation by an
expression of the form
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where 0. is the coef6cient of linear expansion, it
follows that N= No/(1+nT)'. By combmmg thts
expression with (6)

Eo 3.62——X10 "[Xo/(1+nT)']l
which may be written in the form

Eo =Eoo/(1+nT)',

where the quantity

zoo-—3.62 x10-»+0~

Fr@. i. The potential energy variation along a rom of
atoms in a metal.

experimental value of the thermionic emission
constant.

THE VARIATIoN oF B~ wITH TEMPERATURE

That E„cannot be a constant, independent of
the temperature, follows from the definition of
E„in terms of E~ and E~, and the fact that both
E~ and E~ can be shown to be temperature
dependent functions. According to the electron
theory of metals,

~2 872
E~ =Eo 1 —— (electron volts), (4)

12 Z02

where Eo may be shown to have the form

h2
rf 3X) &

Eo ——
~ ~

(electron volts).
Sem10' 4 o. )

The symbols have the following meanings: h is
Planck's constant, t. is the electronic charge in
coulombs, m is the mass of the electron in grams,
and N denotes the concentration of free electrons
per cc of the metal. By inserting the known
values of the constants in this expression, Zo may
be written in the form

Eo ——3.62 X 10 "Ãl (electron volts). (6)

As pointed out both by Herzfeld and by Becker
and Brattain, the quantity X depends upon the
temperature because the density of the material
is temperature dependent. By making use of the
fact that the linear expansion of most metals can

is a constant, independent of the temperature.
Equation (4) may then be written in the form

Zoo 7r Eg
1 —— (1+nT)',

(1+nT)' 12 Eoo'

which reduces to the approximate' form

~2 P 2-

E~s=Eoo 1 —2~ 1+ 30;2T2 ————
12 EO02

The third term in this expression is very small

compared with the second term over the normal
range of temperatures, and so may be neglected.
Thus to a good approximation

Eor =Eoo(1—2nT).

THE VARIATION OF Eg VTITH TEMPERATURE

Herzfeld first pointed out that E~ should be
temperature dependent. However, his calcula-
tions of Es and dEs/dT, based upon an approxi-
mate method due to Bethe' leads to incorrect
results. This calculation predicts a greater varia-
tion in the term dEs/dT than in the term

dEor/d T. The net result is a greater value

for the thermionic emission constant than 120
amperes cm degree . This contradicts the
facts for all metals.

The explicit dependence of Z~ on the tempera-
ture may be investigated in two ways. One way
makes use of considerations dictated by the
modern theory of solids. The other is based on

the image law for the force on an electron near
the surface of a metal. The results are the same,
to the approximation in which we are interested.

' H. Bethe, Ann. d. Physik 87, 55 (f928).



WORK FUNCTION AND TEMPERATURE

According to considerations of the theory of
solids, the potential energy distribution in a
metal has the general form illustrated in Fig. 1.
The presence of the potential energy barrier at
the surface of the metal results from the lowering
of the potential energy in the region within the
metal by the contributions of the ions which are
tightly bound to fixed points of the crystal
lattice, and by the lack of such lowering at the
surface of the metal because of the lack of ions in
the region outside of the metal. The effective
potential energy at any point in the metal will

consist of the sum of the contributions to the
potential energy of all of the ions in the immedi-
ate neighborhood of the point in question. This
is so because the potential at any point due to
any ion decreases rapidly with the distance from

. the position of the ion.
In any event, the potential energy at any point

in the body of the metal with respect to the
exterior wi11 be, if we consider the contributions
of all of the ions to this potential energy, of the
form

(Z —S)e
Up ———e

where Z is the atomic number of the atom, S is
the atomic screening factor, and r is the distance
from the position of each ion to the reference
point. The screening factor gives a measure of the
efFectiveness of the orbital electrons surrounding
the nucleus in reducing the nuclear charge. It is,
therefore, a function of the distance from the
nucleus of the atom. However, as indicated in

Fig. 1, the potential energy in the metal is
substantially constant throughout the major
portion of its volume, except for the rather
intense local variations which exist in the im-
mediate neighborhood of the nuclei.

If it is assumed that (Z —S) does not change
appreciably when the interionic distances are
slightly altered because of the expansion of the
metal when its temperature is raised, then

(Z —S)e
U= —eP

r(1+a.T)

By expanding the term in the denominator and
retaining only the first-order term in the temper-
ature, the result may be written in the form

Ea =Es,(1—nT),

where the term E~ gives the height of the
potential energy barrier' in electron volts. This
expression shows that the height of the potential
barrier at the surface of the metal is decreased
slightly as a result of the expansion of the metal
caused by heating.

According to considerations of the image law of
force on an electron at the surface of the metal,
the height of the potential barrier is related to the
force function by the expression

eEa0 10'= — x d'x,
0

(12)

where f(x) is the functional form of the force
function, which has the general shape illustrated
in Fig. 2. That the image law for the force on
the electron is essentially the correct one for
thermionic phenomena is shown by the calcula-
tions of Schottky' in which the effect of an
accelerating field at the surface of a thermionic
cathode is successfully explained in terms of this
Iaw of force.

Because of the expansion resulting from the
heating, it is necessary to calculate the value of

eEs 10'= —)t f(x+6)dx,
0

where, from Eq. (7)

(13)

A= nTx. (14)

By expanding the integrand in a Taylor's series,
and integrating the series term by term, the
result is that given by (11) if we retain only the
first-order term in nT.

Fro. 2. The image
force function at the
surface of a metal.

' W. Schottky, Physik. Zeits. 15, 872 (1914).

GENERAL RESULTS

By combining Eqs. (11) and (10) with the
definition of E„,

Ew =Es Epr = Eso (1 rpT) —Epp(1 2nT)
= (Es, —Epp) aT(Es, —2Epp) . —
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TABLE I. Comparison of experimental and calculated values
of thermionic emission constants.

MATE-
RIAL

MEASURED CALCULATED
E» o ~ X10o+ Eoo C CAo

C~ 30
Ca s 60
Mo' 55
Nis 27
Pt' 32
Ws 60

4.3
2.2
4.1
2.8
5.3
4.5

7.9
25
5.5

18.2
11
7.3

13.5 0.432 52
4.7 0.485 58
9.4 0.715 86

11.7 0.153 18
95 0585 70
91 0 671 80

+ From International Critical Tables.

where the term

n(Zpp —Z„p) T
C=exp

ET

=exp [—n(Zpp —Z .p) X11,600] (18)

is independent of the temperature, and depends
only on the value of Zoo, E„o, and the coefficient

7 A. L. Reimann, Proc. Phys. Soc. London 50, 496
(1938).

S. Dushmann, Rev. Mod. Phys. 2, 381 (1930).
L. V. Whitney, Phys. Rev. 50, 1154 (1936).

It follows from this that

Z =Z p+a(Zpp —Z p) T (electron volts) (15)

where, by definition 2 0
——B&0—Boo. It is ob-

served that this expression predicts a linear
dependence of the work function on the tempera-
ture. The quantity E 0 is independent of the
temperature, and may be called the "work
function at absolute zero" or the "true work
function" of the metal.

For the case of tungsten (based upon the
assumption that each tungsten atom supplies 2

free electrons) Zpp=9. 1 ev, and, from experi-
mental measurements, Z„o=4.5 ev. These quan-
tities, together with the experimental value of
n=7.3X10 ' per degree in Eq. (15) yield

Z~=Z~p+3 4X10 'T (electron volts). (16)

This result is in fair agreement with the results of
Potter, 4 Reimann4 and Kruger and Stabenow
who found the values 6.3)&10 ', 7.1&10 ' and
6X10 P ev/degree, respectively, for the coeS-
cient of T.

By combining Eq. (15) with Eq. (1), the
thermionic emission equation may be written in
the form ITh = CA 0T2g—E'No) ET

of linear expansion of the metal. Because of this
correction coefficient, one no longer expects the
thermionic emission constant in Eq. (17) to be
the same for all metals.

The values predicted by this expression for
CAO, and the values obtained experimentally for
the thermionic emission constants of several
metals are contained in Table I. In columns two,
three and four are contained the experimentally
determined values of the thermionic emission
constants A, the work function, and the coe%-
cient of linear expansion of the material. In
columns five, six and seven are contained the
calculated values of Zpp (based on the assumption
of 2 electrons/atom), the correction factor C,
and the thermionic emission constant CAp.

CONCLUSIONS

Based on the foregoing considerations, it
appears that the slope of the thermionic emission
logarithmic plot should be associated with the
true work function of the metal, E„o. This is a
quantity which is constant and independent of
the temperature. The effect of the temperature
on the values of E~ and EIt results in the appear-
ance of a correction term in the thermionic emis-
sion equation which lowers the thermionic
emission constant below 120 amperes/cm'/de-
gree'. Furthermore, the value of the thermionic
emission constant will depend upon the metal
considered, and will vary from metal to metal.
This yields values which are more nearly
in agreement with the values determined
experimentally.

It must be kept in mind that Epo appears in the
correction term expressed by Eq. (18). Since the
calculation of this quantity requires a knowledge
of the number of free electrons per atom of the
metal, an unknown error may result from the
assumption of two electrons per atom. However,
the experiments of Rupp" on the diffraction of
electrons in passing through matter furnish evi-
dence which, for Mo, Ni and W, removes the
uncertainty in this number.

The author wishes to express his thanks to his
colleague at the City College, Dr. Jacob Millman,
for interesting and helpful discussions of this
problem.

"H. R,upp (see R. H. Fowler, Statistical Mechanics,
(Macmillan, 1936), second edition, p. 355.


