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On the Theory of Dielectric Loss
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When a sinusoidal voltage is applied to a condenser containing an absorptive dielectric
the absorption current can be split up into two components, one in phase and another in

quadrature with the voltage. In the present paper, direct relations, suitable for numerical
calculation, are established between these components, and a general relationship between
the dielectric constant and the dielectric loss is given.

A ((o) =G((o) —G„ (6a)

B(co) = C(co) —Cp. (6b)

ions A(cu) and B(co) characterize the
absorption current. 2 U is the part of this current
in phase, and BU the part in quadrature with
the applied voltage.

Within the whole range of frequencies, up to
about 10"cycles per second, concerned here A (&p)

and B(&p) are often obtained by direct measure-
ments. But it is impossible to measure directly
y(a) within the corresponding range of values of
its arguments because this involves d.c. measure-
ments for extremely short times. ' The relations

(5) are, therefore, of no use for experimental
work at high frequencies. An examination of
these formulae shows, however, that they can be
inverted and that p(~) can even be eliminated
from them. The purpose of this paper is to
establish a direct relation between the functions
A and B.

The validity of this relation is not restricted
to the theory of anomalous dielectrics. It also
represents the expression of a new theorem in

the theory of linear networks. And we believe it
to be of interest even from a more general point
of view, as it will prove to be an application of a
very general integral transformation mentioned
until now only in purely mathematical papers.

The theory of linear networks starts formally
from the same equation as does the theory of
dielectric after-effects, i.e. from Eq. (1), if written
in a slightly different form by introducing the

dU
l

~ dU(r)
I(t) =GpU+Cp + pp(t —r)dr, (1)

dt ~ „d7-
where U(t) is the applied voltage and y(t) the
dielectric relaxation function (pp(~) =0).

When the voltage is sinusoidal,

U(t) = Upe& &"' '&

it is easily shown, that the expressions for steady
state current and for dielectric loss can be
written formally in the same way as in the
case of a non-absorptive condenser by intro-
ducing a conductance function G(&o) and a
capacitance function C(a&).

The steady state current is given by

1(~)= LG(~) +i~C(~) lU(~); (3)

the dielectric loss factor is given by the tangent
of the loss angle, b

tg S=G(co)/ppC((o),

where

G(o)) =Gp+(o pp(o') sin cop'dp', (Sa)

and

C(pp) = Cp+ y(&r) cos copdp. (Sb)

' 'F one admits the validity of the Hopkinson Let us put
' ~ principle of superposition, the current I(t)
in an absorptive condenser of geometric capaci-
tance Cp and leakage resistance R = 1/Gp is

given by' The funct

' J. B. Whitehead, Dielectric Theory and Insulati on
(McGraw-Hill, 1928); M. F. Manning and M. E.Bell, Rev.
Mod. Phys. 12, 215 (1940),

~ Most measurements extend only to 10 ' or 10 4 sec.
Only in the case of highly anomalous dielectrics does one
succeed in extending the range of measurements up to
10 ' sec. (B.Gross, Zeits. f. Physik 108, 598 (1938)).
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indicial admittance h(o) and omitting the term
Cp(d U/dt). But by separating the d.c.component,
k(p) can be written always in the form f(o)
+const where f(~) =0; and the theory remains
more general retaining a term Cp(d U/dt), apply-
ing then to impulsive networks too. The main
difference between the two theories consists in
the shape of pp(p) and h(p), respectively; pp(p. ) does
not change its sign and is continuously decreasing,
whereas h(o) may, or may not be oscillating, but
for dissipative networks every oscillating term
contains a damping factor e & . In both cases,
therefore, the integrals over

I
rp(o) I

and Ih(p. )—const I, respectively, exist from 0 to ~. Hence

I p (~) Id~ =Q
0

(7)

Q is the total residual charge of an anomalous
condenser after application of a unit voltage
during infinite time. A corresponding equation
is valid for

I h(p) —const I.
All calculations based on Eq. (1), so far as

they do not use any particular analytical ex-
pression for pp(&r), but only the general property
(7), are therefore valid both for anomalous
dielectrics and linear dissipative networks. Only
the names have to be changed. For the theory of
networks we search for an expression which gives
a relation between the real and the imaginary
components of the steady state admittance.

pp(p) is certainly continuous for 0(p~ pp.

Equation (7) shows that the integral over I pp(p) I

exists from 0 to . This behavior enables us to
consider (5) as Fourier integrals which can be
inverted by Fourier's transform, thus giving

may furnish this functioh over a much wider
range of a than known hitherto, but it must be
said that the problem of evaluating the integrals
(8) for numerically given functions A(rv) or B(&o)
is difficult.

The relations (8) need a further comment.
The function p(p) is equal to zero for all values
0. &0. This is not the behavior of the functions
defined by the integrals (8), which are, respec-
tively, an odd and an even function. These
integrals represent pp(o) only for positive values
of 0, but this does not limit the validity of our
calculations, because the particular form of Eq.
(1) excludes the occurrence of negative argu-
ments in pp(p).

In order to eliminate pp(a), we substitute it in

(Sa) by its value (8b) and in (Sb) by the ex-
pression (8a). There results

A(a)) 2
sin copdp ~ B(a) cos oadn, (9a)

M Ã 0 0

"A(cp)
B(a&) =— cos &uodp sin ondu (9b).

0 ~0 0.'

A(pp) 2 I" co

B(n) dn,
CO X' ~p 4) —0!

(10a)

2 ~" A(n) n
B((o)=— do, .

A A Glm' 4p
(10b)

These relations would be of no use for numerical
applications if it were not possible to simplify
them. Fortunately it is possible to do so. One
obtains finally (see Appendix)

2 t "A(o))
p (p) =—

' sin (sad(u,
7I p CO

r~
pp(o) =— B(a)) cos (upd pp.

7r 4p
(8b)

The knowledge of any one of the functions A(&p)

or B(s&) is sufficient for the calculation of pp(p).
The relations (8) suggest the possibility of deter-
mining the dielectric relaxation function for
values 0.(&i by means of a.c. measurements.
This method would not suEer from the experi-
mental difficulties inherent in d.c. methods. It

The integrals are principal values

These are the desired relations between anoma-
lous capacitance and conductance. Equation
(10a) gives G(co) —Gp as a function of C(pp) —Cp,

Eq. (10b) gives C(ra) —Cp as a function of
G(&o) —Gp. In this form, the integrals are suitable
for numerical application. In consequence of the
factor 1/(uP —coP), these are mainly the values of
the integrand in the vicinity of the point a = co,

which contribute to the value of the integrals for
a given co. The graphical or numerical evaluation
of the integrals is therefore not dificult.

The expression for the dielectric loss is now
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obtained easily. Taking into account that The integral {16)is absolutely and uniformly convergent.
Now consider the second of the repeated integrals in (15).
There exists the corresponding double integral L

p A —
GO

co co orL=
or+8 0 Or —n (17a)

and observing that for technical, and higher,
frequencies

because the functions under the integral are all continuous
and because

there results
Gp«G(co), (12) a(n), , cosno dado~ 1n . (1.7b)

or (Q 2or+8
ay+5 0 or —n 2

2 co (
" C(n)

tg b= — I da.
C(po) I) p po n

APPENDIX

The relations (10) can be obtained directly from (9).
Here we prefer to verify them by substitution.

If we substitute in Eq. (10a) the value of B(n) given by
Eq. (Sb), that is

B(n) = q (0) cos nado.
0

(14)

and write the result explicitly, we have

A (or) 2= —lim, dn y(o-) cos na-dg.
7l $=P 0 or n 0+, ,dn f y(o) cosnado . (15)

++) or —n ~ 0

The knowledge of the capacitance function C(ra)
is therefore sufficient for calculating the di-
electric loss.

The form of the relations (10) is remarkable.
These equations are a pair of integral equations
of the first kind, each one of them inverting the
other one. It can be shown that they apply to
very general periodic or nonperiodic functions,
which can be represented by these integrals.
For periodic functions, the integrals may be
simplified and result finally in Hilbert's inversion
formula. ' But the investigation of the general
properties of the system (10) seems to be a
matter of purely mathematical interest and will

be given elsewhere. 4

+ dn+ d
-m n 5 n

2~+& cos 0'(n —or)
dn

2'-b n

2"+& cos r(n —or)=sin oor[x —2Si {ob)j- dn,
2' —5 n

(19)

where Si is the sine integral. In consequence of the absolute
convergence of the integral J0"p(0) sin oro.do and because

2or+$

j Si (o.6)
~
(const and (const, for 0~0.~~, 0~&~or,

2'—6

we have'

00 2"+~ cos cr(n —or)
lim q(0) 2 sin oro Si (0&)+ dn da
g~p 2(o —8 n

leo 2~+~ cos ~{n—or)
lim q( ) 2 sin Si ( $)+ dn
5-+p 2or—5

do =0, . (20)
and therefore finally

A(or) =or y(0) sin ohio-do,
0

(21)

The order of integration in Eq. (15) can therefore be
inverted

A( ) = —lim &( )d~r
or 7i (=p 0

X J ";",d+j ";";d . (18)

Designating by F the expression in parentheses, one sees at
once that it can be written in the form

P cos o (n —
«&)d f

"cos o (n —co)d
a —00 n Jg n

2"+~ cos 0-(n —or)
dn

2'—5 n
—~ sin 0.n, sin o.n=Sin o-cd an+—oo

But

f ao(o) COSnoda ~J' i@(o)idn=().

in accordance with Eq. (Sa). In a similar manner, one
verifies (10b) ~

' D. Hilbert, Grundsuege einer allgemeinen Theoric der
Integralgleichungen (Leipzig, 1912), p. 75.

4 B.Gross, Ann. Acad. Bras. Sci. 13, 31 (1941).

' R. Courant,

Differential-und

Integralrechnung II
(Berlin, 1931), second edition, p. 251, 252.' E. W. Hobson, Theory of Functions of a Real Uariable
(Cambridge, 1907), first edition, p. 597.


